Properties

Label 924.2.r.d
Level $924$
Weight $2$
Character orbit 924.r
Analytic conductor $7.378$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [924,2,Mod(169,924)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(924, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("924.169");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 924 = 2^{2} \cdot 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 924.r (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.37817714677\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{10}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \zeta_{10}^{2} q^{3} + (2 \zeta_{10}^{2} + 2) q^{5} - \zeta_{10}^{3} q^{7} + (\zeta_{10}^{3} - \zeta_{10}^{2} + \cdots - 1) q^{9} + (2 \zeta_{10}^{3} + \zeta_{10} + 2) q^{11} + (2 \zeta_{10}^{3} - 2 \zeta_{10}^{2} + \cdots - 2) q^{13} + \cdots + (2 \zeta_{10}^{3} - 4 \zeta_{10}^{2} + \cdots - 3) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{3} + 6 q^{5} - q^{7} - q^{9} + 11 q^{11} - 2 q^{13} + 4 q^{15} + 8 q^{17} - 4 q^{21} + 6 q^{23} + 9 q^{25} + q^{27} + 2 q^{29} - 4 q^{31} + 9 q^{33} + 6 q^{35} + 13 q^{37} + 2 q^{39} + 20 q^{41}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/924\mathbb{Z}\right)^\times\).

\(n\) \(463\) \(617\) \(661\) \(673\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-\zeta_{10}^{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
169.1
0.809017 0.587785i
0.809017 + 0.587785i
−0.309017 0.951057i
−0.309017 + 0.951057i
0 −0.309017 + 0.951057i 0 2.61803 1.90211i 0 0.309017 + 0.951057i 0 −0.809017 0.587785i 0
421.1 0 −0.309017 0.951057i 0 2.61803 + 1.90211i 0 0.309017 0.951057i 0 −0.809017 + 0.587785i 0
757.1 0 0.809017 0.587785i 0 0.381966 + 1.17557i 0 −0.809017 0.587785i 0 0.309017 0.951057i 0
841.1 0 0.809017 + 0.587785i 0 0.381966 1.17557i 0 −0.809017 + 0.587785i 0 0.309017 + 0.951057i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.c even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 924.2.r.d 4
11.c even 5 1 inner 924.2.r.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
924.2.r.d 4 1.a even 1 1 trivial
924.2.r.d 4 11.c even 5 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} - 6T_{5}^{3} + 16T_{5}^{2} - 16T_{5} + 16 \) acting on \(S_{2}^{\mathrm{new}}(924, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{4} - 6 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$7$ \( T^{4} + T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{4} - 11 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$13$ \( T^{4} + 2 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$17$ \( T^{4} - 8 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} - 3 T - 9)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} - 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$31$ \( T^{4} + 4 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$37$ \( T^{4} - 13 T^{3} + \cdots + 361 \) Copy content Toggle raw display
$41$ \( T^{4} - 20 T^{3} + \cdots + 6400 \) Copy content Toggle raw display
$43$ \( (T^{2} + T - 11)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 6 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$53$ \( T^{4} + T^{3} + \cdots + 121 \) Copy content Toggle raw display
$59$ \( T^{4} - 14 T^{3} + \cdots + 1936 \) Copy content Toggle raw display
$61$ \( T^{4} - 12 T^{3} + \cdots + 256 \) Copy content Toggle raw display
$67$ \( (T^{2} + 5 T - 55)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} - 5 T^{3} + \cdots + 25 \) Copy content Toggle raw display
$73$ \( T^{4} + 6 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$79$ \( T^{4} - 9 T^{3} + \cdots + 1681 \) Copy content Toggle raw display
$83$ \( T^{4} - 2 T^{3} + \cdots + 1936 \) Copy content Toggle raw display
$89$ \( (T^{2} + 10 T + 20)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + 26 T^{3} + \cdots + 15376 \) Copy content Toggle raw display
show more
show less