Properties

Label 9248.2.a.bo
Level $9248$
Weight $2$
Character orbit 9248.a
Self dual yes
Analytic conductor $73.846$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9248,2,Mod(1,9248)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9248, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9248.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9248 = 2^{5} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9248.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.8456517893\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 15x^{7} - 7x^{6} + 69x^{5} + 48x^{4} - 110x^{3} - 87x^{2} + 45x + 37 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{8}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 1) q^{3} + ( - \beta_{6} + \beta_{5} + \beta_1 - 1) q^{5} + \beta_{7} q^{7} + (\beta_{2} - \beta_1 + 1) q^{9} + ( - \beta_{5} - \beta_{3} - \beta_{2}) q^{11} + (2 \beta_{5} - \beta_{3} - 2) q^{13}+ \cdots + ( - 4 \beta_{8} + 2 \beta_{7} + \cdots - 11) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 9 q^{3} - 6 q^{5} - 3 q^{7} + 12 q^{9} - 6 q^{11} - 12 q^{13} + 21 q^{15} + 18 q^{21} + 3 q^{23} + 9 q^{25} - 24 q^{27} - 21 q^{29} - 24 q^{31} + 27 q^{33} + 12 q^{35} - 12 q^{37} - 3 q^{39} + 15 q^{41}+ \cdots - 90 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{9} - 15x^{7} - 7x^{6} + 69x^{5} + 48x^{4} - 110x^{3} - 87x^{2} + 45x + 37 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{7} - 3\nu^{6} - 8\nu^{5} + 22\nu^{4} + 19\nu^{3} - 43\nu^{2} - 13\nu + 19 ) / 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{8} - 3\nu^{7} - 8\nu^{6} + 22\nu^{5} + 19\nu^{4} - 43\nu^{3} - 13\nu^{2} + 19\nu ) / 2 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 3\nu^{8} - 8\nu^{7} - 27\nu^{6} + 60\nu^{5} + 75\nu^{4} - 122\nu^{3} - 68\nu^{2} + 54\nu + 17 ) / 2 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 3\nu^{8} - 6\nu^{7} - 33\nu^{6} + 44\nu^{5} + 121\nu^{4} - 88\nu^{3} - 166\nu^{2} + 42\nu + 65 ) / 2 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 4\nu^{8} - 7\nu^{7} - 46\nu^{6} + 48\nu^{5} + 176\nu^{4} - 83\nu^{3} - 250\nu^{2} + 27\nu + 98 ) / 2 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 5\nu^{8} - 9\nu^{7} - 57\nu^{6} + 64\nu^{5} + 213\nu^{4} - 121\nu^{3} - 290\nu^{2} + 51\nu + 111 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{8} + \beta_{7} + \beta_{5} - 2\beta_{4} + \beta_{2} + 5\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -2\beta_{8} + 2\beta_{7} + \beta_{6} + \beta_{5} - 4\beta_{4} - 2\beta_{3} + 8\beta_{2} + 9\beta _1 + 15 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -10\beta_{8} + 10\beta_{7} + 2\beta_{6} + 9\beta_{5} - 23\beta_{4} - 5\beta_{3} + 15\beta_{2} + 36\beta _1 + 16 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -26\beta_{8} + 28\beta_{7} + 10\beta_{6} + 16\beta_{5} - 60\beta_{4} - 30\beta_{3} + 69\beta_{2} + 87\beta _1 + 102 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( - 95 \beta_{8} + 101 \beta_{7} + 24 \beta_{6} + 79 \beta_{5} - 238 \beta_{4} - 84 \beta_{3} + \cdots + 195 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 278 \beta_{8} + 312 \beta_{7} + 89 \beta_{6} + 191 \beta_{5} - 696 \beta_{4} - 344 \beta_{3} + \cdots + 846 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.10579
−2.09095
−1.62107
−0.894208
−0.775009
0.785165
1.45307
2.04878
3.20001
0 −3.10579 0 −2.03395 0 0.883659 0 6.64591 0
1.2 0 −3.09095 0 −3.92598 0 −3.26034 0 6.55400 0
1.3 0 −2.62107 0 0.309248 0 −4.59618 0 3.87001 0
1.4 0 −1.89421 0 2.78809 0 −0.147450 0 0.588025 0
1.5 0 −1.77501 0 −2.79665 0 3.67713 0 0.150658 0
1.6 0 −0.214835 0 −3.35988 0 −2.68602 0 −2.95385 0
1.7 0 0.453073 0 0.322684 0 0.528404 0 −2.79472 0
1.8 0 1.04878 0 2.71408 0 1.45113 0 −1.90005 0
1.9 0 2.20001 0 −0.0176497 0 1.14966 0 1.84003 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.9
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9248.2.a.bo 9
4.b odd 2 1 9248.2.a.bq yes 9
17.b even 2 1 9248.2.a.br yes 9
68.d odd 2 1 9248.2.a.bp yes 9
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
9248.2.a.bo 9 1.a even 1 1 trivial
9248.2.a.bp yes 9 68.d odd 2 1
9248.2.a.bq yes 9 4.b odd 2 1
9248.2.a.br yes 9 17.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9248))\):

\( T_{3}^{9} + 9T_{3}^{8} + 21T_{3}^{7} - 28T_{3}^{6} - 162T_{3}^{5} - 111T_{3}^{4} + 191T_{3}^{3} + 177T_{3}^{2} - 60T_{3} - 19 \) Copy content Toggle raw display
\( T_{5}^{9} + 6T_{5}^{8} - 9T_{5}^{7} - 97T_{5}^{6} - 33T_{5}^{5} + 432T_{5}^{4} + 324T_{5}^{3} - 315T_{5}^{2} + 51T_{5} + 1 \) Copy content Toggle raw display
\( T_{7}^{9} + 3T_{7}^{8} - 24T_{7}^{7} - 49T_{7}^{6} + 177T_{7}^{5} + 99T_{7}^{4} - 521T_{7}^{3} + 378T_{7}^{2} - 48T_{7} - 17 \) Copy content Toggle raw display
\( T_{19}^{9} - 57T_{19}^{7} - 41T_{19}^{6} + 873T_{19}^{5} + 870T_{19}^{4} - 3862T_{19}^{3} - 1731T_{19}^{2} + 6663T_{19} - 2447 \) Copy content Toggle raw display
\( T_{43}^{9} - 3 T_{43}^{8} - 339 T_{43}^{7} + 1222 T_{43}^{6} + 38238 T_{43}^{5} - 144075 T_{43}^{4} + \cdots + 8890633 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{9} \) Copy content Toggle raw display
$3$ \( T^{9} + 9 T^{8} + \cdots - 19 \) Copy content Toggle raw display
$5$ \( T^{9} + 6 T^{8} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{9} + 3 T^{8} + \cdots - 17 \) Copy content Toggle raw display
$11$ \( T^{9} + 6 T^{8} + \cdots - 4672 \) Copy content Toggle raw display
$13$ \( T^{9} + 12 T^{8} + \cdots - 29179 \) Copy content Toggle raw display
$17$ \( T^{9} \) Copy content Toggle raw display
$19$ \( T^{9} - 57 T^{7} + \cdots - 2447 \) Copy content Toggle raw display
$23$ \( T^{9} - 3 T^{8} + \cdots - 71 \) Copy content Toggle raw display
$29$ \( T^{9} + 21 T^{8} + \cdots - 198917 \) Copy content Toggle raw display
$31$ \( T^{9} + 24 T^{8} + \cdots - 239581 \) Copy content Toggle raw display
$37$ \( T^{9} + 12 T^{8} + \cdots - 8390231 \) Copy content Toggle raw display
$41$ \( T^{9} - 15 T^{8} + \cdots - 1549 \) Copy content Toggle raw display
$43$ \( T^{9} - 3 T^{8} + \cdots + 8890633 \) Copy content Toggle raw display
$47$ \( T^{9} - 12 T^{8} + \cdots + 384067 \) Copy content Toggle raw display
$53$ \( T^{9} - 9 T^{8} + \cdots - 503488 \) Copy content Toggle raw display
$59$ \( T^{9} + 45 T^{8} + \cdots - 1677943 \) Copy content Toggle raw display
$61$ \( T^{9} + 3 T^{8} + \cdots + 358085807 \) Copy content Toggle raw display
$67$ \( T^{9} + 6 T^{8} + \cdots + 4191337 \) Copy content Toggle raw display
$71$ \( T^{9} - 9 T^{8} + \cdots + 41761781 \) Copy content Toggle raw display
$73$ \( T^{9} - 30 T^{8} + \cdots - 9721 \) Copy content Toggle raw display
$79$ \( T^{9} - 18 T^{8} + \cdots - 6839288 \) Copy content Toggle raw display
$83$ \( T^{9} - 9 T^{8} + \cdots + 9609011 \) Copy content Toggle raw display
$89$ \( T^{9} - 504 T^{7} + \cdots + 10434311 \) Copy content Toggle raw display
$97$ \( T^{9} - 33 T^{8} + \cdots - 19741184 \) Copy content Toggle raw display
show more
show less