Properties

Label 9248.2.a.bv.1.5
Level $9248$
Weight $2$
Character 9248.1
Self dual yes
Analytic conductor $73.846$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9248,2,Mod(1,9248)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9248, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9248.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9248 = 2^{5} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9248.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.8456517893\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.12.10455582754471936.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 18x^{10} + 122x^{8} - 384x^{6} + 553x^{4} - 294x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{41}]\)
Coefficient ring index: \( 2^{14} \)
Twist minimal: no (minimal twist has level 544)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(2.44664\) of defining polynomial
Character \(\chi\) \(=\) 9248.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.610563 q^{3} -0.408946 q^{5} +3.61232 q^{7} -2.62721 q^{9} +4.04633 q^{11} -3.62721 q^{13} +0.249687 q^{15} -6.83553 q^{19} -2.20555 q^{21} +8.26922 q^{23} -4.83276 q^{25} +3.43577 q^{27} -8.36703 q^{29} +0.176556 q^{31} -2.47054 q^{33} -1.47725 q^{35} +2.41948 q^{37} +2.21464 q^{39} -1.41421 q^{41} -11.0807 q^{43} +1.07439 q^{45} +10.2172 q^{47} +6.04888 q^{49} +1.42166 q^{53} -1.65473 q^{55} +4.17352 q^{57} +5.72237 q^{59} +3.23737 q^{61} -9.49034 q^{63} +1.48333 q^{65} +12.5579 q^{67} -5.04888 q^{69} +9.61584 q^{71} +6.83456 q^{73} +2.95071 q^{75} +14.6167 q^{77} +1.39768 q^{79} +5.78389 q^{81} +7.44931 q^{83} +5.10860 q^{87} +13.0489 q^{89} -13.1027 q^{91} -0.107798 q^{93} +2.79536 q^{95} -7.36176 q^{97} -10.6306 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 20 q^{9} + 8 q^{13} + 32 q^{21} + 52 q^{25} + 8 q^{33} + 28 q^{49} + 24 q^{53} - 16 q^{69} + 4 q^{81} + 112 q^{89} - 32 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.610563 −0.352509 −0.176254 0.984345i \(-0.556398\pi\)
−0.176254 + 0.984345i \(0.556398\pi\)
\(4\) 0 0
\(5\) −0.408946 −0.182886 −0.0914431 0.995810i \(-0.529148\pi\)
−0.0914431 + 0.995810i \(0.529148\pi\)
\(6\) 0 0
\(7\) 3.61232 1.36533 0.682665 0.730732i \(-0.260821\pi\)
0.682665 + 0.730732i \(0.260821\pi\)
\(8\) 0 0
\(9\) −2.62721 −0.875738
\(10\) 0 0
\(11\) 4.04633 1.22001 0.610007 0.792396i \(-0.291167\pi\)
0.610007 + 0.792396i \(0.291167\pi\)
\(12\) 0 0
\(13\) −3.62721 −1.00601 −0.503004 0.864284i \(-0.667772\pi\)
−0.503004 + 0.864284i \(0.667772\pi\)
\(14\) 0 0
\(15\) 0.249687 0.0644690
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) −6.83553 −1.56818 −0.784089 0.620649i \(-0.786869\pi\)
−0.784089 + 0.620649i \(0.786869\pi\)
\(20\) 0 0
\(21\) −2.20555 −0.481290
\(22\) 0 0
\(23\) 8.26922 1.72425 0.862125 0.506695i \(-0.169133\pi\)
0.862125 + 0.506695i \(0.169133\pi\)
\(24\) 0 0
\(25\) −4.83276 −0.966553
\(26\) 0 0
\(27\) 3.43577 0.661214
\(28\) 0 0
\(29\) −8.36703 −1.55372 −0.776859 0.629675i \(-0.783188\pi\)
−0.776859 + 0.629675i \(0.783188\pi\)
\(30\) 0 0
\(31\) 0.176556 0.0317103 0.0158552 0.999874i \(-0.494953\pi\)
0.0158552 + 0.999874i \(0.494953\pi\)
\(32\) 0 0
\(33\) −2.47054 −0.430066
\(34\) 0 0
\(35\) −1.47725 −0.249700
\(36\) 0 0
\(37\) 2.41948 0.397760 0.198880 0.980024i \(-0.436270\pi\)
0.198880 + 0.980024i \(0.436270\pi\)
\(38\) 0 0
\(39\) 2.21464 0.354626
\(40\) 0 0
\(41\) −1.41421 −0.220863 −0.110432 0.993884i \(-0.535223\pi\)
−0.110432 + 0.993884i \(0.535223\pi\)
\(42\) 0 0
\(43\) −11.0807 −1.68978 −0.844892 0.534937i \(-0.820336\pi\)
−0.844892 + 0.534937i \(0.820336\pi\)
\(44\) 0 0
\(45\) 1.07439 0.160160
\(46\) 0 0
\(47\) 10.2172 1.49033 0.745165 0.666880i \(-0.232371\pi\)
0.745165 + 0.666880i \(0.232371\pi\)
\(48\) 0 0
\(49\) 6.04888 0.864125
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.42166 0.195280 0.0976402 0.995222i \(-0.468871\pi\)
0.0976402 + 0.995222i \(0.468871\pi\)
\(54\) 0 0
\(55\) −1.65473 −0.223124
\(56\) 0 0
\(57\) 4.17352 0.552796
\(58\) 0 0
\(59\) 5.72237 0.744990 0.372495 0.928034i \(-0.378502\pi\)
0.372495 + 0.928034i \(0.378502\pi\)
\(60\) 0 0
\(61\) 3.23737 0.414503 0.207252 0.978288i \(-0.433548\pi\)
0.207252 + 0.978288i \(0.433548\pi\)
\(62\) 0 0
\(63\) −9.49034 −1.19567
\(64\) 0 0
\(65\) 1.48333 0.183985
\(66\) 0 0
\(67\) 12.5579 1.53419 0.767096 0.641532i \(-0.221701\pi\)
0.767096 + 0.641532i \(0.221701\pi\)
\(68\) 0 0
\(69\) −5.04888 −0.607813
\(70\) 0 0
\(71\) 9.61584 1.14119 0.570595 0.821231i \(-0.306713\pi\)
0.570595 + 0.821231i \(0.306713\pi\)
\(72\) 0 0
\(73\) 6.83456 0.799925 0.399962 0.916532i \(-0.369023\pi\)
0.399962 + 0.916532i \(0.369023\pi\)
\(74\) 0 0
\(75\) 2.95071 0.340718
\(76\) 0 0
\(77\) 14.6167 1.66572
\(78\) 0 0
\(79\) 1.39768 0.157251 0.0786257 0.996904i \(-0.474947\pi\)
0.0786257 + 0.996904i \(0.474947\pi\)
\(80\) 0 0
\(81\) 5.78389 0.642654
\(82\) 0 0
\(83\) 7.44931 0.817668 0.408834 0.912609i \(-0.365936\pi\)
0.408834 + 0.912609i \(0.365936\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 5.10860 0.547699
\(88\) 0 0
\(89\) 13.0489 1.38318 0.691589 0.722291i \(-0.256911\pi\)
0.691589 + 0.722291i \(0.256911\pi\)
\(90\) 0 0
\(91\) −13.1027 −1.37353
\(92\) 0 0
\(93\) −0.107798 −0.0111782
\(94\) 0 0
\(95\) 2.79536 0.286798
\(96\) 0 0
\(97\) −7.36176 −0.747473 −0.373737 0.927535i \(-0.621924\pi\)
−0.373737 + 0.927535i \(0.621924\pi\)
\(98\) 0 0
\(99\) −10.6306 −1.06841
\(100\) 0 0
\(101\) −4.37279 −0.435109 −0.217554 0.976048i \(-0.569808\pi\)
−0.217554 + 0.976048i \(0.569808\pi\)
\(102\) 0 0
\(103\) −7.08522 −0.698127 −0.349064 0.937099i \(-0.613500\pi\)
−0.349064 + 0.937099i \(0.613500\pi\)
\(104\) 0 0
\(105\) 0.901951 0.0880214
\(106\) 0 0
\(107\) −1.83169 −0.177076 −0.0885380 0.996073i \(-0.528219\pi\)
−0.0885380 + 0.996073i \(0.528219\pi\)
\(108\) 0 0
\(109\) 15.5072 1.48532 0.742661 0.669668i \(-0.233563\pi\)
0.742661 + 0.669668i \(0.233563\pi\)
\(110\) 0 0
\(111\) −1.47725 −0.140214
\(112\) 0 0
\(113\) −15.8470 −1.49076 −0.745382 0.666637i \(-0.767733\pi\)
−0.745382 + 0.666637i \(0.767733\pi\)
\(114\) 0 0
\(115\) −3.38166 −0.315342
\(116\) 0 0
\(117\) 9.52946 0.880999
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 5.37279 0.488435
\(122\) 0 0
\(123\) 0.863466 0.0778561
\(124\) 0 0
\(125\) 4.02107 0.359655
\(126\) 0 0
\(127\) −15.1483 −1.34419 −0.672097 0.740463i \(-0.734606\pi\)
−0.672097 + 0.740463i \(0.734606\pi\)
\(128\) 0 0
\(129\) 6.76544 0.595664
\(130\) 0 0
\(131\) −0.963674 −0.0841966 −0.0420983 0.999113i \(-0.513404\pi\)
−0.0420983 + 0.999113i \(0.513404\pi\)
\(132\) 0 0
\(133\) −24.6921 −2.14108
\(134\) 0 0
\(135\) −1.40504 −0.120927
\(136\) 0 0
\(137\) 2.47054 0.211072 0.105536 0.994415i \(-0.466344\pi\)
0.105536 + 0.994415i \(0.466344\pi\)
\(138\) 0 0
\(139\) 4.39944 0.373156 0.186578 0.982440i \(-0.440260\pi\)
0.186578 + 0.982440i \(0.440260\pi\)
\(140\) 0 0
\(141\) −6.23824 −0.525354
\(142\) 0 0
\(143\) −14.6769 −1.22734
\(144\) 0 0
\(145\) 3.42166 0.284154
\(146\) 0 0
\(147\) −3.69322 −0.304612
\(148\) 0 0
\(149\) −8.84333 −0.724473 −0.362237 0.932086i \(-0.617987\pi\)
−0.362237 + 0.932086i \(0.617987\pi\)
\(150\) 0 0
\(151\) 4.60922 0.375093 0.187547 0.982256i \(-0.439946\pi\)
0.187547 + 0.982256i \(0.439946\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.0722017 −0.00579938
\(156\) 0 0
\(157\) 17.2544 1.37705 0.688527 0.725211i \(-0.258258\pi\)
0.688527 + 0.725211i \(0.258258\pi\)
\(158\) 0 0
\(159\) −0.868015 −0.0688380
\(160\) 0 0
\(161\) 29.8711 2.35417
\(162\) 0 0
\(163\) 1.95719 0.153299 0.0766495 0.997058i \(-0.475578\pi\)
0.0766495 + 0.997058i \(0.475578\pi\)
\(164\) 0 0
\(165\) 1.01032 0.0786531
\(166\) 0 0
\(167\) 12.9261 1.00025 0.500126 0.865953i \(-0.333287\pi\)
0.500126 + 0.865953i \(0.333287\pi\)
\(168\) 0 0
\(169\) 0.156674 0.0120519
\(170\) 0 0
\(171\) 17.9584 1.37331
\(172\) 0 0
\(173\) 8.36703 0.636133 0.318067 0.948068i \(-0.396966\pi\)
0.318067 + 0.948068i \(0.396966\pi\)
\(174\) 0 0
\(175\) −17.4575 −1.31966
\(176\) 0 0
\(177\) −3.49387 −0.262615
\(178\) 0 0
\(179\) 11.6944 0.874083 0.437042 0.899441i \(-0.356026\pi\)
0.437042 + 0.899441i \(0.356026\pi\)
\(180\) 0 0
\(181\) −7.83983 −0.582730 −0.291365 0.956612i \(-0.594109\pi\)
−0.291365 + 0.956612i \(0.594109\pi\)
\(182\) 0 0
\(183\) −1.97662 −0.146116
\(184\) 0 0
\(185\) −0.989437 −0.0727449
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 12.4111 0.902775
\(190\) 0 0
\(191\) 10.0397 0.726448 0.363224 0.931702i \(-0.381676\pi\)
0.363224 + 0.931702i \(0.381676\pi\)
\(192\) 0 0
\(193\) 24.6230 1.77240 0.886202 0.463300i \(-0.153335\pi\)
0.886202 + 0.463300i \(0.153335\pi\)
\(194\) 0 0
\(195\) −0.905669 −0.0648563
\(196\) 0 0
\(197\) −0.699638 −0.0498471 −0.0249236 0.999689i \(-0.507934\pi\)
−0.0249236 + 0.999689i \(0.507934\pi\)
\(198\) 0 0
\(199\) 22.7185 1.61047 0.805236 0.592954i \(-0.202039\pi\)
0.805236 + 0.592954i \(0.202039\pi\)
\(200\) 0 0
\(201\) −7.66739 −0.540816
\(202\) 0 0
\(203\) −30.2244 −2.12134
\(204\) 0 0
\(205\) 0.578337 0.0403928
\(206\) 0 0
\(207\) −21.7250 −1.50999
\(208\) 0 0
\(209\) −27.6588 −1.91320
\(210\) 0 0
\(211\) −9.05633 −0.623464 −0.311732 0.950170i \(-0.600909\pi\)
−0.311732 + 0.950170i \(0.600909\pi\)
\(212\) 0 0
\(213\) −5.87108 −0.402280
\(214\) 0 0
\(215\) 4.53139 0.309038
\(216\) 0 0
\(217\) 0.637776 0.0432950
\(218\) 0 0
\(219\) −4.17293 −0.281980
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −18.7797 −1.25758 −0.628789 0.777576i \(-0.716449\pi\)
−0.628789 + 0.777576i \(0.716449\pi\)
\(224\) 0 0
\(225\) 12.6967 0.846447
\(226\) 0 0
\(227\) 6.48858 0.430662 0.215331 0.976541i \(-0.430917\pi\)
0.215331 + 0.976541i \(0.430917\pi\)
\(228\) 0 0
\(229\) −13.3622 −0.883001 −0.441500 0.897261i \(-0.645554\pi\)
−0.441500 + 0.897261i \(0.645554\pi\)
\(230\) 0 0
\(231\) −8.92438 −0.587181
\(232\) 0 0
\(233\) −4.76984 −0.312483 −0.156241 0.987719i \(-0.549938\pi\)
−0.156241 + 0.987719i \(0.549938\pi\)
\(234\) 0 0
\(235\) −4.17828 −0.272561
\(236\) 0 0
\(237\) −0.853372 −0.0554325
\(238\) 0 0
\(239\) −3.13198 −0.202591 −0.101295 0.994856i \(-0.532299\pi\)
−0.101295 + 0.994856i \(0.532299\pi\)
\(240\) 0 0
\(241\) 28.2693 1.82099 0.910494 0.413522i \(-0.135702\pi\)
0.910494 + 0.413522i \(0.135702\pi\)
\(242\) 0 0
\(243\) −13.8387 −0.887755
\(244\) 0 0
\(245\) −2.47366 −0.158037
\(246\) 0 0
\(247\) 24.7939 1.57760
\(248\) 0 0
\(249\) −4.54827 −0.288235
\(250\) 0 0
\(251\) −13.9629 −0.881333 −0.440667 0.897671i \(-0.645258\pi\)
−0.440667 + 0.897671i \(0.645258\pi\)
\(252\) 0 0
\(253\) 33.4600 2.10361
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3.31386 0.206713 0.103357 0.994644i \(-0.467042\pi\)
0.103357 + 0.994644i \(0.467042\pi\)
\(258\) 0 0
\(259\) 8.73995 0.543074
\(260\) 0 0
\(261\) 21.9820 1.36065
\(262\) 0 0
\(263\) 2.88229 0.177730 0.0888648 0.996044i \(-0.471676\pi\)
0.0888648 + 0.996044i \(0.471676\pi\)
\(264\) 0 0
\(265\) −0.581383 −0.0357141
\(266\) 0 0
\(267\) −7.96716 −0.487582
\(268\) 0 0
\(269\) 15.2707 0.931071 0.465536 0.885029i \(-0.345862\pi\)
0.465536 + 0.885029i \(0.345862\pi\)
\(270\) 0 0
\(271\) 3.13198 0.190254 0.0951270 0.995465i \(-0.469674\pi\)
0.0951270 + 0.995465i \(0.469674\pi\)
\(272\) 0 0
\(273\) 8.00000 0.484182
\(274\) 0 0
\(275\) −19.5550 −1.17921
\(276\) 0 0
\(277\) 17.8084 1.07001 0.535003 0.844850i \(-0.320311\pi\)
0.535003 + 0.844850i \(0.320311\pi\)
\(278\) 0 0
\(279\) −0.463849 −0.0277699
\(280\) 0 0
\(281\) 17.8328 1.06381 0.531907 0.846803i \(-0.321476\pi\)
0.531907 + 0.846803i \(0.321476\pi\)
\(282\) 0 0
\(283\) −12.8452 −0.763569 −0.381784 0.924251i \(-0.624690\pi\)
−0.381784 + 0.924251i \(0.624690\pi\)
\(284\) 0 0
\(285\) −1.70674 −0.101099
\(286\) 0 0
\(287\) −5.10860 −0.301551
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) 4.49482 0.263491
\(292\) 0 0
\(293\) 8.09775 0.473076 0.236538 0.971622i \(-0.423987\pi\)
0.236538 + 0.971622i \(0.423987\pi\)
\(294\) 0 0
\(295\) −2.34014 −0.136248
\(296\) 0 0
\(297\) 13.9022 0.806690
\(298\) 0 0
\(299\) −29.9942 −1.73461
\(300\) 0 0
\(301\) −40.0269 −2.30711
\(302\) 0 0
\(303\) 2.66986 0.153380
\(304\) 0 0
\(305\) −1.32391 −0.0758069
\(306\) 0 0
\(307\) −28.2478 −1.61219 −0.806093 0.591789i \(-0.798422\pi\)
−0.806093 + 0.591789i \(0.798422\pi\)
\(308\) 0 0
\(309\) 4.32597 0.246096
\(310\) 0 0
\(311\) 20.1508 1.14264 0.571322 0.820726i \(-0.306431\pi\)
0.571322 + 0.820726i \(0.306431\pi\)
\(312\) 0 0
\(313\) −26.6335 −1.50542 −0.752709 0.658354i \(-0.771253\pi\)
−0.752709 + 0.658354i \(0.771253\pi\)
\(314\) 0 0
\(315\) 3.88104 0.218672
\(316\) 0 0
\(317\) −4.95722 −0.278425 −0.139213 0.990263i \(-0.544457\pi\)
−0.139213 + 0.990263i \(0.544457\pi\)
\(318\) 0 0
\(319\) −33.8558 −1.89556
\(320\) 0 0
\(321\) 1.11836 0.0624208
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 17.5295 0.972360
\(326\) 0 0
\(327\) −9.46813 −0.523589
\(328\) 0 0
\(329\) 36.9078 2.03479
\(330\) 0 0
\(331\) 10.5813 0.581600 0.290800 0.956784i \(-0.406079\pi\)
0.290800 + 0.956784i \(0.406079\pi\)
\(332\) 0 0
\(333\) −6.35649 −0.348334
\(334\) 0 0
\(335\) −5.13551 −0.280583
\(336\) 0 0
\(337\) 1.03946 0.0566232 0.0283116 0.999599i \(-0.490987\pi\)
0.0283116 + 0.999599i \(0.490987\pi\)
\(338\) 0 0
\(339\) 9.67561 0.525507
\(340\) 0 0
\(341\) 0.714402 0.0386870
\(342\) 0 0
\(343\) −3.43577 −0.185514
\(344\) 0 0
\(345\) 2.06472 0.111161
\(346\) 0 0
\(347\) −4.04633 −0.217218 −0.108609 0.994085i \(-0.534640\pi\)
−0.108609 + 0.994085i \(0.534640\pi\)
\(348\) 0 0
\(349\) 6.57834 0.352130 0.176065 0.984379i \(-0.443663\pi\)
0.176065 + 0.984379i \(0.443663\pi\)
\(350\) 0 0
\(351\) −12.4623 −0.665186
\(352\) 0 0
\(353\) 9.73501 0.518142 0.259071 0.965858i \(-0.416584\pi\)
0.259071 + 0.965858i \(0.416584\pi\)
\(354\) 0 0
\(355\) −3.93236 −0.208708
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 30.2244 1.59518 0.797591 0.603198i \(-0.206107\pi\)
0.797591 + 0.603198i \(0.206107\pi\)
\(360\) 0 0
\(361\) 27.7244 1.45918
\(362\) 0 0
\(363\) −3.28042 −0.172178
\(364\) 0 0
\(365\) −2.79497 −0.146295
\(366\) 0 0
\(367\) 21.3719 1.11560 0.557802 0.829974i \(-0.311645\pi\)
0.557802 + 0.829974i \(0.311645\pi\)
\(368\) 0 0
\(369\) 3.71544 0.193418
\(370\) 0 0
\(371\) 5.13551 0.266622
\(372\) 0 0
\(373\) −30.5472 −1.58167 −0.790836 0.612028i \(-0.790354\pi\)
−0.790836 + 0.612028i \(0.790354\pi\)
\(374\) 0 0
\(375\) −2.45512 −0.126782
\(376\) 0 0
\(377\) 30.3490 1.56305
\(378\) 0 0
\(379\) 21.9314 1.12654 0.563270 0.826273i \(-0.309543\pi\)
0.563270 + 0.826273i \(0.309543\pi\)
\(380\) 0 0
\(381\) 9.24899 0.473840
\(382\) 0 0
\(383\) −25.0436 −1.27967 −0.639834 0.768513i \(-0.720997\pi\)
−0.639834 + 0.768513i \(0.720997\pi\)
\(384\) 0 0
\(385\) −5.97742 −0.304638
\(386\) 0 0
\(387\) 29.1112 1.47981
\(388\) 0 0
\(389\) 18.5189 0.938945 0.469473 0.882947i \(-0.344444\pi\)
0.469473 + 0.882947i \(0.344444\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0.588384 0.0296800
\(394\) 0 0
\(395\) −0.571576 −0.0287591
\(396\) 0 0
\(397\) −23.7560 −1.19228 −0.596139 0.802881i \(-0.703299\pi\)
−0.596139 + 0.802881i \(0.703299\pi\)
\(398\) 0 0
\(399\) 15.0761 0.754749
\(400\) 0 0
\(401\) 10.8556 0.542104 0.271052 0.962565i \(-0.412628\pi\)
0.271052 + 0.962565i \(0.412628\pi\)
\(402\) 0 0
\(403\) −0.640405 −0.0319008
\(404\) 0 0
\(405\) −2.36530 −0.117533
\(406\) 0 0
\(407\) 9.79002 0.485273
\(408\) 0 0
\(409\) 1.32391 0.0654632 0.0327316 0.999464i \(-0.489579\pi\)
0.0327316 + 0.999464i \(0.489579\pi\)
\(410\) 0 0
\(411\) −1.50842 −0.0744048
\(412\) 0 0
\(413\) 20.6711 1.01716
\(414\) 0 0
\(415\) −3.04637 −0.149540
\(416\) 0 0
\(417\) −2.68614 −0.131541
\(418\) 0 0
\(419\) 16.7959 0.820533 0.410266 0.911966i \(-0.365436\pi\)
0.410266 + 0.911966i \(0.365436\pi\)
\(420\) 0 0
\(421\) −28.9794 −1.41237 −0.706185 0.708028i \(-0.749585\pi\)
−0.706185 + 0.708028i \(0.749585\pi\)
\(422\) 0 0
\(423\) −26.8427 −1.30514
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 11.6944 0.565933
\(428\) 0 0
\(429\) 8.96117 0.432649
\(430\) 0 0
\(431\) −17.9361 −0.863952 −0.431976 0.901885i \(-0.642184\pi\)
−0.431976 + 0.901885i \(0.642184\pi\)
\(432\) 0 0
\(433\) 5.69670 0.273766 0.136883 0.990587i \(-0.456292\pi\)
0.136883 + 0.990587i \(0.456292\pi\)
\(434\) 0 0
\(435\) −2.08914 −0.100167
\(436\) 0 0
\(437\) −56.5245 −2.70393
\(438\) 0 0
\(439\) 4.48034 0.213835 0.106917 0.994268i \(-0.465902\pi\)
0.106917 + 0.994268i \(0.465902\pi\)
\(440\) 0 0
\(441\) −15.8917 −0.756747
\(442\) 0 0
\(443\) 7.52151 0.357358 0.178679 0.983907i \(-0.442818\pi\)
0.178679 + 0.983907i \(0.442818\pi\)
\(444\) 0 0
\(445\) −5.33629 −0.252964
\(446\) 0 0
\(447\) 5.39941 0.255383
\(448\) 0 0
\(449\) 19.3951 0.915311 0.457656 0.889130i \(-0.348689\pi\)
0.457656 + 0.889130i \(0.348689\pi\)
\(450\) 0 0
\(451\) −5.72237 −0.269456
\(452\) 0 0
\(453\) −2.81422 −0.132224
\(454\) 0 0
\(455\) 5.35828 0.251200
\(456\) 0 0
\(457\) 7.45998 0.348963 0.174481 0.984660i \(-0.444175\pi\)
0.174481 + 0.984660i \(0.444175\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −18.2439 −0.849701 −0.424851 0.905263i \(-0.639673\pi\)
−0.424851 + 0.905263i \(0.639673\pi\)
\(462\) 0 0
\(463\) 25.2933 1.17548 0.587739 0.809050i \(-0.300018\pi\)
0.587739 + 0.809050i \(0.300018\pi\)
\(464\) 0 0
\(465\) 0.0440837 0.00204433
\(466\) 0 0
\(467\) −5.28608 −0.244611 −0.122305 0.992493i \(-0.539029\pi\)
−0.122305 + 0.992493i \(0.539029\pi\)
\(468\) 0 0
\(469\) 45.3632 2.09468
\(470\) 0 0
\(471\) −10.5349 −0.485423
\(472\) 0 0
\(473\) −44.8360 −2.06156
\(474\) 0 0
\(475\) 33.0345 1.51573
\(476\) 0 0
\(477\) −3.73501 −0.171014
\(478\) 0 0
\(479\) 22.8206 1.04270 0.521350 0.853343i \(-0.325429\pi\)
0.521350 + 0.853343i \(0.325429\pi\)
\(480\) 0 0
\(481\) −8.77597 −0.400150
\(482\) 0 0
\(483\) −18.2382 −0.829865
\(484\) 0 0
\(485\) 3.01056 0.136703
\(486\) 0 0
\(487\) −8.90962 −0.403733 −0.201867 0.979413i \(-0.564701\pi\)
−0.201867 + 0.979413i \(0.564701\pi\)
\(488\) 0 0
\(489\) −1.19499 −0.0540392
\(490\) 0 0
\(491\) −27.2699 −1.23067 −0.615337 0.788264i \(-0.710980\pi\)
−0.615337 + 0.788264i \(0.710980\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 4.34733 0.195398
\(496\) 0 0
\(497\) 34.7355 1.55810
\(498\) 0 0
\(499\) 23.6674 1.05950 0.529750 0.848154i \(-0.322286\pi\)
0.529750 + 0.848154i \(0.322286\pi\)
\(500\) 0 0
\(501\) −7.89220 −0.352598
\(502\) 0 0
\(503\) 16.9426 0.755433 0.377717 0.925921i \(-0.376709\pi\)
0.377717 + 0.925921i \(0.376709\pi\)
\(504\) 0 0
\(505\) 1.78823 0.0795754
\(506\) 0 0
\(507\) −0.0956594 −0.00424838
\(508\) 0 0
\(509\) −30.0766 −1.33312 −0.666562 0.745450i \(-0.732235\pi\)
−0.666562 + 0.745450i \(0.732235\pi\)
\(510\) 0 0
\(511\) 24.6886 1.09216
\(512\) 0 0
\(513\) −23.4853 −1.03690
\(514\) 0 0
\(515\) 2.89747 0.127678
\(516\) 0 0
\(517\) 41.3421 1.81822
\(518\) 0 0
\(519\) −5.10860 −0.224242
\(520\) 0 0
\(521\) −26.0223 −1.14006 −0.570029 0.821625i \(-0.693068\pi\)
−0.570029 + 0.821625i \(0.693068\pi\)
\(522\) 0 0
\(523\) 17.4168 0.761584 0.380792 0.924661i \(-0.375651\pi\)
0.380792 + 0.924661i \(0.375651\pi\)
\(524\) 0 0
\(525\) 10.6589 0.465193
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 45.3799 1.97304
\(530\) 0 0
\(531\) −15.0339 −0.652416
\(532\) 0 0
\(533\) 5.12965 0.222190
\(534\) 0 0
\(535\) 0.749062 0.0323848
\(536\) 0 0
\(537\) −7.14019 −0.308122
\(538\) 0 0
\(539\) 24.4757 1.05425
\(540\) 0 0
\(541\) −18.5722 −0.798479 −0.399240 0.916847i \(-0.630726\pi\)
−0.399240 + 0.916847i \(0.630726\pi\)
\(542\) 0 0
\(543\) 4.78671 0.205417
\(544\) 0 0
\(545\) −6.34162 −0.271645
\(546\) 0 0
\(547\) 22.9907 0.983012 0.491506 0.870874i \(-0.336447\pi\)
0.491506 + 0.870874i \(0.336447\pi\)
\(548\) 0 0
\(549\) −8.50527 −0.362996
\(550\) 0 0
\(551\) 57.1931 2.43651
\(552\) 0 0
\(553\) 5.04888 0.214700
\(554\) 0 0
\(555\) 0.604114 0.0256432
\(556\) 0 0
\(557\) −11.6272 −0.492661 −0.246330 0.969186i \(-0.579225\pi\)
−0.246330 + 0.969186i \(0.579225\pi\)
\(558\) 0 0
\(559\) 40.1919 1.69994
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −20.0703 −0.845862 −0.422931 0.906162i \(-0.638999\pi\)
−0.422931 + 0.906162i \(0.638999\pi\)
\(564\) 0 0
\(565\) 6.48059 0.272640
\(566\) 0 0
\(567\) 20.8933 0.877435
\(568\) 0 0
\(569\) 31.2544 1.31025 0.655127 0.755519i \(-0.272615\pi\)
0.655127 + 0.755519i \(0.272615\pi\)
\(570\) 0 0
\(571\) 35.1596 1.47138 0.735691 0.677318i \(-0.236858\pi\)
0.735691 + 0.677318i \(0.236858\pi\)
\(572\) 0 0
\(573\) −6.12987 −0.256079
\(574\) 0 0
\(575\) −39.9632 −1.66658
\(576\) 0 0
\(577\) 21.3139 0.887308 0.443654 0.896198i \(-0.353682\pi\)
0.443654 + 0.896198i \(0.353682\pi\)
\(578\) 0 0
\(579\) −15.0339 −0.624787
\(580\) 0 0
\(581\) 26.9093 1.11639
\(582\) 0 0
\(583\) 5.75252 0.238245
\(584\) 0 0
\(585\) −3.89704 −0.161123
\(586\) 0 0
\(587\) 15.1483 0.625237 0.312619 0.949879i \(-0.398794\pi\)
0.312619 + 0.949879i \(0.398794\pi\)
\(588\) 0 0
\(589\) −1.20685 −0.0497274
\(590\) 0 0
\(591\) 0.427173 0.0175715
\(592\) 0 0
\(593\) 47.5466 1.95251 0.976253 0.216632i \(-0.0695070\pi\)
0.976253 + 0.216632i \(0.0695070\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −13.8711 −0.567705
\(598\) 0 0
\(599\) −5.85766 −0.239337 −0.119669 0.992814i \(-0.538183\pi\)
−0.119669 + 0.992814i \(0.538183\pi\)
\(600\) 0 0
\(601\) 13.6841 0.558184 0.279092 0.960264i \(-0.409967\pi\)
0.279092 + 0.960264i \(0.409967\pi\)
\(602\) 0 0
\(603\) −32.9923 −1.34355
\(604\) 0 0
\(605\) −2.19718 −0.0893281
\(606\) 0 0
\(607\) 11.5795 0.469997 0.234998 0.971996i \(-0.424492\pi\)
0.234998 + 0.971996i \(0.424492\pi\)
\(608\) 0 0
\(609\) 18.4539 0.747790
\(610\) 0 0
\(611\) −37.0599 −1.49928
\(612\) 0 0
\(613\) −36.1744 −1.46107 −0.730535 0.682876i \(-0.760729\pi\)
−0.730535 + 0.682876i \(0.760729\pi\)
\(614\) 0 0
\(615\) −0.353111 −0.0142388
\(616\) 0 0
\(617\) −8.41616 −0.338822 −0.169411 0.985546i \(-0.554187\pi\)
−0.169411 + 0.985546i \(0.554187\pi\)
\(618\) 0 0
\(619\) 39.9186 1.60446 0.802231 0.597014i \(-0.203646\pi\)
0.802231 + 0.597014i \(0.203646\pi\)
\(620\) 0 0
\(621\) 28.4111 1.14010
\(622\) 0 0
\(623\) 47.1368 1.88849
\(624\) 0 0
\(625\) 22.5194 0.900777
\(626\) 0 0
\(627\) 16.8874 0.674419
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −24.8661 −0.989905 −0.494952 0.868920i \(-0.664814\pi\)
−0.494952 + 0.868920i \(0.664814\pi\)
\(632\) 0 0
\(633\) 5.52946 0.219776
\(634\) 0 0
\(635\) 6.19484 0.245835
\(636\) 0 0
\(637\) −21.9406 −0.869317
\(638\) 0 0
\(639\) −25.2629 −0.999384
\(640\) 0 0
\(641\) 16.8032 0.663686 0.331843 0.943335i \(-0.392330\pi\)
0.331843 + 0.943335i \(0.392330\pi\)
\(642\) 0 0
\(643\) 26.4628 1.04359 0.521795 0.853071i \(-0.325263\pi\)
0.521795 + 0.853071i \(0.325263\pi\)
\(644\) 0 0
\(645\) −2.76670 −0.108939
\(646\) 0 0
\(647\) 36.7380 1.44432 0.722161 0.691725i \(-0.243149\pi\)
0.722161 + 0.691725i \(0.243149\pi\)
\(648\) 0 0
\(649\) 23.1546 0.908898
\(650\) 0 0
\(651\) −0.389402 −0.0152619
\(652\) 0 0
\(653\) 28.5408 1.11689 0.558443 0.829543i \(-0.311399\pi\)
0.558443 + 0.829543i \(0.311399\pi\)
\(654\) 0 0
\(655\) 0.394091 0.0153984
\(656\) 0 0
\(657\) −17.9558 −0.700524
\(658\) 0 0
\(659\) 6.76333 0.263462 0.131731 0.991286i \(-0.457947\pi\)
0.131731 + 0.991286i \(0.457947\pi\)
\(660\) 0 0
\(661\) −16.1461 −0.628011 −0.314005 0.949421i \(-0.601671\pi\)
−0.314005 + 0.949421i \(0.601671\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 10.0978 0.391574
\(666\) 0 0
\(667\) −69.1888 −2.67900
\(668\) 0 0
\(669\) 11.4662 0.443307
\(670\) 0 0
\(671\) 13.0995 0.505700
\(672\) 0 0
\(673\) −13.9747 −0.538687 −0.269343 0.963044i \(-0.586807\pi\)
−0.269343 + 0.963044i \(0.586807\pi\)
\(674\) 0 0
\(675\) −16.6042 −0.639098
\(676\) 0 0
\(677\) −19.0695 −0.732900 −0.366450 0.930438i \(-0.619427\pi\)
−0.366450 + 0.930438i \(0.619427\pi\)
\(678\) 0 0
\(679\) −26.5931 −1.02055
\(680\) 0 0
\(681\) −3.96169 −0.151812
\(682\) 0 0
\(683\) 17.1490 0.656188 0.328094 0.944645i \(-0.393594\pi\)
0.328094 + 0.944645i \(0.393594\pi\)
\(684\) 0 0
\(685\) −1.01032 −0.0386022
\(686\) 0 0
\(687\) 8.15848 0.311265
\(688\) 0 0
\(689\) −5.15667 −0.196454
\(690\) 0 0
\(691\) 6.48858 0.246837 0.123419 0.992355i \(-0.460614\pi\)
0.123419 + 0.992355i \(0.460614\pi\)
\(692\) 0 0
\(693\) −38.4011 −1.45874
\(694\) 0 0
\(695\) −1.79913 −0.0682451
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 2.91229 0.110153
\(700\) 0 0
\(701\) −21.9406 −0.828684 −0.414342 0.910121i \(-0.635988\pi\)
−0.414342 + 0.910121i \(0.635988\pi\)
\(702\) 0 0
\(703\) −16.5384 −0.623759
\(704\) 0 0
\(705\) 2.55110 0.0960801
\(706\) 0 0
\(707\) −15.7959 −0.594067
\(708\) 0 0
\(709\) −28.6092 −1.07444 −0.537220 0.843442i \(-0.680525\pi\)
−0.537220 + 0.843442i \(0.680525\pi\)
\(710\) 0 0
\(711\) −3.67201 −0.137711
\(712\) 0 0
\(713\) 1.45998 0.0546765
\(714\) 0 0
\(715\) 6.00206 0.224464
\(716\) 0 0
\(717\) 1.91227 0.0714150
\(718\) 0 0
\(719\) −50.7257 −1.89175 −0.945874 0.324533i \(-0.894793\pi\)
−0.945874 + 0.324533i \(0.894793\pi\)
\(720\) 0 0
\(721\) −25.5941 −0.953174
\(722\) 0 0
\(723\) −17.2602 −0.641914
\(724\) 0 0
\(725\) 40.4359 1.50175
\(726\) 0 0
\(727\) 6.40836 0.237673 0.118836 0.992914i \(-0.462084\pi\)
0.118836 + 0.992914i \(0.462084\pi\)
\(728\) 0 0
\(729\) −8.90225 −0.329713
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 41.4983 1.53277 0.766387 0.642379i \(-0.222052\pi\)
0.766387 + 0.642379i \(0.222052\pi\)
\(734\) 0 0
\(735\) 1.51033 0.0557093
\(736\) 0 0
\(737\) 50.8134 1.87174
\(738\) 0 0
\(739\) 11.6944 0.430187 0.215093 0.976593i \(-0.430994\pi\)
0.215093 + 0.976593i \(0.430994\pi\)
\(740\) 0 0
\(741\) −15.1382 −0.556117
\(742\) 0 0
\(743\) −33.5044 −1.22916 −0.614579 0.788855i \(-0.710674\pi\)
−0.614579 + 0.788855i \(0.710674\pi\)
\(744\) 0 0
\(745\) 3.61644 0.132496
\(746\) 0 0
\(747\) −19.5709 −0.716062
\(748\) 0 0
\(749\) −6.61665 −0.241767
\(750\) 0 0
\(751\) −7.27570 −0.265494 −0.132747 0.991150i \(-0.542380\pi\)
−0.132747 + 0.991150i \(0.542380\pi\)
\(752\) 0 0
\(753\) 8.52526 0.310678
\(754\) 0 0
\(755\) −1.88492 −0.0685994
\(756\) 0 0
\(757\) 51.3210 1.86529 0.932647 0.360791i \(-0.117493\pi\)
0.932647 + 0.360791i \(0.117493\pi\)
\(758\) 0 0
\(759\) −20.4294 −0.741541
\(760\) 0 0
\(761\) 2.68614 0.0973723 0.0486862 0.998814i \(-0.484497\pi\)
0.0486862 + 0.998814i \(0.484497\pi\)
\(762\) 0 0
\(763\) 56.0171 2.02795
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −20.7563 −0.749466
\(768\) 0 0
\(769\) 14.0594 0.506996 0.253498 0.967336i \(-0.418419\pi\)
0.253498 + 0.967336i \(0.418419\pi\)
\(770\) 0 0
\(771\) −2.02332 −0.0728682
\(772\) 0 0
\(773\) −31.6555 −1.13857 −0.569284 0.822141i \(-0.692780\pi\)
−0.569284 + 0.822141i \(0.692780\pi\)
\(774\) 0 0
\(775\) −0.853251 −0.0306497
\(776\) 0 0
\(777\) −5.33629 −0.191438
\(778\) 0 0
\(779\) 9.66690 0.346353
\(780\) 0 0
\(781\) 38.9089 1.39227
\(782\) 0 0
\(783\) −28.7472 −1.02734
\(784\) 0 0
\(785\) −7.05613 −0.251844
\(786\) 0 0
\(787\) 40.0207 1.42658 0.713291 0.700868i \(-0.247204\pi\)
0.713291 + 0.700868i \(0.247204\pi\)
\(788\) 0 0
\(789\) −1.75982 −0.0626512
\(790\) 0 0
\(791\) −57.2446 −2.03538
\(792\) 0 0
\(793\) −11.7426 −0.416993
\(794\) 0 0
\(795\) 0.354971 0.0125895
\(796\) 0 0
\(797\) 32.6761 1.15745 0.578723 0.815524i \(-0.303551\pi\)
0.578723 + 0.815524i \(0.303551\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −34.2822 −1.21130
\(802\) 0 0
\(803\) 27.6549 0.975920
\(804\) 0 0
\(805\) −12.2157 −0.430545
\(806\) 0 0
\(807\) −9.32373 −0.328211
\(808\) 0 0
\(809\) −4.97647 −0.174964 −0.0874818 0.996166i \(-0.527882\pi\)
−0.0874818 + 0.996166i \(0.527882\pi\)
\(810\) 0 0
\(811\) 22.5121 0.790507 0.395254 0.918572i \(-0.370657\pi\)
0.395254 + 0.918572i \(0.370657\pi\)
\(812\) 0 0
\(813\) −1.91227 −0.0670662
\(814\) 0 0
\(815\) −0.800385 −0.0280363
\(816\) 0 0
\(817\) 75.7422 2.64988
\(818\) 0 0
\(819\) 34.4235 1.20285
\(820\) 0 0
\(821\) 11.7768 0.411014 0.205507 0.978656i \(-0.434116\pi\)
0.205507 + 0.978656i \(0.434116\pi\)
\(822\) 0 0
\(823\) −48.2176 −1.68076 −0.840380 0.541997i \(-0.817668\pi\)
−0.840380 + 0.541997i \(0.817668\pi\)
\(824\) 0 0
\(825\) 11.9395 0.415681
\(826\) 0 0
\(827\) −53.6253 −1.86474 −0.932368 0.361511i \(-0.882261\pi\)
−0.932368 + 0.361511i \(0.882261\pi\)
\(828\) 0 0
\(829\) 4.91995 0.170877 0.0854385 0.996343i \(-0.472771\pi\)
0.0854385 + 0.996343i \(0.472771\pi\)
\(830\) 0 0
\(831\) −10.8732 −0.377186
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −5.28608 −0.182932
\(836\) 0 0
\(837\) 0.606604 0.0209673
\(838\) 0 0
\(839\) −12.9261 −0.446259 −0.223129 0.974789i \(-0.571627\pi\)
−0.223129 + 0.974789i \(0.571627\pi\)
\(840\) 0 0
\(841\) 41.0071 1.41404
\(842\) 0 0
\(843\) −10.8880 −0.375003
\(844\) 0 0
\(845\) −0.0640713 −0.00220412
\(846\) 0 0
\(847\) 19.4082 0.666875
\(848\) 0 0
\(849\) 7.84281 0.269165
\(850\) 0 0
\(851\) 20.0072 0.685838
\(852\) 0 0
\(853\) 30.0241 1.02801 0.514003 0.857788i \(-0.328162\pi\)
0.514003 + 0.857788i \(0.328162\pi\)
\(854\) 0 0
\(855\) −7.34401 −0.251160
\(856\) 0 0
\(857\) −35.4637 −1.21142 −0.605709 0.795687i \(-0.707110\pi\)
−0.605709 + 0.795687i \(0.707110\pi\)
\(858\) 0 0
\(859\) 39.9722 1.36383 0.681917 0.731429i \(-0.261146\pi\)
0.681917 + 0.731429i \(0.261146\pi\)
\(860\) 0 0
\(861\) 3.11912 0.106299
\(862\) 0 0
\(863\) 28.7472 0.978565 0.489282 0.872125i \(-0.337259\pi\)
0.489282 + 0.872125i \(0.337259\pi\)
\(864\) 0 0
\(865\) −3.42166 −0.116340
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 5.65548 0.191849
\(870\) 0 0
\(871\) −45.5502 −1.54341
\(872\) 0 0
\(873\) 19.3409 0.654591
\(874\) 0 0
\(875\) 14.5254 0.491048
\(876\) 0 0
\(877\) −5.76090 −0.194532 −0.0972659 0.995258i \(-0.531010\pi\)
−0.0972659 + 0.995258i \(0.531010\pi\)
\(878\) 0 0
\(879\) −4.94419 −0.166763
\(880\) 0 0
\(881\) 12.4230 0.418542 0.209271 0.977858i \(-0.432891\pi\)
0.209271 + 0.977858i \(0.432891\pi\)
\(882\) 0 0
\(883\) 23.4520 0.789221 0.394611 0.918848i \(-0.370880\pi\)
0.394611 + 0.918848i \(0.370880\pi\)
\(884\) 0 0
\(885\) 1.42880 0.0480287
\(886\) 0 0
\(887\) 3.73782 0.125504 0.0627519 0.998029i \(-0.480012\pi\)
0.0627519 + 0.998029i \(0.480012\pi\)
\(888\) 0 0
\(889\) −54.7206 −1.83527
\(890\) 0 0
\(891\) 23.4035 0.784047
\(892\) 0 0
\(893\) −69.8399 −2.33710
\(894\) 0 0
\(895\) −4.78239 −0.159858
\(896\) 0 0
\(897\) 18.3133 0.611465
\(898\) 0 0
\(899\) −1.47725 −0.0492689
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 24.4389 0.813277
\(904\) 0 0
\(905\) 3.20607 0.106573
\(906\) 0 0
\(907\) 8.22461 0.273094 0.136547 0.990634i \(-0.456400\pi\)
0.136547 + 0.990634i \(0.456400\pi\)
\(908\) 0 0
\(909\) 11.4882 0.381041
\(910\) 0 0
\(911\) −25.7415 −0.852853 −0.426427 0.904522i \(-0.640228\pi\)
−0.426427 + 0.904522i \(0.640228\pi\)
\(912\) 0 0
\(913\) 30.1424 0.997566
\(914\) 0 0
\(915\) 0.808331 0.0267226
\(916\) 0 0
\(917\) −3.48110 −0.114956
\(918\) 0 0
\(919\) 3.95324 0.130405 0.0652027 0.997872i \(-0.479231\pi\)
0.0652027 + 0.997872i \(0.479231\pi\)
\(920\) 0 0
\(921\) 17.2470 0.568310
\(922\) 0 0
\(923\) −34.8787 −1.14805
\(924\) 0 0
\(925\) −11.6928 −0.384456
\(926\) 0 0
\(927\) 18.6144 0.611376
\(928\) 0 0
\(929\) −22.8490 −0.749651 −0.374825 0.927095i \(-0.622297\pi\)
−0.374825 + 0.927095i \(0.622297\pi\)
\(930\) 0 0
\(931\) −41.3473 −1.35510
\(932\) 0 0
\(933\) −12.3033 −0.402792
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −18.4394 −0.602388 −0.301194 0.953563i \(-0.597385\pi\)
−0.301194 + 0.953563i \(0.597385\pi\)
\(938\) 0 0
\(939\) 16.2615 0.530673
\(940\) 0 0
\(941\) −6.01162 −0.195973 −0.0979866 0.995188i \(-0.531240\pi\)
−0.0979866 + 0.995188i \(0.531240\pi\)
\(942\) 0 0
\(943\) −11.6944 −0.380823
\(944\) 0 0
\(945\) −5.07547 −0.165105
\(946\) 0 0
\(947\) −2.11898 −0.0688577 −0.0344288 0.999407i \(-0.510961\pi\)
−0.0344288 + 0.999407i \(0.510961\pi\)
\(948\) 0 0
\(949\) −24.7904 −0.804730
\(950\) 0 0
\(951\) 3.02669 0.0981472
\(952\) 0 0
\(953\) 13.1255 0.425177 0.212588 0.977142i \(-0.431811\pi\)
0.212588 + 0.977142i \(0.431811\pi\)
\(954\) 0 0
\(955\) −4.10570 −0.132857
\(956\) 0 0
\(957\) 20.6711 0.668201
\(958\) 0 0
\(959\) 8.92438 0.288183
\(960\) 0 0
\(961\) −30.9688 −0.998994
\(962\) 0 0
\(963\) 4.81224 0.155072
\(964\) 0 0
\(965\) −10.0695 −0.324148
\(966\) 0 0
\(967\) −28.3200 −0.910709 −0.455355 0.890310i \(-0.650488\pi\)
−0.455355 + 0.890310i \(0.650488\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 57.6296 1.84942 0.924711 0.380670i \(-0.124307\pi\)
0.924711 + 0.380670i \(0.124307\pi\)
\(972\) 0 0
\(973\) 15.8922 0.509481
\(974\) 0 0
\(975\) −10.7028 −0.342765
\(976\) 0 0
\(977\) 6.43223 0.205785 0.102893 0.994692i \(-0.467190\pi\)
0.102893 + 0.994692i \(0.467190\pi\)
\(978\) 0 0
\(979\) 52.8001 1.68750
\(980\) 0 0
\(981\) −40.7408 −1.30075
\(982\) 0 0
\(983\) −19.0317 −0.607018 −0.303509 0.952829i \(-0.598158\pi\)
−0.303509 + 0.952829i \(0.598158\pi\)
\(984\) 0 0
\(985\) 0.286114 0.00911635
\(986\) 0 0
\(987\) −22.5345 −0.717282
\(988\) 0 0
\(989\) −91.6284 −2.91361
\(990\) 0 0
\(991\) 21.9760 0.698090 0.349045 0.937106i \(-0.386506\pi\)
0.349045 + 0.937106i \(0.386506\pi\)
\(992\) 0 0
\(993\) −6.46054 −0.205019
\(994\) 0 0
\(995\) −9.29064 −0.294533
\(996\) 0 0
\(997\) 2.50354 0.0792879 0.0396440 0.999214i \(-0.487378\pi\)
0.0396440 + 0.999214i \(0.487378\pi\)
\(998\) 0 0
\(999\) 8.31277 0.263005
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9248.2.a.bv.1.5 12
4.3 odd 2 inner 9248.2.a.bv.1.7 12
17.2 even 8 544.2.o.i.225.3 12
17.9 even 8 544.2.o.i.353.3 yes 12
17.16 even 2 inner 9248.2.a.bv.1.8 12
68.19 odd 8 544.2.o.i.225.4 yes 12
68.43 odd 8 544.2.o.i.353.4 yes 12
68.67 odd 2 inner 9248.2.a.bv.1.6 12
136.19 odd 8 1088.2.o.w.769.3 12
136.43 odd 8 1088.2.o.w.897.3 12
136.53 even 8 1088.2.o.w.769.4 12
136.77 even 8 1088.2.o.w.897.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
544.2.o.i.225.3 12 17.2 even 8
544.2.o.i.225.4 yes 12 68.19 odd 8
544.2.o.i.353.3 yes 12 17.9 even 8
544.2.o.i.353.4 yes 12 68.43 odd 8
1088.2.o.w.769.3 12 136.19 odd 8
1088.2.o.w.769.4 12 136.53 even 8
1088.2.o.w.897.3 12 136.43 odd 8
1088.2.o.w.897.4 12 136.77 even 8
9248.2.a.bv.1.5 12 1.1 even 1 trivial
9248.2.a.bv.1.6 12 68.67 odd 2 inner
9248.2.a.bv.1.7 12 4.3 odd 2 inner
9248.2.a.bv.1.8 12 17.16 even 2 inner