Properties

Label 9248.2.a.bx.1.2
Level $9248$
Weight $2$
Character 9248.1
Self dual yes
Analytic conductor $73.846$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9248,2,Mod(1,9248)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9248, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9248.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9248 = 2^{5} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9248.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.8456517893\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 28x^{14} + 290x^{12} - 1436x^{10} + 3633x^{8} - 4632x^{6} + 2744x^{4} - 704x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{41}]\)
Coefficient ring index: \( 2^{9} \)
Twist minimal: no (minimal twist has level 544)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(0.781338\) of defining polynomial
Character \(\chi\) \(=\) 9248.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.95274 q^{3} +0.499190 q^{5} -1.92584 q^{7} +5.71866 q^{9} -1.50049 q^{11} -0.828427 q^{13} -1.47398 q^{15} -4.67000 q^{19} +5.68651 q^{21} -6.70319 q^{23} -4.75081 q^{25} -8.02749 q^{27} +7.13736 q^{29} -4.64940 q^{31} +4.43055 q^{33} -0.961361 q^{35} -8.96052 q^{37} +2.44613 q^{39} -1.22581 q^{41} +4.94333 q^{43} +2.85470 q^{45} -2.08452 q^{47} -3.29113 q^{49} +12.5792 q^{53} -0.749029 q^{55} +13.7893 q^{57} +9.76347 q^{59} -7.66972 q^{61} -11.0132 q^{63} -0.413542 q^{65} -14.8939 q^{67} +19.7927 q^{69} -9.60768 q^{71} -7.69596 q^{73} +14.0279 q^{75} +2.88971 q^{77} -2.20327 q^{79} +6.54709 q^{81} +16.8805 q^{83} -21.0748 q^{87} -9.92915 q^{89} +1.59542 q^{91} +13.7284 q^{93} -2.33121 q^{95} +1.19659 q^{97} -8.58079 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 32 q^{9} + 32 q^{13} + 48 q^{21} + 32 q^{33} + 48 q^{49} + 80 q^{53} + 64 q^{69} + 48 q^{77} - 48 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.95274 −1.70476 −0.852382 0.522920i \(-0.824843\pi\)
−0.852382 + 0.522920i \(0.824843\pi\)
\(4\) 0 0
\(5\) 0.499190 0.223244 0.111622 0.993751i \(-0.464395\pi\)
0.111622 + 0.993751i \(0.464395\pi\)
\(6\) 0 0
\(7\) −1.92584 −0.727900 −0.363950 0.931418i \(-0.618572\pi\)
−0.363950 + 0.931418i \(0.618572\pi\)
\(8\) 0 0
\(9\) 5.71866 1.90622
\(10\) 0 0
\(11\) −1.50049 −0.452415 −0.226207 0.974079i \(-0.572633\pi\)
−0.226207 + 0.974079i \(0.572633\pi\)
\(12\) 0 0
\(13\) −0.828427 −0.229764 −0.114882 0.993379i \(-0.536649\pi\)
−0.114882 + 0.993379i \(0.536649\pi\)
\(14\) 0 0
\(15\) −1.47398 −0.380579
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) −4.67000 −1.07137 −0.535685 0.844418i \(-0.679947\pi\)
−0.535685 + 0.844418i \(0.679947\pi\)
\(20\) 0 0
\(21\) 5.68651 1.24090
\(22\) 0 0
\(23\) −6.70319 −1.39771 −0.698855 0.715263i \(-0.746307\pi\)
−0.698855 + 0.715263i \(0.746307\pi\)
\(24\) 0 0
\(25\) −4.75081 −0.950162
\(26\) 0 0
\(27\) −8.02749 −1.54489
\(28\) 0 0
\(29\) 7.13736 1.32538 0.662688 0.748896i \(-0.269416\pi\)
0.662688 + 0.748896i \(0.269416\pi\)
\(30\) 0 0
\(31\) −4.64940 −0.835056 −0.417528 0.908664i \(-0.637103\pi\)
−0.417528 + 0.908664i \(0.637103\pi\)
\(32\) 0 0
\(33\) 4.43055 0.771260
\(34\) 0 0
\(35\) −0.961361 −0.162500
\(36\) 0 0
\(37\) −8.96052 −1.47310 −0.736550 0.676383i \(-0.763546\pi\)
−0.736550 + 0.676383i \(0.763546\pi\)
\(38\) 0 0
\(39\) 2.44613 0.391694
\(40\) 0 0
\(41\) −1.22581 −0.191439 −0.0957197 0.995408i \(-0.530515\pi\)
−0.0957197 + 0.995408i \(0.530515\pi\)
\(42\) 0 0
\(43\) 4.94333 0.753851 0.376926 0.926244i \(-0.376981\pi\)
0.376926 + 0.926244i \(0.376981\pi\)
\(44\) 0 0
\(45\) 2.85470 0.425553
\(46\) 0 0
\(47\) −2.08452 −0.304058 −0.152029 0.988376i \(-0.548581\pi\)
−0.152029 + 0.988376i \(0.548581\pi\)
\(48\) 0 0
\(49\) −3.29113 −0.470161
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 12.5792 1.72789 0.863946 0.503585i \(-0.167986\pi\)
0.863946 + 0.503585i \(0.167986\pi\)
\(54\) 0 0
\(55\) −0.749029 −0.100999
\(56\) 0 0
\(57\) 13.7893 1.82643
\(58\) 0 0
\(59\) 9.76347 1.27110 0.635548 0.772062i \(-0.280774\pi\)
0.635548 + 0.772062i \(0.280774\pi\)
\(60\) 0 0
\(61\) −7.66972 −0.982007 −0.491003 0.871158i \(-0.663370\pi\)
−0.491003 + 0.871158i \(0.663370\pi\)
\(62\) 0 0
\(63\) −11.0132 −1.38754
\(64\) 0 0
\(65\) −0.413542 −0.0512936
\(66\) 0 0
\(67\) −14.8939 −1.81958 −0.909788 0.415074i \(-0.863756\pi\)
−0.909788 + 0.415074i \(0.863756\pi\)
\(68\) 0 0
\(69\) 19.7927 2.38277
\(70\) 0 0
\(71\) −9.60768 −1.14022 −0.570111 0.821568i \(-0.693100\pi\)
−0.570111 + 0.821568i \(0.693100\pi\)
\(72\) 0 0
\(73\) −7.69596 −0.900744 −0.450372 0.892841i \(-0.648709\pi\)
−0.450372 + 0.892841i \(0.648709\pi\)
\(74\) 0 0
\(75\) 14.0279 1.61980
\(76\) 0 0
\(77\) 2.88971 0.329313
\(78\) 0 0
\(79\) −2.20327 −0.247887 −0.123944 0.992289i \(-0.539554\pi\)
−0.123944 + 0.992289i \(0.539554\pi\)
\(80\) 0 0
\(81\) 6.54709 0.727454
\(82\) 0 0
\(83\) 16.8805 1.85287 0.926436 0.376454i \(-0.122857\pi\)
0.926436 + 0.376454i \(0.122857\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −21.0748 −2.25945
\(88\) 0 0
\(89\) −9.92915 −1.05249 −0.526244 0.850334i \(-0.676400\pi\)
−0.526244 + 0.850334i \(0.676400\pi\)
\(90\) 0 0
\(91\) 1.59542 0.167246
\(92\) 0 0
\(93\) 13.7284 1.42357
\(94\) 0 0
\(95\) −2.33121 −0.239178
\(96\) 0 0
\(97\) 1.19659 0.121496 0.0607478 0.998153i \(-0.480651\pi\)
0.0607478 + 0.998153i \(0.480651\pi\)
\(98\) 0 0
\(99\) −8.58079 −0.862402
\(100\) 0 0
\(101\) −6.80606 −0.677229 −0.338614 0.940925i \(-0.609958\pi\)
−0.338614 + 0.940925i \(0.609958\pi\)
\(102\) 0 0
\(103\) 10.9119 1.07518 0.537590 0.843206i \(-0.319335\pi\)
0.537590 + 0.843206i \(0.319335\pi\)
\(104\) 0 0
\(105\) 2.83865 0.277024
\(106\) 0 0
\(107\) −6.06863 −0.586677 −0.293338 0.956009i \(-0.594766\pi\)
−0.293338 + 0.956009i \(0.594766\pi\)
\(108\) 0 0
\(109\) 0.499190 0.0478137 0.0239069 0.999714i \(-0.492389\pi\)
0.0239069 + 0.999714i \(0.492389\pi\)
\(110\) 0 0
\(111\) 26.4581 2.51129
\(112\) 0 0
\(113\) 8.49151 0.798814 0.399407 0.916774i \(-0.369216\pi\)
0.399407 + 0.916774i \(0.369216\pi\)
\(114\) 0 0
\(115\) −3.34616 −0.312031
\(116\) 0 0
\(117\) −4.73749 −0.437981
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −8.74853 −0.795321
\(122\) 0 0
\(123\) 3.61950 0.326359
\(124\) 0 0
\(125\) −4.86750 −0.435363
\(126\) 0 0
\(127\) 17.4183 1.54563 0.772814 0.634633i \(-0.218849\pi\)
0.772814 + 0.634633i \(0.218849\pi\)
\(128\) 0 0
\(129\) −14.5964 −1.28514
\(130\) 0 0
\(131\) −10.9802 −0.959347 −0.479673 0.877447i \(-0.659245\pi\)
−0.479673 + 0.877447i \(0.659245\pi\)
\(132\) 0 0
\(133\) 8.99368 0.779851
\(134\) 0 0
\(135\) −4.00724 −0.344888
\(136\) 0 0
\(137\) −8.26575 −0.706190 −0.353095 0.935587i \(-0.614871\pi\)
−0.353095 + 0.935587i \(0.614871\pi\)
\(138\) 0 0
\(139\) −11.6967 −0.992099 −0.496050 0.868294i \(-0.665217\pi\)
−0.496050 + 0.868294i \(0.665217\pi\)
\(140\) 0 0
\(141\) 6.15503 0.518347
\(142\) 0 0
\(143\) 1.24305 0.103949
\(144\) 0 0
\(145\) 3.56290 0.295883
\(146\) 0 0
\(147\) 9.71784 0.801514
\(148\) 0 0
\(149\) 10.8061 0.885267 0.442634 0.896703i \(-0.354044\pi\)
0.442634 + 0.896703i \(0.354044\pi\)
\(150\) 0 0
\(151\) −19.7152 −1.60440 −0.802200 0.597056i \(-0.796337\pi\)
−0.802200 + 0.597056i \(0.796337\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −2.32093 −0.186422
\(156\) 0 0
\(157\) 1.64759 0.131492 0.0657461 0.997836i \(-0.479057\pi\)
0.0657461 + 0.997836i \(0.479057\pi\)
\(158\) 0 0
\(159\) −37.1432 −2.94565
\(160\) 0 0
\(161\) 12.9093 1.01739
\(162\) 0 0
\(163\) −8.58079 −0.672099 −0.336050 0.941844i \(-0.609091\pi\)
−0.336050 + 0.941844i \(0.609091\pi\)
\(164\) 0 0
\(165\) 2.21169 0.172180
\(166\) 0 0
\(167\) 4.64940 0.359781 0.179891 0.983687i \(-0.442426\pi\)
0.179891 + 0.983687i \(0.442426\pi\)
\(168\) 0 0
\(169\) −12.3137 −0.947208
\(170\) 0 0
\(171\) −26.7061 −2.04227
\(172\) 0 0
\(173\) 20.9516 1.59292 0.796462 0.604688i \(-0.206702\pi\)
0.796462 + 0.604688i \(0.206702\pi\)
\(174\) 0 0
\(175\) 9.14931 0.691623
\(176\) 0 0
\(177\) −28.8290 −2.16692
\(178\) 0 0
\(179\) 7.61795 0.569392 0.284696 0.958618i \(-0.408107\pi\)
0.284696 + 0.958618i \(0.408107\pi\)
\(180\) 0 0
\(181\) −22.9234 −1.70388 −0.851941 0.523637i \(-0.824575\pi\)
−0.851941 + 0.523637i \(0.824575\pi\)
\(182\) 0 0
\(183\) 22.6467 1.67409
\(184\) 0 0
\(185\) −4.47300 −0.328861
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 15.4597 1.12453
\(190\) 0 0
\(191\) −26.2052 −1.89614 −0.948069 0.318064i \(-0.896967\pi\)
−0.948069 + 0.318064i \(0.896967\pi\)
\(192\) 0 0
\(193\) 0.262230 0.0188758 0.00943788 0.999955i \(-0.496996\pi\)
0.00943788 + 0.999955i \(0.496996\pi\)
\(194\) 0 0
\(195\) 1.22108 0.0874435
\(196\) 0 0
\(197\) −6.15610 −0.438604 −0.219302 0.975657i \(-0.570378\pi\)
−0.219302 + 0.975657i \(0.570378\pi\)
\(198\) 0 0
\(199\) −20.2905 −1.43836 −0.719178 0.694826i \(-0.755481\pi\)
−0.719178 + 0.694826i \(0.755481\pi\)
\(200\) 0 0
\(201\) 43.9777 3.10195
\(202\) 0 0
\(203\) −13.7454 −0.964741
\(204\) 0 0
\(205\) −0.611912 −0.0427378
\(206\) 0 0
\(207\) −38.3332 −2.66434
\(208\) 0 0
\(209\) 7.00728 0.484704
\(210\) 0 0
\(211\) 6.27783 0.432184 0.216092 0.976373i \(-0.430669\pi\)
0.216092 + 0.976373i \(0.430669\pi\)
\(212\) 0 0
\(213\) 28.3690 1.94381
\(214\) 0 0
\(215\) 2.46766 0.168293
\(216\) 0 0
\(217\) 8.95401 0.607838
\(218\) 0 0
\(219\) 22.7241 1.53556
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −5.48122 −0.367049 −0.183525 0.983015i \(-0.558751\pi\)
−0.183525 + 0.983015i \(0.558751\pi\)
\(224\) 0 0
\(225\) −27.1683 −1.81122
\(226\) 0 0
\(227\) 8.30336 0.551113 0.275557 0.961285i \(-0.411138\pi\)
0.275557 + 0.961285i \(0.411138\pi\)
\(228\) 0 0
\(229\) −15.9942 −1.05693 −0.528463 0.848956i \(-0.677231\pi\)
−0.528463 + 0.848956i \(0.677231\pi\)
\(230\) 0 0
\(231\) −8.53255 −0.561400
\(232\) 0 0
\(233\) −13.9327 −0.912761 −0.456381 0.889785i \(-0.650854\pi\)
−0.456381 + 0.889785i \(0.650854\pi\)
\(234\) 0 0
\(235\) −1.04057 −0.0678793
\(236\) 0 0
\(237\) 6.50567 0.422589
\(238\) 0 0
\(239\) 10.6116 0.686408 0.343204 0.939261i \(-0.388488\pi\)
0.343204 + 0.939261i \(0.388488\pi\)
\(240\) 0 0
\(241\) 29.5274 1.90203 0.951015 0.309146i \(-0.100043\pi\)
0.951015 + 0.309146i \(0.100043\pi\)
\(242\) 0 0
\(243\) 4.75063 0.304753
\(244\) 0 0
\(245\) −1.64290 −0.104961
\(246\) 0 0
\(247\) 3.86875 0.246163
\(248\) 0 0
\(249\) −49.8436 −3.15871
\(250\) 0 0
\(251\) −15.4065 −0.972449 −0.486224 0.873834i \(-0.661626\pi\)
−0.486224 + 0.873834i \(0.661626\pi\)
\(252\) 0 0
\(253\) 10.0581 0.632345
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.13964 0.0710888 0.0355444 0.999368i \(-0.488683\pi\)
0.0355444 + 0.999368i \(0.488683\pi\)
\(258\) 0 0
\(259\) 17.2565 1.07227
\(260\) 0 0
\(261\) 40.8162 2.52646
\(262\) 0 0
\(263\) −12.0515 −0.743129 −0.371565 0.928407i \(-0.621179\pi\)
−0.371565 + 0.928407i \(0.621179\pi\)
\(264\) 0 0
\(265\) 6.27943 0.385742
\(266\) 0 0
\(267\) 29.3182 1.79424
\(268\) 0 0
\(269\) 3.77558 0.230201 0.115101 0.993354i \(-0.463281\pi\)
0.115101 + 0.993354i \(0.463281\pi\)
\(270\) 0 0
\(271\) −2.10100 −0.127627 −0.0638133 0.997962i \(-0.520326\pi\)
−0.0638133 + 0.997962i \(0.520326\pi\)
\(272\) 0 0
\(273\) −4.71086 −0.285114
\(274\) 0 0
\(275\) 7.12854 0.429867
\(276\) 0 0
\(277\) −6.64633 −0.399339 −0.199670 0.979863i \(-0.563987\pi\)
−0.199670 + 0.979863i \(0.563987\pi\)
\(278\) 0 0
\(279\) −26.5883 −1.59180
\(280\) 0 0
\(281\) −2.31776 −0.138266 −0.0691331 0.997607i \(-0.522023\pi\)
−0.0691331 + 0.997607i \(0.522023\pi\)
\(282\) 0 0
\(283\) 16.6083 0.987259 0.493630 0.869672i \(-0.335670\pi\)
0.493630 + 0.869672i \(0.335670\pi\)
\(284\) 0 0
\(285\) 6.88346 0.407741
\(286\) 0 0
\(287\) 2.36072 0.139349
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) −3.53323 −0.207121
\(292\) 0 0
\(293\) −4.96130 −0.289842 −0.144921 0.989443i \(-0.546293\pi\)
−0.144921 + 0.989443i \(0.546293\pi\)
\(294\) 0 0
\(295\) 4.87382 0.283765
\(296\) 0 0
\(297\) 12.0452 0.698931
\(298\) 0 0
\(299\) 5.55310 0.321144
\(300\) 0 0
\(301\) −9.52008 −0.548728
\(302\) 0 0
\(303\) 20.0965 1.15452
\(304\) 0 0
\(305\) −3.82864 −0.219228
\(306\) 0 0
\(307\) −23.2737 −1.32830 −0.664150 0.747600i \(-0.731206\pi\)
−0.664150 + 0.747600i \(0.731206\pi\)
\(308\) 0 0
\(309\) −32.2200 −1.83293
\(310\) 0 0
\(311\) 19.9686 1.13231 0.566157 0.824297i \(-0.308430\pi\)
0.566157 + 0.824297i \(0.308430\pi\)
\(312\) 0 0
\(313\) 4.03755 0.228216 0.114108 0.993468i \(-0.463599\pi\)
0.114108 + 0.993468i \(0.463599\pi\)
\(314\) 0 0
\(315\) −5.49770 −0.309760
\(316\) 0 0
\(317\) 17.6618 0.991984 0.495992 0.868327i \(-0.334804\pi\)
0.495992 + 0.868327i \(0.334804\pi\)
\(318\) 0 0
\(319\) −10.7095 −0.599619
\(320\) 0 0
\(321\) 17.9191 1.00015
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 3.93570 0.218313
\(326\) 0 0
\(327\) −1.47398 −0.0815111
\(328\) 0 0
\(329\) 4.01445 0.221324
\(330\) 0 0
\(331\) 22.1253 1.21611 0.608057 0.793893i \(-0.291949\pi\)
0.608057 + 0.793893i \(0.291949\pi\)
\(332\) 0 0
\(333\) −51.2421 −2.80805
\(334\) 0 0
\(335\) −7.43487 −0.406210
\(336\) 0 0
\(337\) 16.1865 0.881735 0.440868 0.897572i \(-0.354671\pi\)
0.440868 + 0.897572i \(0.354671\pi\)
\(338\) 0 0
\(339\) −25.0732 −1.36179
\(340\) 0 0
\(341\) 6.97637 0.377792
\(342\) 0 0
\(343\) 19.8191 1.07013
\(344\) 0 0
\(345\) 9.88034 0.531939
\(346\) 0 0
\(347\) 27.1946 1.45988 0.729942 0.683510i \(-0.239547\pi\)
0.729942 + 0.683510i \(0.239547\pi\)
\(348\) 0 0
\(349\) 26.6435 1.42620 0.713098 0.701064i \(-0.247291\pi\)
0.713098 + 0.701064i \(0.247291\pi\)
\(350\) 0 0
\(351\) 6.65019 0.354961
\(352\) 0 0
\(353\) −1.20696 −0.0642401 −0.0321200 0.999484i \(-0.510226\pi\)
−0.0321200 + 0.999484i \(0.510226\pi\)
\(354\) 0 0
\(355\) −4.79606 −0.254548
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 28.4041 1.49911 0.749555 0.661942i \(-0.230268\pi\)
0.749555 + 0.661942i \(0.230268\pi\)
\(360\) 0 0
\(361\) 2.80887 0.147835
\(362\) 0 0
\(363\) 25.8321 1.35583
\(364\) 0 0
\(365\) −3.84174 −0.201086
\(366\) 0 0
\(367\) 24.7904 1.29405 0.647025 0.762469i \(-0.276013\pi\)
0.647025 + 0.762469i \(0.276013\pi\)
\(368\) 0 0
\(369\) −7.00999 −0.364926
\(370\) 0 0
\(371\) −24.2256 −1.25773
\(372\) 0 0
\(373\) 5.29091 0.273953 0.136976 0.990574i \(-0.456262\pi\)
0.136976 + 0.990574i \(0.456262\pi\)
\(374\) 0 0
\(375\) 14.3725 0.742191
\(376\) 0 0
\(377\) −5.91279 −0.304524
\(378\) 0 0
\(379\) −1.61540 −0.0829777 −0.0414888 0.999139i \(-0.513210\pi\)
−0.0414888 + 0.999139i \(0.513210\pi\)
\(380\) 0 0
\(381\) −51.4318 −2.63493
\(382\) 0 0
\(383\) −10.6755 −0.545492 −0.272746 0.962086i \(-0.587932\pi\)
−0.272746 + 0.962086i \(0.587932\pi\)
\(384\) 0 0
\(385\) 1.44251 0.0735172
\(386\) 0 0
\(387\) 28.2692 1.43701
\(388\) 0 0
\(389\) −32.5111 −1.64838 −0.824189 0.566315i \(-0.808369\pi\)
−0.824189 + 0.566315i \(0.808369\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 32.4217 1.63546
\(394\) 0 0
\(395\) −1.09985 −0.0553394
\(396\) 0 0
\(397\) 22.9818 1.15343 0.576713 0.816947i \(-0.304335\pi\)
0.576713 + 0.816947i \(0.304335\pi\)
\(398\) 0 0
\(399\) −26.5560 −1.32946
\(400\) 0 0
\(401\) −30.7607 −1.53612 −0.768059 0.640379i \(-0.778777\pi\)
−0.768059 + 0.640379i \(0.778777\pi\)
\(402\) 0 0
\(403\) 3.85169 0.191866
\(404\) 0 0
\(405\) 3.26824 0.162400
\(406\) 0 0
\(407\) 13.4452 0.666452
\(408\) 0 0
\(409\) 29.2173 1.44470 0.722351 0.691527i \(-0.243062\pi\)
0.722351 + 0.691527i \(0.243062\pi\)
\(410\) 0 0
\(411\) 24.4066 1.20389
\(412\) 0 0
\(413\) −18.8029 −0.925231
\(414\) 0 0
\(415\) 8.42655 0.413643
\(416\) 0 0
\(417\) 34.5372 1.69130
\(418\) 0 0
\(419\) −20.2108 −0.987362 −0.493681 0.869643i \(-0.664349\pi\)
−0.493681 + 0.869643i \(0.664349\pi\)
\(420\) 0 0
\(421\) 0.0180903 0.000881669 0 0.000440835 1.00000i \(-0.499860\pi\)
0.000440835 1.00000i \(0.499860\pi\)
\(422\) 0 0
\(423\) −11.9206 −0.579602
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 14.7707 0.714803
\(428\) 0 0
\(429\) −3.67039 −0.177208
\(430\) 0 0
\(431\) 0.863740 0.0416049 0.0208024 0.999784i \(-0.493378\pi\)
0.0208024 + 0.999784i \(0.493378\pi\)
\(432\) 0 0
\(433\) 29.8613 1.43504 0.717522 0.696536i \(-0.245276\pi\)
0.717522 + 0.696536i \(0.245276\pi\)
\(434\) 0 0
\(435\) −10.5203 −0.504410
\(436\) 0 0
\(437\) 31.3039 1.49747
\(438\) 0 0
\(439\) −19.4613 −0.928838 −0.464419 0.885616i \(-0.653737\pi\)
−0.464419 + 0.885616i \(0.653737\pi\)
\(440\) 0 0
\(441\) −18.8208 −0.896231
\(442\) 0 0
\(443\) 16.9949 0.807450 0.403725 0.914880i \(-0.367715\pi\)
0.403725 + 0.914880i \(0.367715\pi\)
\(444\) 0 0
\(445\) −4.95653 −0.234962
\(446\) 0 0
\(447\) −31.9075 −1.50917
\(448\) 0 0
\(449\) 6.66836 0.314699 0.157350 0.987543i \(-0.449705\pi\)
0.157350 + 0.987543i \(0.449705\pi\)
\(450\) 0 0
\(451\) 1.83932 0.0866100
\(452\) 0 0
\(453\) 58.2138 2.73512
\(454\) 0 0
\(455\) 0.796418 0.0373366
\(456\) 0 0
\(457\) −12.3331 −0.576917 −0.288458 0.957492i \(-0.593143\pi\)
−0.288458 + 0.957492i \(0.593143\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 6.55966 0.305514 0.152757 0.988264i \(-0.451185\pi\)
0.152757 + 0.988264i \(0.451185\pi\)
\(462\) 0 0
\(463\) −26.1313 −1.21443 −0.607213 0.794539i \(-0.707712\pi\)
−0.607213 + 0.794539i \(0.707712\pi\)
\(464\) 0 0
\(465\) 6.85310 0.317805
\(466\) 0 0
\(467\) 0.500962 0.0231817 0.0115909 0.999933i \(-0.496310\pi\)
0.0115909 + 0.999933i \(0.496310\pi\)
\(468\) 0 0
\(469\) 28.6832 1.32447
\(470\) 0 0
\(471\) −4.86491 −0.224163
\(472\) 0 0
\(473\) −7.41742 −0.341053
\(474\) 0 0
\(475\) 22.1863 1.01798
\(476\) 0 0
\(477\) 71.9364 3.29374
\(478\) 0 0
\(479\) 20.8638 0.953291 0.476645 0.879096i \(-0.341853\pi\)
0.476645 + 0.879096i \(0.341853\pi\)
\(480\) 0 0
\(481\) 7.42313 0.338466
\(482\) 0 0
\(483\) −38.1177 −1.73442
\(484\) 0 0
\(485\) 0.597327 0.0271232
\(486\) 0 0
\(487\) −37.3415 −1.69211 −0.846054 0.533098i \(-0.821028\pi\)
−0.846054 + 0.533098i \(0.821028\pi\)
\(488\) 0 0
\(489\) 25.3368 1.14577
\(490\) 0 0
\(491\) −5.39494 −0.243470 −0.121735 0.992563i \(-0.538846\pi\)
−0.121735 + 0.992563i \(0.538846\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −4.28344 −0.192526
\(496\) 0 0
\(497\) 18.5029 0.829968
\(498\) 0 0
\(499\) 18.4596 0.826365 0.413182 0.910648i \(-0.364417\pi\)
0.413182 + 0.910648i \(0.364417\pi\)
\(500\) 0 0
\(501\) −13.7284 −0.613342
\(502\) 0 0
\(503\) 22.9391 1.02280 0.511402 0.859342i \(-0.329126\pi\)
0.511402 + 0.859342i \(0.329126\pi\)
\(504\) 0 0
\(505\) −3.39752 −0.151188
\(506\) 0 0
\(507\) 36.3592 1.61477
\(508\) 0 0
\(509\) 4.42098 0.195957 0.0979783 0.995189i \(-0.468762\pi\)
0.0979783 + 0.995189i \(0.468762\pi\)
\(510\) 0 0
\(511\) 14.8212 0.655652
\(512\) 0 0
\(513\) 37.4883 1.65515
\(514\) 0 0
\(515\) 5.44711 0.240028
\(516\) 0 0
\(517\) 3.12780 0.137560
\(518\) 0 0
\(519\) −61.8647 −2.71556
\(520\) 0 0
\(521\) −11.5401 −0.505580 −0.252790 0.967521i \(-0.581348\pi\)
−0.252790 + 0.967521i \(0.581348\pi\)
\(522\) 0 0
\(523\) −20.2772 −0.886658 −0.443329 0.896359i \(-0.646203\pi\)
−0.443329 + 0.896359i \(0.646203\pi\)
\(524\) 0 0
\(525\) −27.0155 −1.17905
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 21.9327 0.953595
\(530\) 0 0
\(531\) 55.8340 2.42299
\(532\) 0 0
\(533\) 1.01549 0.0439860
\(534\) 0 0
\(535\) −3.02940 −0.130972
\(536\) 0 0
\(537\) −22.4938 −0.970679
\(538\) 0 0
\(539\) 4.93830 0.212708
\(540\) 0 0
\(541\) −23.7005 −1.01896 −0.509481 0.860482i \(-0.670163\pi\)
−0.509481 + 0.860482i \(0.670163\pi\)
\(542\) 0 0
\(543\) 67.6868 2.90472
\(544\) 0 0
\(545\) 0.249190 0.0106741
\(546\) 0 0
\(547\) 14.6672 0.627124 0.313562 0.949568i \(-0.398478\pi\)
0.313562 + 0.949568i \(0.398478\pi\)
\(548\) 0 0
\(549\) −43.8605 −1.87192
\(550\) 0 0
\(551\) −33.3315 −1.41997
\(552\) 0 0
\(553\) 4.24315 0.180437
\(554\) 0 0
\(555\) 13.2076 0.560631
\(556\) 0 0
\(557\) −14.6792 −0.621979 −0.310990 0.950413i \(-0.600660\pi\)
−0.310990 + 0.950413i \(0.600660\pi\)
\(558\) 0 0
\(559\) −4.09519 −0.173208
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 6.86605 0.289370 0.144685 0.989478i \(-0.453783\pi\)
0.144685 + 0.989478i \(0.453783\pi\)
\(564\) 0 0
\(565\) 4.23888 0.178331
\(566\) 0 0
\(567\) −12.6087 −0.529514
\(568\) 0 0
\(569\) −18.4501 −0.773470 −0.386735 0.922191i \(-0.626397\pi\)
−0.386735 + 0.922191i \(0.626397\pi\)
\(570\) 0 0
\(571\) 31.4291 1.31527 0.657634 0.753338i \(-0.271557\pi\)
0.657634 + 0.753338i \(0.271557\pi\)
\(572\) 0 0
\(573\) 77.3770 3.23247
\(574\) 0 0
\(575\) 31.8456 1.32805
\(576\) 0 0
\(577\) −4.77339 −0.198719 −0.0993594 0.995052i \(-0.531679\pi\)
−0.0993594 + 0.995052i \(0.531679\pi\)
\(578\) 0 0
\(579\) −0.774297 −0.0321787
\(580\) 0 0
\(581\) −32.5091 −1.34871
\(582\) 0 0
\(583\) −18.8750 −0.781723
\(584\) 0 0
\(585\) −2.36491 −0.0977769
\(586\) 0 0
\(587\) 5.40737 0.223186 0.111593 0.993754i \(-0.464405\pi\)
0.111593 + 0.993754i \(0.464405\pi\)
\(588\) 0 0
\(589\) 21.7127 0.894655
\(590\) 0 0
\(591\) 18.1773 0.747716
\(592\) 0 0
\(593\) 18.7098 0.768321 0.384160 0.923266i \(-0.374491\pi\)
0.384160 + 0.923266i \(0.374491\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 59.9125 2.45206
\(598\) 0 0
\(599\) 35.1710 1.43705 0.718525 0.695502i \(-0.244818\pi\)
0.718525 + 0.695502i \(0.244818\pi\)
\(600\) 0 0
\(601\) −11.3817 −0.464269 −0.232134 0.972684i \(-0.574571\pi\)
−0.232134 + 0.972684i \(0.574571\pi\)
\(602\) 0 0
\(603\) −85.1729 −3.46851
\(604\) 0 0
\(605\) −4.36718 −0.177551
\(606\) 0 0
\(607\) 41.1978 1.67217 0.836083 0.548603i \(-0.184840\pi\)
0.836083 + 0.548603i \(0.184840\pi\)
\(608\) 0 0
\(609\) 40.5867 1.64466
\(610\) 0 0
\(611\) 1.72687 0.0698617
\(612\) 0 0
\(613\) 22.7450 0.918661 0.459331 0.888265i \(-0.348089\pi\)
0.459331 + 0.888265i \(0.348089\pi\)
\(614\) 0 0
\(615\) 1.80682 0.0728579
\(616\) 0 0
\(617\) −0.869375 −0.0349997 −0.0174999 0.999847i \(-0.505571\pi\)
−0.0174999 + 0.999847i \(0.505571\pi\)
\(618\) 0 0
\(619\) 4.67569 0.187932 0.0939658 0.995575i \(-0.470046\pi\)
0.0939658 + 0.995575i \(0.470046\pi\)
\(620\) 0 0
\(621\) 53.8097 2.15931
\(622\) 0 0
\(623\) 19.1220 0.766106
\(624\) 0 0
\(625\) 21.3242 0.852970
\(626\) 0 0
\(627\) −20.6907 −0.826305
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 22.9810 0.914859 0.457430 0.889246i \(-0.348770\pi\)
0.457430 + 0.889246i \(0.348770\pi\)
\(632\) 0 0
\(633\) −18.5368 −0.736771
\(634\) 0 0
\(635\) 8.69506 0.345053
\(636\) 0 0
\(637\) 2.72646 0.108026
\(638\) 0 0
\(639\) −54.9431 −2.17351
\(640\) 0 0
\(641\) 10.2001 0.402878 0.201439 0.979501i \(-0.435438\pi\)
0.201439 + 0.979501i \(0.435438\pi\)
\(642\) 0 0
\(643\) −12.7566 −0.503071 −0.251535 0.967848i \(-0.580935\pi\)
−0.251535 + 0.967848i \(0.580935\pi\)
\(644\) 0 0
\(645\) −7.28636 −0.286900
\(646\) 0 0
\(647\) 4.21957 0.165888 0.0829442 0.996554i \(-0.473568\pi\)
0.0829442 + 0.996554i \(0.473568\pi\)
\(648\) 0 0
\(649\) −14.6500 −0.575062
\(650\) 0 0
\(651\) −26.4388 −1.03622
\(652\) 0 0
\(653\) −16.5836 −0.648966 −0.324483 0.945891i \(-0.605190\pi\)
−0.324483 + 0.945891i \(0.605190\pi\)
\(654\) 0 0
\(655\) −5.48122 −0.214169
\(656\) 0 0
\(657\) −44.0106 −1.71702
\(658\) 0 0
\(659\) −6.18208 −0.240820 −0.120410 0.992724i \(-0.538421\pi\)
−0.120410 + 0.992724i \(0.538421\pi\)
\(660\) 0 0
\(661\) 32.3657 1.25888 0.629441 0.777048i \(-0.283284\pi\)
0.629441 + 0.777048i \(0.283284\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 4.48955 0.174097
\(666\) 0 0
\(667\) −47.8431 −1.85249
\(668\) 0 0
\(669\) 16.1846 0.625733
\(670\) 0 0
\(671\) 11.5083 0.444274
\(672\) 0 0
\(673\) −33.7576 −1.30126 −0.650630 0.759395i \(-0.725495\pi\)
−0.650630 + 0.759395i \(0.725495\pi\)
\(674\) 0 0
\(675\) 38.1371 1.46790
\(676\) 0 0
\(677\) 6.38219 0.245287 0.122644 0.992451i \(-0.460863\pi\)
0.122644 + 0.992451i \(0.460863\pi\)
\(678\) 0 0
\(679\) −2.30445 −0.0884367
\(680\) 0 0
\(681\) −24.5176 −0.939518
\(682\) 0 0
\(683\) 48.6122 1.86010 0.930048 0.367439i \(-0.119765\pi\)
0.930048 + 0.367439i \(0.119765\pi\)
\(684\) 0 0
\(685\) −4.12618 −0.157653
\(686\) 0 0
\(687\) 47.2267 1.80181
\(688\) 0 0
\(689\) −10.4210 −0.397008
\(690\) 0 0
\(691\) −27.1197 −1.03168 −0.515840 0.856685i \(-0.672520\pi\)
−0.515840 + 0.856685i \(0.672520\pi\)
\(692\) 0 0
\(693\) 16.5252 0.627742
\(694\) 0 0
\(695\) −5.83886 −0.221481
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 41.1396 1.55604
\(700\) 0 0
\(701\) 6.15629 0.232520 0.116260 0.993219i \(-0.462909\pi\)
0.116260 + 0.993219i \(0.462909\pi\)
\(702\) 0 0
\(703\) 41.8456 1.57824
\(704\) 0 0
\(705\) 3.07253 0.115718
\(706\) 0 0
\(707\) 13.1074 0.492955
\(708\) 0 0
\(709\) −32.2360 −1.21065 −0.605324 0.795979i \(-0.706957\pi\)
−0.605324 + 0.795979i \(0.706957\pi\)
\(710\) 0 0
\(711\) −12.5997 −0.472527
\(712\) 0 0
\(713\) 31.1658 1.16717
\(714\) 0 0
\(715\) 0.620516 0.0232060
\(716\) 0 0
\(717\) −31.3333 −1.17016
\(718\) 0 0
\(719\) 13.8028 0.514758 0.257379 0.966310i \(-0.417141\pi\)
0.257379 + 0.966310i \(0.417141\pi\)
\(720\) 0 0
\(721\) −21.0146 −0.782625
\(722\) 0 0
\(723\) −87.1868 −3.24251
\(724\) 0 0
\(725\) −33.9083 −1.25932
\(726\) 0 0
\(727\) −34.3979 −1.27575 −0.637874 0.770141i \(-0.720186\pi\)
−0.637874 + 0.770141i \(0.720186\pi\)
\(728\) 0 0
\(729\) −33.6686 −1.24699
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −9.51817 −0.351562 −0.175781 0.984429i \(-0.556245\pi\)
−0.175781 + 0.984429i \(0.556245\pi\)
\(734\) 0 0
\(735\) 4.85105 0.178934
\(736\) 0 0
\(737\) 22.3481 0.823202
\(738\) 0 0
\(739\) 18.1433 0.667412 0.333706 0.942677i \(-0.391701\pi\)
0.333706 + 0.942677i \(0.391701\pi\)
\(740\) 0 0
\(741\) −11.4234 −0.419649
\(742\) 0 0
\(743\) 19.0905 0.700363 0.350182 0.936682i \(-0.386120\pi\)
0.350182 + 0.936682i \(0.386120\pi\)
\(744\) 0 0
\(745\) 5.39428 0.197631
\(746\) 0 0
\(747\) 96.5336 3.53198
\(748\) 0 0
\(749\) 11.6872 0.427042
\(750\) 0 0
\(751\) 16.7823 0.612394 0.306197 0.951968i \(-0.400943\pi\)
0.306197 + 0.951968i \(0.400943\pi\)
\(752\) 0 0
\(753\) 45.4913 1.65780
\(754\) 0 0
\(755\) −9.84162 −0.358173
\(756\) 0 0
\(757\) 18.9267 0.687901 0.343950 0.938988i \(-0.388235\pi\)
0.343950 + 0.938988i \(0.388235\pi\)
\(758\) 0 0
\(759\) −29.6988 −1.07800
\(760\) 0 0
\(761\) −25.2597 −0.915664 −0.457832 0.889039i \(-0.651374\pi\)
−0.457832 + 0.889039i \(0.651374\pi\)
\(762\) 0 0
\(763\) −0.961361 −0.0348036
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −8.08832 −0.292052
\(768\) 0 0
\(769\) −33.2512 −1.19907 −0.599534 0.800349i \(-0.704647\pi\)
−0.599534 + 0.800349i \(0.704647\pi\)
\(770\) 0 0
\(771\) −3.36506 −0.121190
\(772\) 0 0
\(773\) 35.4049 1.27342 0.636712 0.771101i \(-0.280294\pi\)
0.636712 + 0.771101i \(0.280294\pi\)
\(774\) 0 0
\(775\) 22.0884 0.793439
\(776\) 0 0
\(777\) −50.9541 −1.82797
\(778\) 0 0
\(779\) 5.72453 0.205103
\(780\) 0 0
\(781\) 14.4162 0.515853
\(782\) 0 0
\(783\) −57.2951 −2.04756
\(784\) 0 0
\(785\) 0.822461 0.0293549
\(786\) 0 0
\(787\) 14.2838 0.509162 0.254581 0.967051i \(-0.418062\pi\)
0.254581 + 0.967051i \(0.418062\pi\)
\(788\) 0 0
\(789\) 35.5850 1.26686
\(790\) 0 0
\(791\) −16.3533 −0.581457
\(792\) 0 0
\(793\) 6.35380 0.225630
\(794\) 0 0
\(795\) −18.5415 −0.657599
\(796\) 0 0
\(797\) 43.8166 1.55206 0.776032 0.630694i \(-0.217230\pi\)
0.776032 + 0.630694i \(0.217230\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −56.7814 −2.00627
\(802\) 0 0
\(803\) 11.5477 0.407510
\(804\) 0 0
\(805\) 6.44418 0.227128
\(806\) 0 0
\(807\) −11.1483 −0.392439
\(808\) 0 0
\(809\) 39.8184 1.39994 0.699971 0.714171i \(-0.253196\pi\)
0.699971 + 0.714171i \(0.253196\pi\)
\(810\) 0 0
\(811\) 18.5309 0.650708 0.325354 0.945592i \(-0.394516\pi\)
0.325354 + 0.945592i \(0.394516\pi\)
\(812\) 0 0
\(813\) 6.20370 0.217573
\(814\) 0 0
\(815\) −4.28344 −0.150042
\(816\) 0 0
\(817\) −23.0853 −0.807654
\(818\) 0 0
\(819\) 9.12367 0.318807
\(820\) 0 0
\(821\) 35.8410 1.25086 0.625430 0.780281i \(-0.284924\pi\)
0.625430 + 0.780281i \(0.284924\pi\)
\(822\) 0 0
\(823\) −36.6318 −1.27690 −0.638452 0.769661i \(-0.720425\pi\)
−0.638452 + 0.769661i \(0.720425\pi\)
\(824\) 0 0
\(825\) −21.0487 −0.732822
\(826\) 0 0
\(827\) 25.3316 0.880866 0.440433 0.897786i \(-0.354825\pi\)
0.440433 + 0.897786i \(0.354825\pi\)
\(828\) 0 0
\(829\) 18.7599 0.651557 0.325778 0.945446i \(-0.394374\pi\)
0.325778 + 0.945446i \(0.394374\pi\)
\(830\) 0 0
\(831\) 19.6249 0.680779
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 2.32093 0.0803191
\(836\) 0 0
\(837\) 37.3230 1.29007
\(838\) 0 0
\(839\) 55.5824 1.91892 0.959458 0.281851i \(-0.0909483\pi\)
0.959458 + 0.281851i \(0.0909483\pi\)
\(840\) 0 0
\(841\) 21.9420 0.756619
\(842\) 0 0
\(843\) 6.84375 0.235711
\(844\) 0 0
\(845\) −6.14688 −0.211459
\(846\) 0 0
\(847\) 16.8483 0.578914
\(848\) 0 0
\(849\) −49.0399 −1.68304
\(850\) 0 0
\(851\) 60.0640 2.05897
\(852\) 0 0
\(853\) 53.8581 1.84407 0.922034 0.387109i \(-0.126526\pi\)
0.922034 + 0.387109i \(0.126526\pi\)
\(854\) 0 0
\(855\) −13.3314 −0.455925
\(856\) 0 0
\(857\) −21.8019 −0.744737 −0.372369 0.928085i \(-0.621454\pi\)
−0.372369 + 0.928085i \(0.621454\pi\)
\(858\) 0 0
\(859\) 21.4742 0.732689 0.366344 0.930479i \(-0.380609\pi\)
0.366344 + 0.930479i \(0.380609\pi\)
\(860\) 0 0
\(861\) −6.97058 −0.237557
\(862\) 0 0
\(863\) −53.8510 −1.83311 −0.916555 0.399909i \(-0.869042\pi\)
−0.916555 + 0.399909i \(0.869042\pi\)
\(864\) 0 0
\(865\) 10.4588 0.355611
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 3.30598 0.112148
\(870\) 0 0
\(871\) 12.3385 0.418074
\(872\) 0 0
\(873\) 6.84291 0.231597
\(874\) 0 0
\(875\) 9.37405 0.316901
\(876\) 0 0
\(877\) −25.2939 −0.854114 −0.427057 0.904225i \(-0.640450\pi\)
−0.427057 + 0.904225i \(0.640450\pi\)
\(878\) 0 0
\(879\) 14.6494 0.494113
\(880\) 0 0
\(881\) 21.0100 0.707844 0.353922 0.935275i \(-0.384848\pi\)
0.353922 + 0.935275i \(0.384848\pi\)
\(882\) 0 0
\(883\) −18.1188 −0.609746 −0.304873 0.952393i \(-0.598614\pi\)
−0.304873 + 0.952393i \(0.598614\pi\)
\(884\) 0 0
\(885\) −14.3911 −0.483752
\(886\) 0 0
\(887\) 43.4325 1.45832 0.729160 0.684343i \(-0.239911\pi\)
0.729160 + 0.684343i \(0.239911\pi\)
\(888\) 0 0
\(889\) −33.5450 −1.12506
\(890\) 0 0
\(891\) −9.82383 −0.329111
\(892\) 0 0
\(893\) 9.73469 0.325759
\(894\) 0 0
\(895\) 3.80280 0.127114
\(896\) 0 0
\(897\) −16.3968 −0.547475
\(898\) 0 0
\(899\) −33.1844 −1.10676
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 28.1103 0.935452
\(904\) 0 0
\(905\) −11.4431 −0.380382
\(906\) 0 0
\(907\) −19.2443 −0.638995 −0.319498 0.947587i \(-0.603514\pi\)
−0.319498 + 0.947587i \(0.603514\pi\)
\(908\) 0 0
\(909\) −38.9216 −1.29095
\(910\) 0 0
\(911\) 56.6045 1.87539 0.937696 0.347458i \(-0.112955\pi\)
0.937696 + 0.347458i \(0.112955\pi\)
\(912\) 0 0
\(913\) −25.3289 −0.838266
\(914\) 0 0
\(915\) 11.3050 0.373731
\(916\) 0 0
\(917\) 21.1462 0.698309
\(918\) 0 0
\(919\) 27.0662 0.892832 0.446416 0.894825i \(-0.352700\pi\)
0.446416 + 0.894825i \(0.352700\pi\)
\(920\) 0 0
\(921\) 68.7211 2.26444
\(922\) 0 0
\(923\) 7.95926 0.261982
\(924\) 0 0
\(925\) 42.5697 1.39968
\(926\) 0 0
\(927\) 62.4014 2.04953
\(928\) 0 0
\(929\) −36.2452 −1.18917 −0.594583 0.804034i \(-0.702683\pi\)
−0.594583 + 0.804034i \(0.702683\pi\)
\(930\) 0 0
\(931\) 15.3696 0.503717
\(932\) 0 0
\(933\) −58.9620 −1.93033
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −42.6134 −1.39212 −0.696060 0.717984i \(-0.745065\pi\)
−0.696060 + 0.717984i \(0.745065\pi\)
\(938\) 0 0
\(939\) −11.9218 −0.389054
\(940\) 0 0
\(941\) 18.0865 0.589602 0.294801 0.955559i \(-0.404747\pi\)
0.294801 + 0.955559i \(0.404747\pi\)
\(942\) 0 0
\(943\) 8.21684 0.267577
\(944\) 0 0
\(945\) 7.71731 0.251044
\(946\) 0 0
\(947\) −44.8948 −1.45888 −0.729442 0.684042i \(-0.760220\pi\)
−0.729442 + 0.684042i \(0.760220\pi\)
\(948\) 0 0
\(949\) 6.37554 0.206959
\(950\) 0 0
\(951\) −52.1506 −1.69110
\(952\) 0 0
\(953\) −48.6834 −1.57701 −0.788505 0.615028i \(-0.789145\pi\)
−0.788505 + 0.615028i \(0.789145\pi\)
\(954\) 0 0
\(955\) −13.0813 −0.423302
\(956\) 0 0
\(957\) 31.6225 1.02221
\(958\) 0 0
\(959\) 15.9185 0.514036
\(960\) 0 0
\(961\) −9.38311 −0.302681
\(962\) 0 0
\(963\) −34.7044 −1.11833
\(964\) 0 0
\(965\) 0.130903 0.00421391
\(966\) 0 0
\(967\) 21.4829 0.690845 0.345422 0.938447i \(-0.387736\pi\)
0.345422 + 0.938447i \(0.387736\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −59.0629 −1.89542 −0.947710 0.319133i \(-0.896608\pi\)
−0.947710 + 0.319133i \(0.896608\pi\)
\(972\) 0 0
\(973\) 22.5260 0.722149
\(974\) 0 0
\(975\) −11.6211 −0.372173
\(976\) 0 0
\(977\) −22.2246 −0.711026 −0.355513 0.934671i \(-0.615694\pi\)
−0.355513 + 0.934671i \(0.615694\pi\)
\(978\) 0 0
\(979\) 14.8986 0.476161
\(980\) 0 0
\(981\) 2.85470 0.0911434
\(982\) 0 0
\(983\) −33.0671 −1.05468 −0.527338 0.849656i \(-0.676810\pi\)
−0.527338 + 0.849656i \(0.676810\pi\)
\(984\) 0 0
\(985\) −3.07306 −0.0979159
\(986\) 0 0
\(987\) −11.8536 −0.377305
\(988\) 0 0
\(989\) −33.1361 −1.05367
\(990\) 0 0
\(991\) −24.8964 −0.790861 −0.395430 0.918496i \(-0.629405\pi\)
−0.395430 + 0.918496i \(0.629405\pi\)
\(992\) 0 0
\(993\) −65.3301 −2.07319
\(994\) 0 0
\(995\) −10.1288 −0.321105
\(996\) 0 0
\(997\) 20.8524 0.660403 0.330201 0.943911i \(-0.392883\pi\)
0.330201 + 0.943911i \(0.392883\pi\)
\(998\) 0 0
\(999\) 71.9304 2.27578
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9248.2.a.bx.1.2 16
4.3 odd 2 inner 9248.2.a.bx.1.16 16
17.5 odd 16 544.2.bb.d.161.4 yes 16
17.7 odd 16 544.2.bb.d.321.4 yes 16
17.16 even 2 inner 9248.2.a.bx.1.15 16
68.7 even 16 544.2.bb.d.321.1 yes 16
68.39 even 16 544.2.bb.d.161.1 16
68.67 odd 2 inner 9248.2.a.bx.1.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
544.2.bb.d.161.1 16 68.39 even 16
544.2.bb.d.161.4 yes 16 17.5 odd 16
544.2.bb.d.321.1 yes 16 68.7 even 16
544.2.bb.d.321.4 yes 16 17.7 odd 16
9248.2.a.bx.1.1 16 68.67 odd 2 inner
9248.2.a.bx.1.2 16 1.1 even 1 trivial
9248.2.a.bx.1.15 16 17.16 even 2 inner
9248.2.a.bx.1.16 16 4.3 odd 2 inner