Properties

Label 9248.2.a.bx.1.8
Level $9248$
Weight $2$
Character 9248.1
Self dual yes
Analytic conductor $73.846$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9248,2,Mod(1,9248)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9248, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9248.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9248 = 2^{5} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9248.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.8456517893\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 28x^{14} + 290x^{12} - 1436x^{10} + 3633x^{8} - 4632x^{6} + 2744x^{4} - 704x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{41}]\)
Coefficient ring index: \( 2^{9} \)
Twist minimal: no (minimal twist has level 544)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(2.10698\) of defining polynomial
Character \(\chi\) \(=\) 9248.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.13196 q^{3} +2.34695 q^{5} +3.47109 q^{7} -1.71866 q^{9} +5.37774 q^{11} -0.828427 q^{13} -2.65666 q^{15} -1.43143 q^{19} -3.92915 q^{21} -0.826153 q^{23} +0.508169 q^{25} +5.34135 q^{27} +3.75887 q^{29} +8.37996 q^{31} -6.08741 q^{33} +8.14648 q^{35} -3.60295 q^{37} +0.937749 q^{39} +10.9431 q^{41} -12.8947 q^{43} -4.03361 q^{45} -3.75708 q^{47} +5.04849 q^{49} +7.32026 q^{53} +12.6213 q^{55} +1.62033 q^{57} -8.29914 q^{59} +2.46576 q^{61} -5.96563 q^{63} -1.94428 q^{65} +8.93145 q^{67} +0.935174 q^{69} -13.8456 q^{71} -2.02137 q^{73} -0.575228 q^{75} +18.6666 q^{77} +9.31771 q^{79} -0.890232 q^{81} +4.52835 q^{83} -4.25490 q^{87} -0.313491 q^{89} -2.87555 q^{91} -9.48581 q^{93} -3.35950 q^{95} +12.5458 q^{97} -9.24251 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 32 q^{9} + 32 q^{13} + 48 q^{21} + 32 q^{33} + 48 q^{49} + 80 q^{53} + 64 q^{69} + 48 q^{77} - 48 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.13196 −0.653539 −0.326770 0.945104i \(-0.605960\pi\)
−0.326770 + 0.945104i \(0.605960\pi\)
\(4\) 0 0
\(5\) 2.34695 1.04959 0.524794 0.851229i \(-0.324142\pi\)
0.524794 + 0.851229i \(0.324142\pi\)
\(6\) 0 0
\(7\) 3.47109 1.31195 0.655975 0.754783i \(-0.272258\pi\)
0.655975 + 0.754783i \(0.272258\pi\)
\(8\) 0 0
\(9\) −1.71866 −0.572886
\(10\) 0 0
\(11\) 5.37774 1.62145 0.810725 0.585427i \(-0.199073\pi\)
0.810725 + 0.585427i \(0.199073\pi\)
\(12\) 0 0
\(13\) −0.828427 −0.229764 −0.114882 0.993379i \(-0.536649\pi\)
−0.114882 + 0.993379i \(0.536649\pi\)
\(14\) 0 0
\(15\) −2.65666 −0.685947
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) −1.43143 −0.328393 −0.164196 0.986428i \(-0.552503\pi\)
−0.164196 + 0.986428i \(0.552503\pi\)
\(20\) 0 0
\(21\) −3.92915 −0.857411
\(22\) 0 0
\(23\) −0.826153 −0.172265 −0.0861324 0.996284i \(-0.527451\pi\)
−0.0861324 + 0.996284i \(0.527451\pi\)
\(24\) 0 0
\(25\) 0.508169 0.101634
\(26\) 0 0
\(27\) 5.34135 1.02794
\(28\) 0 0
\(29\) 3.75887 0.698005 0.349002 0.937122i \(-0.386521\pi\)
0.349002 + 0.937122i \(0.386521\pi\)
\(30\) 0 0
\(31\) 8.37996 1.50509 0.752543 0.658544i \(-0.228827\pi\)
0.752543 + 0.658544i \(0.228827\pi\)
\(32\) 0 0
\(33\) −6.08741 −1.05968
\(34\) 0 0
\(35\) 8.14648 1.37701
\(36\) 0 0
\(37\) −3.60295 −0.592321 −0.296160 0.955138i \(-0.595706\pi\)
−0.296160 + 0.955138i \(0.595706\pi\)
\(38\) 0 0
\(39\) 0.937749 0.150160
\(40\) 0 0
\(41\) 10.9431 1.70903 0.854515 0.519426i \(-0.173854\pi\)
0.854515 + 0.519426i \(0.173854\pi\)
\(42\) 0 0
\(43\) −12.8947 −1.96643 −0.983214 0.182455i \(-0.941596\pi\)
−0.983214 + 0.182455i \(0.941596\pi\)
\(44\) 0 0
\(45\) −4.03361 −0.601294
\(46\) 0 0
\(47\) −3.75708 −0.548027 −0.274014 0.961726i \(-0.588351\pi\)
−0.274014 + 0.961726i \(0.588351\pi\)
\(48\) 0 0
\(49\) 5.04849 0.721213
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 7.32026 1.00551 0.502757 0.864428i \(-0.332319\pi\)
0.502757 + 0.864428i \(0.332319\pi\)
\(54\) 0 0
\(55\) 12.6213 1.70185
\(56\) 0 0
\(57\) 1.62033 0.214618
\(58\) 0 0
\(59\) −8.29914 −1.08046 −0.540228 0.841519i \(-0.681662\pi\)
−0.540228 + 0.841519i \(0.681662\pi\)
\(60\) 0 0
\(61\) 2.46576 0.315708 0.157854 0.987462i \(-0.449542\pi\)
0.157854 + 0.987462i \(0.449542\pi\)
\(62\) 0 0
\(63\) −5.96563 −0.751598
\(64\) 0 0
\(65\) −1.94428 −0.241158
\(66\) 0 0
\(67\) 8.93145 1.09115 0.545575 0.838062i \(-0.316311\pi\)
0.545575 + 0.838062i \(0.316311\pi\)
\(68\) 0 0
\(69\) 0.935174 0.112582
\(70\) 0 0
\(71\) −13.8456 −1.64317 −0.821583 0.570089i \(-0.806909\pi\)
−0.821583 + 0.570089i \(0.806909\pi\)
\(72\) 0 0
\(73\) −2.02137 −0.236583 −0.118291 0.992979i \(-0.537742\pi\)
−0.118291 + 0.992979i \(0.537742\pi\)
\(74\) 0 0
\(75\) −0.575228 −0.0664217
\(76\) 0 0
\(77\) 18.6666 2.12726
\(78\) 0 0
\(79\) 9.31771 1.04832 0.524162 0.851619i \(-0.324379\pi\)
0.524162 + 0.851619i \(0.324379\pi\)
\(80\) 0 0
\(81\) −0.890232 −0.0989147
\(82\) 0 0
\(83\) 4.52835 0.497051 0.248526 0.968625i \(-0.420054\pi\)
0.248526 + 0.968625i \(0.420054\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −4.25490 −0.456174
\(88\) 0 0
\(89\) −0.313491 −0.0332300 −0.0166150 0.999862i \(-0.505289\pi\)
−0.0166150 + 0.999862i \(0.505289\pi\)
\(90\) 0 0
\(91\) −2.87555 −0.301439
\(92\) 0 0
\(93\) −9.48581 −0.983632
\(94\) 0 0
\(95\) −3.35950 −0.344677
\(96\) 0 0
\(97\) 12.5458 1.27383 0.636915 0.770934i \(-0.280210\pi\)
0.636915 + 0.770934i \(0.280210\pi\)
\(98\) 0 0
\(99\) −9.24251 −0.928907
\(100\) 0 0
\(101\) 11.1492 1.10939 0.554694 0.832054i \(-0.312835\pi\)
0.554694 + 0.832054i \(0.312835\pi\)
\(102\) 0 0
\(103\) −4.18319 −0.412182 −0.206091 0.978533i \(-0.566074\pi\)
−0.206091 + 0.978533i \(0.566074\pi\)
\(104\) 0 0
\(105\) −9.22151 −0.899928
\(106\) 0 0
\(107\) 12.0453 1.16446 0.582230 0.813024i \(-0.302180\pi\)
0.582230 + 0.813024i \(0.302180\pi\)
\(108\) 0 0
\(109\) 2.34695 0.224797 0.112398 0.993663i \(-0.464147\pi\)
0.112398 + 0.993663i \(0.464147\pi\)
\(110\) 0 0
\(111\) 4.07840 0.387105
\(112\) 0 0
\(113\) 20.6605 1.94357 0.971786 0.235863i \(-0.0757916\pi\)
0.971786 + 0.235863i \(0.0757916\pi\)
\(114\) 0 0
\(115\) −1.93894 −0.180807
\(116\) 0 0
\(117\) 1.42378 0.131629
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 17.9201 1.62910
\(122\) 0 0
\(123\) −12.3872 −1.11692
\(124\) 0 0
\(125\) −10.5421 −0.942914
\(126\) 0 0
\(127\) 7.54387 0.669410 0.334705 0.942323i \(-0.391363\pi\)
0.334705 + 0.942323i \(0.391363\pi\)
\(128\) 0 0
\(129\) 14.5964 1.28514
\(130\) 0 0
\(131\) 4.20939 0.367776 0.183888 0.982947i \(-0.441132\pi\)
0.183888 + 0.982947i \(0.441132\pi\)
\(132\) 0 0
\(133\) −4.96863 −0.430835
\(134\) 0 0
\(135\) 12.5359 1.07892
\(136\) 0 0
\(137\) 6.60889 0.564636 0.282318 0.959321i \(-0.408897\pi\)
0.282318 + 0.959321i \(0.408897\pi\)
\(138\) 0 0
\(139\) 3.93473 0.333739 0.166870 0.985979i \(-0.446634\pi\)
0.166870 + 0.985979i \(0.446634\pi\)
\(140\) 0 0
\(141\) 4.25288 0.358157
\(142\) 0 0
\(143\) −4.45507 −0.372551
\(144\) 0 0
\(145\) 8.82188 0.732617
\(146\) 0 0
\(147\) −5.71470 −0.471341
\(148\) 0 0
\(149\) −7.14921 −0.585686 −0.292843 0.956161i \(-0.594601\pi\)
−0.292843 + 0.956161i \(0.594601\pi\)
\(150\) 0 0
\(151\) −15.7758 −1.28381 −0.641907 0.766783i \(-0.721856\pi\)
−0.641907 + 0.766783i \(0.721856\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 19.6673 1.57972
\(156\) 0 0
\(157\) −5.78973 −0.462071 −0.231035 0.972945i \(-0.574211\pi\)
−0.231035 + 0.972945i \(0.574211\pi\)
\(158\) 0 0
\(159\) −8.28626 −0.657143
\(160\) 0 0
\(161\) −2.86765 −0.226003
\(162\) 0 0
\(163\) −9.24251 −0.723929 −0.361964 0.932192i \(-0.617894\pi\)
−0.361964 + 0.932192i \(0.617894\pi\)
\(164\) 0 0
\(165\) −14.2868 −1.11223
\(166\) 0 0
\(167\) −8.37996 −0.648461 −0.324230 0.945978i \(-0.605105\pi\)
−0.324230 + 0.945978i \(0.605105\pi\)
\(168\) 0 0
\(169\) −12.3137 −0.947208
\(170\) 0 0
\(171\) 2.46014 0.188132
\(172\) 0 0
\(173\) 21.4544 1.63115 0.815573 0.578654i \(-0.196422\pi\)
0.815573 + 0.578654i \(0.196422\pi\)
\(174\) 0 0
\(175\) 1.76390 0.133338
\(176\) 0 0
\(177\) 9.39432 0.706120
\(178\) 0 0
\(179\) 6.74475 0.504126 0.252063 0.967711i \(-0.418891\pi\)
0.252063 + 0.967711i \(0.418891\pi\)
\(180\) 0 0
\(181\) −14.7670 −1.09762 −0.548811 0.835946i \(-0.684919\pi\)
−0.548811 + 0.835946i \(0.684919\pi\)
\(182\) 0 0
\(183\) −2.79115 −0.206328
\(184\) 0 0
\(185\) −8.45593 −0.621693
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 18.5403 1.34861
\(190\) 0 0
\(191\) −3.62259 −0.262122 −0.131061 0.991374i \(-0.541838\pi\)
−0.131061 + 0.991374i \(0.541838\pi\)
\(192\) 0 0
\(193\) −18.0297 −1.29780 −0.648901 0.760873i \(-0.724771\pi\)
−0.648901 + 0.760873i \(0.724771\pi\)
\(194\) 0 0
\(195\) 2.20085 0.157606
\(196\) 0 0
\(197\) 14.6945 1.04694 0.523470 0.852044i \(-0.324637\pi\)
0.523470 + 0.852044i \(0.324637\pi\)
\(198\) 0 0
\(199\) −20.4067 −1.44660 −0.723298 0.690537i \(-0.757374\pi\)
−0.723298 + 0.690537i \(0.757374\pi\)
\(200\) 0 0
\(201\) −10.1101 −0.713109
\(202\) 0 0
\(203\) 13.0474 0.915747
\(204\) 0 0
\(205\) 25.6830 1.79378
\(206\) 0 0
\(207\) 1.41987 0.0986881
\(208\) 0 0
\(209\) −7.69787 −0.532473
\(210\) 0 0
\(211\) −1.08050 −0.0743844 −0.0371922 0.999308i \(-0.511841\pi\)
−0.0371922 + 0.999308i \(0.511841\pi\)
\(212\) 0 0
\(213\) 15.6727 1.07387
\(214\) 0 0
\(215\) −30.2633 −2.06394
\(216\) 0 0
\(217\) 29.0876 1.97460
\(218\) 0 0
\(219\) 2.28811 0.154616
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 9.87921 0.661561 0.330780 0.943708i \(-0.392688\pi\)
0.330780 + 0.943708i \(0.392688\pi\)
\(224\) 0 0
\(225\) −0.873369 −0.0582246
\(226\) 0 0
\(227\) 15.0891 1.00150 0.500750 0.865592i \(-0.333058\pi\)
0.500750 + 0.865592i \(0.333058\pi\)
\(228\) 0 0
\(229\) 22.0947 1.46006 0.730029 0.683416i \(-0.239506\pi\)
0.730029 + 0.683416i \(0.239506\pi\)
\(230\) 0 0
\(231\) −21.1300 −1.39025
\(232\) 0 0
\(233\) 8.24042 0.539848 0.269924 0.962882i \(-0.413001\pi\)
0.269924 + 0.962882i \(0.413001\pi\)
\(234\) 0 0
\(235\) −8.81768 −0.575202
\(236\) 0 0
\(237\) −10.5473 −0.685121
\(238\) 0 0
\(239\) −10.5115 −0.679934 −0.339967 0.940437i \(-0.610416\pi\)
−0.339967 + 0.940437i \(0.610416\pi\)
\(240\) 0 0
\(241\) −18.1429 −1.16869 −0.584343 0.811507i \(-0.698648\pi\)
−0.584343 + 0.811507i \(0.698648\pi\)
\(242\) 0 0
\(243\) −15.0163 −0.963298
\(244\) 0 0
\(245\) 11.8485 0.756976
\(246\) 0 0
\(247\) 1.18584 0.0754530
\(248\) 0 0
\(249\) −5.12593 −0.324842
\(250\) 0 0
\(251\) −1.87169 −0.118140 −0.0590701 0.998254i \(-0.518814\pi\)
−0.0590701 + 0.998254i \(0.518814\pi\)
\(252\) 0 0
\(253\) −4.44283 −0.279319
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −10.6544 −0.664601 −0.332300 0.943174i \(-0.607825\pi\)
−0.332300 + 0.943174i \(0.607825\pi\)
\(258\) 0 0
\(259\) −12.5062 −0.777095
\(260\) 0 0
\(261\) −6.46022 −0.399877
\(262\) 0 0
\(263\) −31.6006 −1.94858 −0.974288 0.225305i \(-0.927662\pi\)
−0.974288 + 0.225305i \(0.927662\pi\)
\(264\) 0 0
\(265\) 17.1803 1.05538
\(266\) 0 0
\(267\) 0.354860 0.0217171
\(268\) 0 0
\(269\) −24.3891 −1.48703 −0.743516 0.668718i \(-0.766843\pi\)
−0.743516 + 0.668718i \(0.766843\pi\)
\(270\) 0 0
\(271\) −27.6373 −1.67885 −0.839424 0.543478i \(-0.817107\pi\)
−0.839424 + 0.543478i \(0.817107\pi\)
\(272\) 0 0
\(273\) 3.25501 0.197002
\(274\) 0 0
\(275\) 2.73280 0.164794
\(276\) 0 0
\(277\) 23.2348 1.39605 0.698023 0.716075i \(-0.254063\pi\)
0.698023 + 0.716075i \(0.254063\pi\)
\(278\) 0 0
\(279\) −14.4023 −0.862243
\(280\) 0 0
\(281\) 4.21726 0.251581 0.125790 0.992057i \(-0.459853\pi\)
0.125790 + 0.992057i \(0.459853\pi\)
\(282\) 0 0
\(283\) 3.90116 0.231900 0.115950 0.993255i \(-0.463009\pi\)
0.115950 + 0.993255i \(0.463009\pi\)
\(284\) 0 0
\(285\) 3.80283 0.225260
\(286\) 0 0
\(287\) 37.9846 2.24216
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) −14.2014 −0.832499
\(292\) 0 0
\(293\) 2.47602 0.144651 0.0723253 0.997381i \(-0.476958\pi\)
0.0723253 + 0.997381i \(0.476958\pi\)
\(294\) 0 0
\(295\) −19.4776 −1.13403
\(296\) 0 0
\(297\) 28.7244 1.66676
\(298\) 0 0
\(299\) 0.684407 0.0395803
\(300\) 0 0
\(301\) −44.7588 −2.57986
\(302\) 0 0
\(303\) −12.6205 −0.725029
\(304\) 0 0
\(305\) 5.78701 0.331363
\(306\) 0 0
\(307\) −22.1895 −1.26642 −0.633211 0.773979i \(-0.718263\pi\)
−0.633211 + 0.773979i \(0.718263\pi\)
\(308\) 0 0
\(309\) 4.73522 0.269377
\(310\) 0 0
\(311\) −25.2977 −1.43450 −0.717251 0.696815i \(-0.754600\pi\)
−0.717251 + 0.696815i \(0.754600\pi\)
\(312\) 0 0
\(313\) 12.0626 0.681821 0.340910 0.940096i \(-0.389265\pi\)
0.340910 + 0.940096i \(0.389265\pi\)
\(314\) 0 0
\(315\) −14.0010 −0.788868
\(316\) 0 0
\(317\) −2.74050 −0.153922 −0.0769608 0.997034i \(-0.524522\pi\)
−0.0769608 + 0.997034i \(0.524522\pi\)
\(318\) 0 0
\(319\) 20.2142 1.13178
\(320\) 0 0
\(321\) −13.6348 −0.761020
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −0.420981 −0.0233518
\(326\) 0 0
\(327\) −2.65666 −0.146914
\(328\) 0 0
\(329\) −13.0412 −0.718984
\(330\) 0 0
\(331\) 18.0736 0.993413 0.496706 0.867919i \(-0.334543\pi\)
0.496706 + 0.867919i \(0.334543\pi\)
\(332\) 0 0
\(333\) 6.19224 0.339333
\(334\) 0 0
\(335\) 20.9616 1.14526
\(336\) 0 0
\(337\) −20.2116 −1.10099 −0.550497 0.834837i \(-0.685562\pi\)
−0.550497 + 0.834837i \(0.685562\pi\)
\(338\) 0 0
\(339\) −23.3869 −1.27020
\(340\) 0 0
\(341\) 45.0653 2.44042
\(342\) 0 0
\(343\) −6.77388 −0.365755
\(344\) 0 0
\(345\) 2.19481 0.118164
\(346\) 0 0
\(347\) 34.2372 1.83795 0.918975 0.394315i \(-0.129018\pi\)
0.918975 + 0.394315i \(0.129018\pi\)
\(348\) 0 0
\(349\) 25.7412 1.37790 0.688948 0.724810i \(-0.258073\pi\)
0.688948 + 0.724810i \(0.258073\pi\)
\(350\) 0 0
\(351\) −4.42492 −0.236185
\(352\) 0 0
\(353\) 17.6506 0.939447 0.469724 0.882814i \(-0.344354\pi\)
0.469724 + 0.882814i \(0.344354\pi\)
\(354\) 0 0
\(355\) −32.4948 −1.72465
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 21.5572 1.13775 0.568873 0.822426i \(-0.307380\pi\)
0.568873 + 0.822426i \(0.307380\pi\)
\(360\) 0 0
\(361\) −16.9510 −0.892158
\(362\) 0 0
\(363\) −20.2849 −1.06468
\(364\) 0 0
\(365\) −4.74404 −0.248315
\(366\) 0 0
\(367\) 30.5506 1.59473 0.797364 0.603499i \(-0.206227\pi\)
0.797364 + 0.603499i \(0.206227\pi\)
\(368\) 0 0
\(369\) −18.8075 −0.979081
\(370\) 0 0
\(371\) 25.4093 1.31919
\(372\) 0 0
\(373\) 6.56695 0.340024 0.170012 0.985442i \(-0.445619\pi\)
0.170012 + 0.985442i \(0.445619\pi\)
\(374\) 0 0
\(375\) 11.9333 0.616231
\(376\) 0 0
\(377\) −3.11395 −0.160377
\(378\) 0 0
\(379\) 7.79949 0.400633 0.200316 0.979731i \(-0.435803\pi\)
0.200316 + 0.979731i \(0.435803\pi\)
\(380\) 0 0
\(381\) −8.53939 −0.437486
\(382\) 0 0
\(383\) −19.2412 −0.983181 −0.491591 0.870826i \(-0.663584\pi\)
−0.491591 + 0.870826i \(0.663584\pi\)
\(384\) 0 0
\(385\) 43.8097 2.23275
\(386\) 0 0
\(387\) 22.1617 1.12654
\(388\) 0 0
\(389\) −19.8148 −1.00465 −0.502325 0.864679i \(-0.667522\pi\)
−0.502325 + 0.864679i \(0.667522\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −4.76487 −0.240356
\(394\) 0 0
\(395\) 21.8682 1.10031
\(396\) 0 0
\(397\) −32.2108 −1.61662 −0.808308 0.588760i \(-0.799616\pi\)
−0.808308 + 0.588760i \(0.799616\pi\)
\(398\) 0 0
\(399\) 5.62431 0.281568
\(400\) 0 0
\(401\) 17.0184 0.849857 0.424928 0.905227i \(-0.360299\pi\)
0.424928 + 0.905227i \(0.360299\pi\)
\(402\) 0 0
\(403\) −6.94219 −0.345815
\(404\) 0 0
\(405\) −2.08933 −0.103820
\(406\) 0 0
\(407\) −19.3757 −0.960419
\(408\) 0 0
\(409\) −28.6315 −1.41574 −0.707868 0.706345i \(-0.750343\pi\)
−0.707868 + 0.706345i \(0.750343\pi\)
\(410\) 0 0
\(411\) −7.48102 −0.369012
\(412\) 0 0
\(413\) −28.8071 −1.41750
\(414\) 0 0
\(415\) 10.6278 0.521699
\(416\) 0 0
\(417\) −4.45396 −0.218112
\(418\) 0 0
\(419\) 4.15792 0.203128 0.101564 0.994829i \(-0.467615\pi\)
0.101564 + 0.994829i \(0.467615\pi\)
\(420\) 0 0
\(421\) 34.1240 1.66310 0.831552 0.555447i \(-0.187453\pi\)
0.831552 + 0.555447i \(0.187453\pi\)
\(422\) 0 0
\(423\) 6.45715 0.313957
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 8.55889 0.414193
\(428\) 0 0
\(429\) 5.04297 0.243477
\(430\) 0 0
\(431\) 18.9123 0.910971 0.455486 0.890243i \(-0.349466\pi\)
0.455486 + 0.890243i \(0.349466\pi\)
\(432\) 0 0
\(433\) −0.790252 −0.0379771 −0.0189886 0.999820i \(-0.506045\pi\)
−0.0189886 + 0.999820i \(0.506045\pi\)
\(434\) 0 0
\(435\) −9.98604 −0.478794
\(436\) 0 0
\(437\) 1.18258 0.0565705
\(438\) 0 0
\(439\) 14.6076 0.697182 0.348591 0.937275i \(-0.386660\pi\)
0.348591 + 0.937275i \(0.386660\pi\)
\(440\) 0 0
\(441\) −8.67663 −0.413173
\(442\) 0 0
\(443\) 18.7059 0.888743 0.444371 0.895843i \(-0.353427\pi\)
0.444371 + 0.895843i \(0.353427\pi\)
\(444\) 0 0
\(445\) −0.735747 −0.0348778
\(446\) 0 0
\(447\) 8.09264 0.382769
\(448\) 0 0
\(449\) 20.8164 0.982386 0.491193 0.871051i \(-0.336561\pi\)
0.491193 + 0.871051i \(0.336561\pi\)
\(450\) 0 0
\(451\) 58.8494 2.77111
\(452\) 0 0
\(453\) 17.8576 0.839022
\(454\) 0 0
\(455\) −6.74876 −0.316387
\(456\) 0 0
\(457\) 9.60514 0.449310 0.224655 0.974438i \(-0.427875\pi\)
0.224655 + 0.974438i \(0.427875\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 32.8546 1.53019 0.765095 0.643918i \(-0.222692\pi\)
0.765095 + 0.643918i \(0.222692\pi\)
\(462\) 0 0
\(463\) 14.5739 0.677308 0.338654 0.940911i \(-0.390028\pi\)
0.338654 + 0.940911i \(0.390028\pi\)
\(464\) 0 0
\(465\) −22.2627 −1.03241
\(466\) 0 0
\(467\) −6.08274 −0.281475 −0.140738 0.990047i \(-0.544947\pi\)
−0.140738 + 0.990047i \(0.544947\pi\)
\(468\) 0 0
\(469\) 31.0019 1.43153
\(470\) 0 0
\(471\) 6.55376 0.301981
\(472\) 0 0
\(473\) −69.3445 −3.18847
\(474\) 0 0
\(475\) −0.727409 −0.0333758
\(476\) 0 0
\(477\) −12.5810 −0.576046
\(478\) 0 0
\(479\) 30.0666 1.37378 0.686890 0.726761i \(-0.258975\pi\)
0.686890 + 0.726761i \(0.258975\pi\)
\(480\) 0 0
\(481\) 2.98478 0.136094
\(482\) 0 0
\(483\) 3.24608 0.147702
\(484\) 0 0
\(485\) 29.4443 1.33700
\(486\) 0 0
\(487\) 33.0093 1.49580 0.747898 0.663814i \(-0.231063\pi\)
0.747898 + 0.663814i \(0.231063\pi\)
\(488\) 0 0
\(489\) 10.4622 0.473116
\(490\) 0 0
\(491\) −16.7094 −0.754084 −0.377042 0.926196i \(-0.623059\pi\)
−0.377042 + 0.926196i \(0.623059\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −21.6917 −0.974969
\(496\) 0 0
\(497\) −48.0592 −2.15575
\(498\) 0 0
\(499\) 26.3800 1.18093 0.590466 0.807063i \(-0.298944\pi\)
0.590466 + 0.807063i \(0.298944\pi\)
\(500\) 0 0
\(501\) 9.48581 0.423795
\(502\) 0 0
\(503\) 8.07173 0.359901 0.179950 0.983676i \(-0.442406\pi\)
0.179950 + 0.983676i \(0.442406\pi\)
\(504\) 0 0
\(505\) 26.1666 1.16440
\(506\) 0 0
\(507\) 13.9387 0.619038
\(508\) 0 0
\(509\) 0.0643005 0.00285007 0.00142503 0.999999i \(-0.499546\pi\)
0.00142503 + 0.999999i \(0.499546\pi\)
\(510\) 0 0
\(511\) −7.01635 −0.310385
\(512\) 0 0
\(513\) −7.64578 −0.337569
\(514\) 0 0
\(515\) −9.81773 −0.432621
\(516\) 0 0
\(517\) −20.2046 −0.888599
\(518\) 0 0
\(519\) −24.2856 −1.06602
\(520\) 0 0
\(521\) 8.20562 0.359495 0.179747 0.983713i \(-0.442472\pi\)
0.179747 + 0.983713i \(0.442472\pi\)
\(522\) 0 0
\(523\) 9.10794 0.398263 0.199131 0.979973i \(-0.436188\pi\)
0.199131 + 0.979973i \(0.436188\pi\)
\(524\) 0 0
\(525\) −1.99667 −0.0871419
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −22.3175 −0.970325
\(530\) 0 0
\(531\) 14.2634 0.618978
\(532\) 0 0
\(533\) −9.06559 −0.392674
\(534\) 0 0
\(535\) 28.2696 1.22220
\(536\) 0 0
\(537\) −7.63481 −0.329466
\(538\) 0 0
\(539\) 27.1495 1.16941
\(540\) 0 0
\(541\) 13.4948 0.580188 0.290094 0.956998i \(-0.406313\pi\)
0.290094 + 0.956998i \(0.406313\pi\)
\(542\) 0 0
\(543\) 16.7157 0.717339
\(544\) 0 0
\(545\) 5.50817 0.235944
\(546\) 0 0
\(547\) 29.4347 1.25854 0.629269 0.777188i \(-0.283355\pi\)
0.629269 + 0.777188i \(0.283355\pi\)
\(548\) 0 0
\(549\) −4.23780 −0.180865
\(550\) 0 0
\(551\) −5.38057 −0.229220
\(552\) 0 0
\(553\) 32.3426 1.37535
\(554\) 0 0
\(555\) 9.57181 0.406301
\(556\) 0 0
\(557\) 18.6792 0.791465 0.395732 0.918366i \(-0.370491\pi\)
0.395732 + 0.918366i \(0.370491\pi\)
\(558\) 0 0
\(559\) 10.6823 0.451815
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −29.1877 −1.23011 −0.615057 0.788482i \(-0.710867\pi\)
−0.615057 + 0.788482i \(0.710867\pi\)
\(564\) 0 0
\(565\) 48.4890 2.03995
\(566\) 0 0
\(567\) −3.09008 −0.129771
\(568\) 0 0
\(569\) 23.6217 0.990273 0.495137 0.868815i \(-0.335118\pi\)
0.495137 + 0.868815i \(0.335118\pi\)
\(570\) 0 0
\(571\) −15.2504 −0.638208 −0.319104 0.947720i \(-0.603382\pi\)
−0.319104 + 0.947720i \(0.603382\pi\)
\(572\) 0 0
\(573\) 4.10064 0.171307
\(574\) 0 0
\(575\) −0.419825 −0.0175079
\(576\) 0 0
\(577\) −7.85403 −0.326967 −0.163484 0.986546i \(-0.552273\pi\)
−0.163484 + 0.986546i \(0.552273\pi\)
\(578\) 0 0
\(579\) 20.4089 0.848165
\(580\) 0 0
\(581\) 15.7183 0.652106
\(582\) 0 0
\(583\) 39.3665 1.63039
\(584\) 0 0
\(585\) 3.34155 0.138156
\(586\) 0 0
\(587\) −28.0757 −1.15881 −0.579405 0.815040i \(-0.696715\pi\)
−0.579405 + 0.815040i \(0.696715\pi\)
\(588\) 0 0
\(589\) −11.9953 −0.494259
\(590\) 0 0
\(591\) −16.6337 −0.684217
\(592\) 0 0
\(593\) −15.3961 −0.632243 −0.316122 0.948719i \(-0.602381\pi\)
−0.316122 + 0.948719i \(0.602381\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 23.0997 0.945407
\(598\) 0 0
\(599\) −18.0394 −0.737069 −0.368535 0.929614i \(-0.620140\pi\)
−0.368535 + 0.929614i \(0.620140\pi\)
\(600\) 0 0
\(601\) −16.7936 −0.685027 −0.342514 0.939513i \(-0.611278\pi\)
−0.342514 + 0.939513i \(0.611278\pi\)
\(602\) 0 0
\(603\) −15.3501 −0.625105
\(604\) 0 0
\(605\) 42.0576 1.70988
\(606\) 0 0
\(607\) 21.4474 0.870524 0.435262 0.900304i \(-0.356656\pi\)
0.435262 + 0.900304i \(0.356656\pi\)
\(608\) 0 0
\(609\) −14.7692 −0.598477
\(610\) 0 0
\(611\) 3.11247 0.125917
\(612\) 0 0
\(613\) 30.7109 1.24040 0.620200 0.784444i \(-0.287051\pi\)
0.620200 + 0.784444i \(0.287051\pi\)
\(614\) 0 0
\(615\) −29.0722 −1.17230
\(616\) 0 0
\(617\) −13.5636 −0.546049 −0.273025 0.962007i \(-0.588024\pi\)
−0.273025 + 0.962007i \(0.588024\pi\)
\(618\) 0 0
\(619\) −22.4425 −0.902039 −0.451020 0.892514i \(-0.648940\pi\)
−0.451020 + 0.892514i \(0.648940\pi\)
\(620\) 0 0
\(621\) −4.41277 −0.177078
\(622\) 0 0
\(623\) −1.08816 −0.0435961
\(624\) 0 0
\(625\) −27.2826 −1.09130
\(626\) 0 0
\(627\) 8.71370 0.347992
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −35.9183 −1.42988 −0.714942 0.699184i \(-0.753547\pi\)
−0.714942 + 0.699184i \(0.753547\pi\)
\(632\) 0 0
\(633\) 1.22308 0.0486131
\(634\) 0 0
\(635\) 17.7051 0.702605
\(636\) 0 0
\(637\) −4.18230 −0.165709
\(638\) 0 0
\(639\) 23.7958 0.941347
\(640\) 0 0
\(641\) −10.8907 −0.430155 −0.215077 0.976597i \(-0.569000\pi\)
−0.215077 + 0.976597i \(0.569000\pi\)
\(642\) 0 0
\(643\) −10.8433 −0.427620 −0.213810 0.976875i \(-0.568587\pi\)
−0.213810 + 0.976875i \(0.568587\pi\)
\(644\) 0 0
\(645\) 34.2569 1.34886
\(646\) 0 0
\(647\) −8.06107 −0.316913 −0.158457 0.987366i \(-0.550652\pi\)
−0.158457 + 0.987366i \(0.550652\pi\)
\(648\) 0 0
\(649\) −44.6306 −1.75190
\(650\) 0 0
\(651\) −32.9261 −1.29048
\(652\) 0 0
\(653\) 41.2222 1.61315 0.806575 0.591132i \(-0.201319\pi\)
0.806575 + 0.591132i \(0.201319\pi\)
\(654\) 0 0
\(655\) 9.87921 0.386013
\(656\) 0 0
\(657\) 3.47404 0.135535
\(658\) 0 0
\(659\) −33.2980 −1.29710 −0.648552 0.761170i \(-0.724625\pi\)
−0.648552 + 0.761170i \(0.724625\pi\)
\(660\) 0 0
\(661\) −10.6084 −0.412618 −0.206309 0.978487i \(-0.566145\pi\)
−0.206309 + 0.978487i \(0.566145\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −11.6611 −0.452199
\(666\) 0 0
\(667\) −3.10540 −0.120242
\(668\) 0 0
\(669\) −11.1829 −0.432356
\(670\) 0 0
\(671\) 13.2602 0.511905
\(672\) 0 0
\(673\) 19.3247 0.744911 0.372455 0.928050i \(-0.378516\pi\)
0.372455 + 0.928050i \(0.378516\pi\)
\(674\) 0 0
\(675\) 2.71431 0.104474
\(676\) 0 0
\(677\) 3.82346 0.146947 0.0734737 0.997297i \(-0.476592\pi\)
0.0734737 + 0.997297i \(0.476592\pi\)
\(678\) 0 0
\(679\) 43.5476 1.67120
\(680\) 0 0
\(681\) −17.0803 −0.654520
\(682\) 0 0
\(683\) −27.9664 −1.07010 −0.535052 0.844819i \(-0.679708\pi\)
−0.535052 + 0.844819i \(0.679708\pi\)
\(684\) 0 0
\(685\) 15.5107 0.592635
\(686\) 0 0
\(687\) −25.0104 −0.954206
\(688\) 0 0
\(689\) −6.06430 −0.231031
\(690\) 0 0
\(691\) −26.8111 −1.01994 −0.509971 0.860192i \(-0.670344\pi\)
−0.509971 + 0.860192i \(0.670344\pi\)
\(692\) 0 0
\(693\) −32.0816 −1.21868
\(694\) 0 0
\(695\) 9.23460 0.350288
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −9.32785 −0.352812
\(700\) 0 0
\(701\) −29.7543 −1.12380 −0.561902 0.827204i \(-0.689930\pi\)
−0.561902 + 0.827204i \(0.689930\pi\)
\(702\) 0 0
\(703\) 5.15737 0.194514
\(704\) 0 0
\(705\) 9.98129 0.375917
\(706\) 0 0
\(707\) 38.6999 1.45546
\(708\) 0 0
\(709\) −0.452690 −0.0170011 −0.00850057 0.999964i \(-0.502706\pi\)
−0.00850057 + 0.999964i \(0.502706\pi\)
\(710\) 0 0
\(711\) −16.0140 −0.600571
\(712\) 0 0
\(713\) −6.92313 −0.259273
\(714\) 0 0
\(715\) −10.4558 −0.391025
\(716\) 0 0
\(717\) 11.8987 0.444363
\(718\) 0 0
\(719\) 21.4068 0.798338 0.399169 0.916877i \(-0.369299\pi\)
0.399169 + 0.916877i \(0.369299\pi\)
\(720\) 0 0
\(721\) −14.5202 −0.540762
\(722\) 0 0
\(723\) 20.5371 0.763782
\(724\) 0 0
\(725\) 1.91014 0.0709409
\(726\) 0 0
\(727\) −22.4811 −0.833779 −0.416889 0.908957i \(-0.636880\pi\)
−0.416889 + 0.908957i \(0.636880\pi\)
\(728\) 0 0
\(729\) 19.6686 0.728468
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 21.1334 0.780580 0.390290 0.920692i \(-0.372375\pi\)
0.390290 + 0.920692i \(0.372375\pi\)
\(734\) 0 0
\(735\) −13.4121 −0.494713
\(736\) 0 0
\(737\) 48.0310 1.76924
\(738\) 0 0
\(739\) 22.8218 0.839514 0.419757 0.907636i \(-0.362115\pi\)
0.419757 + 0.907636i \(0.362115\pi\)
\(740\) 0 0
\(741\) −1.34232 −0.0493115
\(742\) 0 0
\(743\) −37.5403 −1.37722 −0.688609 0.725133i \(-0.741778\pi\)
−0.688609 + 0.725133i \(0.741778\pi\)
\(744\) 0 0
\(745\) −16.7788 −0.614729
\(746\) 0 0
\(747\) −7.78269 −0.284754
\(748\) 0 0
\(749\) 41.8102 1.52771
\(750\) 0 0
\(751\) 41.8523 1.52721 0.763607 0.645682i \(-0.223427\pi\)
0.763607 + 0.645682i \(0.223427\pi\)
\(752\) 0 0
\(753\) 2.11869 0.0772092
\(754\) 0 0
\(755\) −37.0249 −1.34747
\(756\) 0 0
\(757\) −2.48300 −0.0902463 −0.0451231 0.998981i \(-0.514368\pi\)
−0.0451231 + 0.998981i \(0.514368\pi\)
\(758\) 0 0
\(759\) 5.02913 0.182546
\(760\) 0 0
\(761\) 18.0881 0.655695 0.327847 0.944731i \(-0.393677\pi\)
0.327847 + 0.944731i \(0.393677\pi\)
\(762\) 0 0
\(763\) 8.14648 0.294922
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 6.87523 0.248250
\(768\) 0 0
\(769\) −22.2047 −0.800721 −0.400360 0.916358i \(-0.631115\pi\)
−0.400360 + 0.916358i \(0.631115\pi\)
\(770\) 0 0
\(771\) 12.0603 0.434343
\(772\) 0 0
\(773\) −19.3632 −0.696448 −0.348224 0.937411i \(-0.613215\pi\)
−0.348224 + 0.937411i \(0.613215\pi\)
\(774\) 0 0
\(775\) 4.25844 0.152968
\(776\) 0 0
\(777\) 14.1565 0.507862
\(778\) 0 0
\(779\) −15.6644 −0.561234
\(780\) 0 0
\(781\) −74.4579 −2.66431
\(782\) 0 0
\(783\) 20.0774 0.717509
\(784\) 0 0
\(785\) −13.5882 −0.484983
\(786\) 0 0
\(787\) 24.7792 0.883282 0.441641 0.897192i \(-0.354396\pi\)
0.441641 + 0.897192i \(0.354396\pi\)
\(788\) 0 0
\(789\) 35.7707 1.27347
\(790\) 0 0
\(791\) 71.7144 2.54987
\(792\) 0 0
\(793\) −2.04270 −0.0725385
\(794\) 0 0
\(795\) −19.4474 −0.689729
\(796\) 0 0
\(797\) −22.7455 −0.805688 −0.402844 0.915269i \(-0.631978\pi\)
−0.402844 + 0.915269i \(0.631978\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0.538784 0.0190370
\(802\) 0 0
\(803\) −10.8704 −0.383607
\(804\) 0 0
\(805\) −6.73023 −0.237210
\(806\) 0 0
\(807\) 27.6076 0.971834
\(808\) 0 0
\(809\) −47.8685 −1.68297 −0.841484 0.540282i \(-0.818318\pi\)
−0.841484 + 0.540282i \(0.818318\pi\)
\(810\) 0 0
\(811\) −42.9855 −1.50943 −0.754713 0.656055i \(-0.772224\pi\)
−0.754713 + 0.656055i \(0.772224\pi\)
\(812\) 0 0
\(813\) 31.2844 1.09719
\(814\) 0 0
\(815\) −21.6917 −0.759827
\(816\) 0 0
\(817\) 18.4579 0.645761
\(818\) 0 0
\(819\) 4.94209 0.172690
\(820\) 0 0
\(821\) 33.3592 1.16424 0.582122 0.813102i \(-0.302223\pi\)
0.582122 + 0.813102i \(0.302223\pi\)
\(822\) 0 0
\(823\) 9.04647 0.315340 0.157670 0.987492i \(-0.449602\pi\)
0.157670 + 0.987492i \(0.449602\pi\)
\(824\) 0 0
\(825\) −3.09343 −0.107699
\(826\) 0 0
\(827\) 14.6427 0.509178 0.254589 0.967049i \(-0.418060\pi\)
0.254589 + 0.967049i \(0.418060\pi\)
\(828\) 0 0
\(829\) 30.5539 1.06118 0.530590 0.847629i \(-0.321971\pi\)
0.530590 + 0.847629i \(0.321971\pi\)
\(830\) 0 0
\(831\) −26.3010 −0.912371
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −19.6673 −0.680616
\(836\) 0 0
\(837\) 44.7603 1.54714
\(838\) 0 0
\(839\) 6.21413 0.214536 0.107268 0.994230i \(-0.465790\pi\)
0.107268 + 0.994230i \(0.465790\pi\)
\(840\) 0 0
\(841\) −14.8709 −0.512789
\(842\) 0 0
\(843\) −4.77378 −0.164418
\(844\) 0 0
\(845\) −28.8996 −0.994178
\(846\) 0 0
\(847\) 62.2024 2.13730
\(848\) 0 0
\(849\) −4.41597 −0.151556
\(850\) 0 0
\(851\) 2.97658 0.102036
\(852\) 0 0
\(853\) 25.0594 0.858016 0.429008 0.903301i \(-0.358863\pi\)
0.429008 + 0.903301i \(0.358863\pi\)
\(854\) 0 0
\(855\) 5.77383 0.197461
\(856\) 0 0
\(857\) 14.4424 0.493341 0.246671 0.969099i \(-0.420663\pi\)
0.246671 + 0.969099i \(0.420663\pi\)
\(858\) 0 0
\(859\) 20.9921 0.716242 0.358121 0.933675i \(-0.383417\pi\)
0.358121 + 0.933675i \(0.383417\pi\)
\(860\) 0 0
\(861\) −42.9972 −1.46534
\(862\) 0 0
\(863\) 12.3137 0.419162 0.209581 0.977791i \(-0.432790\pi\)
0.209581 + 0.977791i \(0.432790\pi\)
\(864\) 0 0
\(865\) 50.3523 1.71203
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 50.1082 1.69981
\(870\) 0 0
\(871\) −7.39905 −0.250707
\(872\) 0 0
\(873\) −21.5619 −0.729760
\(874\) 0 0
\(875\) −36.5926 −1.23706
\(876\) 0 0
\(877\) −32.5217 −1.09818 −0.549091 0.835763i \(-0.685026\pi\)
−0.549091 + 0.835763i \(0.685026\pi\)
\(878\) 0 0
\(879\) −2.80276 −0.0945348
\(880\) 0 0
\(881\) 36.3173 1.22356 0.611781 0.791027i \(-0.290453\pi\)
0.611781 + 0.791027i \(0.290453\pi\)
\(882\) 0 0
\(883\) 31.0615 1.04530 0.522652 0.852546i \(-0.324943\pi\)
0.522652 + 0.852546i \(0.324943\pi\)
\(884\) 0 0
\(885\) 22.0480 0.741135
\(886\) 0 0
\(887\) 48.5818 1.63122 0.815609 0.578604i \(-0.196402\pi\)
0.815609 + 0.578604i \(0.196402\pi\)
\(888\) 0 0
\(889\) 26.1855 0.878233
\(890\) 0 0
\(891\) −4.78744 −0.160385
\(892\) 0 0
\(893\) 5.37801 0.179968
\(894\) 0 0
\(895\) 15.8296 0.529125
\(896\) 0 0
\(897\) −0.774724 −0.0258673
\(898\) 0 0
\(899\) 31.4992 1.05056
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 50.6653 1.68604
\(904\) 0 0
\(905\) −34.6574 −1.15205
\(906\) 0 0
\(907\) −9.84329 −0.326841 −0.163421 0.986556i \(-0.552253\pi\)
−0.163421 + 0.986556i \(0.552253\pi\)
\(908\) 0 0
\(909\) −19.1617 −0.635553
\(910\) 0 0
\(911\) −6.32133 −0.209435 −0.104717 0.994502i \(-0.533394\pi\)
−0.104717 + 0.994502i \(0.533394\pi\)
\(912\) 0 0
\(913\) 24.3523 0.805944
\(914\) 0 0
\(915\) −6.55069 −0.216559
\(916\) 0 0
\(917\) 14.6112 0.482503
\(918\) 0 0
\(919\) −35.0444 −1.15601 −0.578004 0.816034i \(-0.696168\pi\)
−0.578004 + 0.816034i \(0.696168\pi\)
\(920\) 0 0
\(921\) 25.1177 0.827657
\(922\) 0 0
\(923\) 11.4700 0.377541
\(924\) 0 0
\(925\) −1.83091 −0.0601998
\(926\) 0 0
\(927\) 7.18948 0.236133
\(928\) 0 0
\(929\) −6.64917 −0.218152 −0.109076 0.994033i \(-0.534789\pi\)
−0.109076 + 0.994033i \(0.534789\pi\)
\(930\) 0 0
\(931\) −7.22657 −0.236841
\(932\) 0 0
\(933\) 28.6361 0.937503
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 49.3413 1.61191 0.805955 0.591976i \(-0.201652\pi\)
0.805955 + 0.591976i \(0.201652\pi\)
\(938\) 0 0
\(939\) −13.6545 −0.445597
\(940\) 0 0
\(941\) 41.3964 1.34948 0.674742 0.738054i \(-0.264255\pi\)
0.674742 + 0.738054i \(0.264255\pi\)
\(942\) 0 0
\(943\) −9.04070 −0.294406
\(944\) 0 0
\(945\) 43.5132 1.41548
\(946\) 0 0
\(947\) 17.4856 0.568204 0.284102 0.958794i \(-0.408305\pi\)
0.284102 + 0.958794i \(0.408305\pi\)
\(948\) 0 0
\(949\) 1.67455 0.0543583
\(950\) 0 0
\(951\) 3.10214 0.100594
\(952\) 0 0
\(953\) −54.4709 −1.76449 −0.882243 0.470794i \(-0.843968\pi\)
−0.882243 + 0.470794i \(0.843968\pi\)
\(954\) 0 0
\(955\) −8.50204 −0.275120
\(956\) 0 0
\(957\) −22.8818 −0.739663
\(958\) 0 0
\(959\) 22.9401 0.740774
\(960\) 0 0
\(961\) 39.2237 1.26528
\(962\) 0 0
\(963\) −20.7017 −0.667103
\(964\) 0 0
\(965\) −42.3147 −1.36216
\(966\) 0 0
\(967\) −10.6757 −0.343308 −0.171654 0.985157i \(-0.554911\pi\)
−0.171654 + 0.985157i \(0.554911\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −60.7986 −1.95112 −0.975560 0.219732i \(-0.929482\pi\)
−0.975560 + 0.219732i \(0.929482\pi\)
\(972\) 0 0
\(973\) 13.6578 0.437849
\(974\) 0 0
\(975\) 0.476535 0.0152613
\(976\) 0 0
\(977\) 11.8814 0.380120 0.190060 0.981772i \(-0.439132\pi\)
0.190060 + 0.981772i \(0.439132\pi\)
\(978\) 0 0
\(979\) −1.68587 −0.0538807
\(980\) 0 0
\(981\) −4.03361 −0.128783
\(982\) 0 0
\(983\) −26.3261 −0.839673 −0.419837 0.907600i \(-0.637913\pi\)
−0.419837 + 0.907600i \(0.637913\pi\)
\(984\) 0 0
\(985\) 34.4873 1.09886
\(986\) 0 0
\(987\) 14.7621 0.469884
\(988\) 0 0
\(989\) 10.6530 0.338746
\(990\) 0 0
\(991\) −41.0527 −1.30408 −0.652042 0.758183i \(-0.726087\pi\)
−0.652042 + 0.758183i \(0.726087\pi\)
\(992\) 0 0
\(993\) −20.4586 −0.649234
\(994\) 0 0
\(995\) −47.8936 −1.51833
\(996\) 0 0
\(997\) −7.31231 −0.231583 −0.115792 0.993274i \(-0.536940\pi\)
−0.115792 + 0.993274i \(0.536940\pi\)
\(998\) 0 0
\(999\) −19.2446 −0.608872
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9248.2.a.bx.1.8 16
4.3 odd 2 inner 9248.2.a.bx.1.10 16
17.10 odd 16 544.2.bb.d.321.2 yes 16
17.12 odd 16 544.2.bb.d.161.2 16
17.16 even 2 inner 9248.2.a.bx.1.9 16
68.27 even 16 544.2.bb.d.321.3 yes 16
68.63 even 16 544.2.bb.d.161.3 yes 16
68.67 odd 2 inner 9248.2.a.bx.1.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
544.2.bb.d.161.2 16 17.12 odd 16
544.2.bb.d.161.3 yes 16 68.63 even 16
544.2.bb.d.321.2 yes 16 17.10 odd 16
544.2.bb.d.321.3 yes 16 68.27 even 16
9248.2.a.bx.1.7 16 68.67 odd 2 inner
9248.2.a.bx.1.8 16 1.1 even 1 trivial
9248.2.a.bx.1.9 16 17.16 even 2 inner
9248.2.a.bx.1.10 16 4.3 odd 2 inner