Properties

Label 9248.2.a.bz.1.5
Level $9248$
Weight $2$
Character 9248.1
Self dual yes
Analytic conductor $73.846$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9248,2,Mod(1,9248)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9248, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9248.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9248 = 2^{5} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9248.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.8456517893\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 40 x^{18} + 620 x^{16} - 4784 x^{14} + 19585 x^{12} - 41912 x^{10} + 43536 x^{8} - 20328 x^{6} + \cdots + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: no (minimal twist has level 544)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-2.12443\) of defining polynomial
Character \(\chi\) \(=\) 9248.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.15620 q^{3} +1.57755 q^{5} +2.46548 q^{7} +1.64918 q^{9} -5.90216 q^{11} -3.94016 q^{13} -3.40150 q^{15} +1.56671 q^{19} -5.31607 q^{21} -1.12968 q^{23} -2.51134 q^{25} +2.91263 q^{27} -8.23944 q^{29} +4.16791 q^{31} +12.7262 q^{33} +3.88942 q^{35} -8.28282 q^{37} +8.49576 q^{39} -8.29395 q^{41} +4.88567 q^{43} +2.60166 q^{45} +0.211521 q^{47} -0.921386 q^{49} -2.51889 q^{53} -9.31094 q^{55} -3.37813 q^{57} -6.97442 q^{59} -0.958971 q^{61} +4.06604 q^{63} -6.21579 q^{65} -2.23948 q^{67} +2.43582 q^{69} +10.3750 q^{71} +8.62894 q^{73} +5.41495 q^{75} -14.5517 q^{77} +11.2760 q^{79} -11.2277 q^{81} +13.3105 q^{83} +17.7658 q^{87} +9.61042 q^{89} -9.71440 q^{91} -8.98683 q^{93} +2.47156 q^{95} -10.2598 q^{97} -9.73374 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 28 q^{9} - 8 q^{13} + 16 q^{15} + 40 q^{19} - 32 q^{21} + 28 q^{25} + 32 q^{35} + 40 q^{43} + 32 q^{47} + 36 q^{49} - 40 q^{53} + 48 q^{55} + 8 q^{59} + 72 q^{67} - 48 q^{69} - 48 q^{77} + 36 q^{81}+ \cdots - 32 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.15620 −1.24488 −0.622440 0.782667i \(-0.713859\pi\)
−0.622440 + 0.782667i \(0.713859\pi\)
\(4\) 0 0
\(5\) 1.57755 0.705501 0.352750 0.935718i \(-0.385247\pi\)
0.352750 + 0.935718i \(0.385247\pi\)
\(6\) 0 0
\(7\) 2.46548 0.931866 0.465933 0.884820i \(-0.345719\pi\)
0.465933 + 0.884820i \(0.345719\pi\)
\(8\) 0 0
\(9\) 1.64918 0.549728
\(10\) 0 0
\(11\) −5.90216 −1.77957 −0.889784 0.456382i \(-0.849145\pi\)
−0.889784 + 0.456382i \(0.849145\pi\)
\(12\) 0 0
\(13\) −3.94016 −1.09280 −0.546402 0.837523i \(-0.684003\pi\)
−0.546402 + 0.837523i \(0.684003\pi\)
\(14\) 0 0
\(15\) −3.40150 −0.878264
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) 1.56671 0.359427 0.179714 0.983719i \(-0.442483\pi\)
0.179714 + 0.983719i \(0.442483\pi\)
\(20\) 0 0
\(21\) −5.31607 −1.16006
\(22\) 0 0
\(23\) −1.12968 −0.235555 −0.117778 0.993040i \(-0.537577\pi\)
−0.117778 + 0.993040i \(0.537577\pi\)
\(24\) 0 0
\(25\) −2.51134 −0.502269
\(26\) 0 0
\(27\) 2.91263 0.560535
\(28\) 0 0
\(29\) −8.23944 −1.53002 −0.765012 0.644016i \(-0.777267\pi\)
−0.765012 + 0.644016i \(0.777267\pi\)
\(30\) 0 0
\(31\) 4.16791 0.748579 0.374289 0.927312i \(-0.377887\pi\)
0.374289 + 0.927312i \(0.377887\pi\)
\(32\) 0 0
\(33\) 12.7262 2.21535
\(34\) 0 0
\(35\) 3.88942 0.657432
\(36\) 0 0
\(37\) −8.28282 −1.36169 −0.680844 0.732429i \(-0.738387\pi\)
−0.680844 + 0.732429i \(0.738387\pi\)
\(38\) 0 0
\(39\) 8.49576 1.36041
\(40\) 0 0
\(41\) −8.29395 −1.29530 −0.647649 0.761939i \(-0.724247\pi\)
−0.647649 + 0.761939i \(0.724247\pi\)
\(42\) 0 0
\(43\) 4.88567 0.745058 0.372529 0.928021i \(-0.378491\pi\)
0.372529 + 0.928021i \(0.378491\pi\)
\(44\) 0 0
\(45\) 2.60166 0.387833
\(46\) 0 0
\(47\) 0.211521 0.0308535 0.0154267 0.999881i \(-0.495089\pi\)
0.0154267 + 0.999881i \(0.495089\pi\)
\(48\) 0 0
\(49\) −0.921386 −0.131627
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −2.51889 −0.345996 −0.172998 0.984922i \(-0.555345\pi\)
−0.172998 + 0.984922i \(0.555345\pi\)
\(54\) 0 0
\(55\) −9.31094 −1.25549
\(56\) 0 0
\(57\) −3.37813 −0.447444
\(58\) 0 0
\(59\) −6.97442 −0.907992 −0.453996 0.891004i \(-0.650002\pi\)
−0.453996 + 0.891004i \(0.650002\pi\)
\(60\) 0 0
\(61\) −0.958971 −0.122784 −0.0613918 0.998114i \(-0.519554\pi\)
−0.0613918 + 0.998114i \(0.519554\pi\)
\(62\) 0 0
\(63\) 4.06604 0.512272
\(64\) 0 0
\(65\) −6.21579 −0.770973
\(66\) 0 0
\(67\) −2.23948 −0.273597 −0.136798 0.990599i \(-0.543681\pi\)
−0.136798 + 0.990599i \(0.543681\pi\)
\(68\) 0 0
\(69\) 2.43582 0.293238
\(70\) 0 0
\(71\) 10.3750 1.23129 0.615643 0.788025i \(-0.288896\pi\)
0.615643 + 0.788025i \(0.288896\pi\)
\(72\) 0 0
\(73\) 8.62894 1.00994 0.504971 0.863136i \(-0.331503\pi\)
0.504971 + 0.863136i \(0.331503\pi\)
\(74\) 0 0
\(75\) 5.41495 0.625265
\(76\) 0 0
\(77\) −14.5517 −1.65832
\(78\) 0 0
\(79\) 11.2760 1.26865 0.634323 0.773068i \(-0.281279\pi\)
0.634323 + 0.773068i \(0.281279\pi\)
\(80\) 0 0
\(81\) −11.2277 −1.24753
\(82\) 0 0
\(83\) 13.3105 1.46102 0.730509 0.682903i \(-0.239283\pi\)
0.730509 + 0.682903i \(0.239283\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 17.7658 1.90470
\(88\) 0 0
\(89\) 9.61042 1.01870 0.509351 0.860559i \(-0.329885\pi\)
0.509351 + 0.860559i \(0.329885\pi\)
\(90\) 0 0
\(91\) −9.71440 −1.01835
\(92\) 0 0
\(93\) −8.98683 −0.931891
\(94\) 0 0
\(95\) 2.47156 0.253576
\(96\) 0 0
\(97\) −10.2598 −1.04173 −0.520865 0.853639i \(-0.674390\pi\)
−0.520865 + 0.853639i \(0.674390\pi\)
\(98\) 0 0
\(99\) −9.73374 −0.978278
\(100\) 0 0
\(101\) 11.1934 1.11378 0.556891 0.830586i \(-0.311994\pi\)
0.556891 + 0.830586i \(0.311994\pi\)
\(102\) 0 0
\(103\) 8.09875 0.797994 0.398997 0.916952i \(-0.369358\pi\)
0.398997 + 0.916952i \(0.369358\pi\)
\(104\) 0 0
\(105\) −8.38635 −0.818424
\(106\) 0 0
\(107\) −11.1857 −1.08136 −0.540679 0.841229i \(-0.681833\pi\)
−0.540679 + 0.841229i \(0.681833\pi\)
\(108\) 0 0
\(109\) 17.5301 1.67908 0.839539 0.543300i \(-0.182825\pi\)
0.839539 + 0.543300i \(0.182825\pi\)
\(110\) 0 0
\(111\) 17.8594 1.69514
\(112\) 0 0
\(113\) 2.98824 0.281110 0.140555 0.990073i \(-0.455111\pi\)
0.140555 + 0.990073i \(0.455111\pi\)
\(114\) 0 0
\(115\) −1.78213 −0.166184
\(116\) 0 0
\(117\) −6.49804 −0.600744
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 23.8355 2.16686
\(122\) 0 0
\(123\) 17.8834 1.61249
\(124\) 0 0
\(125\) −11.8495 −1.05985
\(126\) 0 0
\(127\) 4.75600 0.422027 0.211013 0.977483i \(-0.432324\pi\)
0.211013 + 0.977483i \(0.432324\pi\)
\(128\) 0 0
\(129\) −10.5345 −0.927508
\(130\) 0 0
\(131\) −5.59636 −0.488956 −0.244478 0.969655i \(-0.578617\pi\)
−0.244478 + 0.969655i \(0.578617\pi\)
\(132\) 0 0
\(133\) 3.86269 0.334938
\(134\) 0 0
\(135\) 4.59481 0.395458
\(136\) 0 0
\(137\) 7.94054 0.678406 0.339203 0.940713i \(-0.389843\pi\)
0.339203 + 0.940713i \(0.389843\pi\)
\(138\) 0 0
\(139\) −20.4306 −1.73290 −0.866452 0.499260i \(-0.833605\pi\)
−0.866452 + 0.499260i \(0.833605\pi\)
\(140\) 0 0
\(141\) −0.456080 −0.0384089
\(142\) 0 0
\(143\) 23.2554 1.94472
\(144\) 0 0
\(145\) −12.9981 −1.07943
\(146\) 0 0
\(147\) 1.98669 0.163859
\(148\) 0 0
\(149\) 19.7486 1.61787 0.808933 0.587901i \(-0.200046\pi\)
0.808933 + 0.587901i \(0.200046\pi\)
\(150\) 0 0
\(151\) −1.85708 −0.151127 −0.0755634 0.997141i \(-0.524076\pi\)
−0.0755634 + 0.997141i \(0.524076\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 6.57508 0.528123
\(156\) 0 0
\(157\) 16.3091 1.30161 0.650804 0.759246i \(-0.274432\pi\)
0.650804 + 0.759246i \(0.274432\pi\)
\(158\) 0 0
\(159\) 5.43122 0.430724
\(160\) 0 0
\(161\) −2.78521 −0.219506
\(162\) 0 0
\(163\) 14.0979 1.10423 0.552115 0.833768i \(-0.313821\pi\)
0.552115 + 0.833768i \(0.313821\pi\)
\(164\) 0 0
\(165\) 20.0762 1.56293
\(166\) 0 0
\(167\) −23.3158 −1.80423 −0.902116 0.431493i \(-0.857987\pi\)
−0.902116 + 0.431493i \(0.857987\pi\)
\(168\) 0 0
\(169\) 2.52485 0.194219
\(170\) 0 0
\(171\) 2.58379 0.197587
\(172\) 0 0
\(173\) −18.6895 −1.42094 −0.710469 0.703728i \(-0.751517\pi\)
−0.710469 + 0.703728i \(0.751517\pi\)
\(174\) 0 0
\(175\) −6.19168 −0.468047
\(176\) 0 0
\(177\) 15.0382 1.13034
\(178\) 0 0
\(179\) 15.1882 1.13522 0.567610 0.823298i \(-0.307868\pi\)
0.567610 + 0.823298i \(0.307868\pi\)
\(180\) 0 0
\(181\) 22.5025 1.67260 0.836300 0.548272i \(-0.184714\pi\)
0.836300 + 0.548272i \(0.184714\pi\)
\(182\) 0 0
\(183\) 2.06773 0.152851
\(184\) 0 0
\(185\) −13.0665 −0.960671
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 7.18104 0.522343
\(190\) 0 0
\(191\) −11.0257 −0.797793 −0.398896 0.916996i \(-0.630607\pi\)
−0.398896 + 0.916996i \(0.630607\pi\)
\(192\) 0 0
\(193\) −5.15917 −0.371365 −0.185683 0.982610i \(-0.559450\pi\)
−0.185683 + 0.982610i \(0.559450\pi\)
\(194\) 0 0
\(195\) 13.4025 0.959770
\(196\) 0 0
\(197\) −2.94652 −0.209931 −0.104966 0.994476i \(-0.533473\pi\)
−0.104966 + 0.994476i \(0.533473\pi\)
\(198\) 0 0
\(199\) 14.9188 1.05757 0.528784 0.848757i \(-0.322648\pi\)
0.528784 + 0.848757i \(0.322648\pi\)
\(200\) 0 0
\(201\) 4.82877 0.340595
\(202\) 0 0
\(203\) −20.3142 −1.42578
\(204\) 0 0
\(205\) −13.0841 −0.913833
\(206\) 0 0
\(207\) −1.86305 −0.129491
\(208\) 0 0
\(209\) −9.24696 −0.639626
\(210\) 0 0
\(211\) −17.5904 −1.21097 −0.605485 0.795856i \(-0.707021\pi\)
−0.605485 + 0.795856i \(0.707021\pi\)
\(212\) 0 0
\(213\) −22.3705 −1.53280
\(214\) 0 0
\(215\) 7.70738 0.525639
\(216\) 0 0
\(217\) 10.2759 0.697575
\(218\) 0 0
\(219\) −18.6057 −1.25726
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −1.90859 −0.127809 −0.0639043 0.997956i \(-0.520355\pi\)
−0.0639043 + 0.997956i \(0.520355\pi\)
\(224\) 0 0
\(225\) −4.14167 −0.276111
\(226\) 0 0
\(227\) −19.8120 −1.31497 −0.657484 0.753468i \(-0.728379\pi\)
−0.657484 + 0.753468i \(0.728379\pi\)
\(228\) 0 0
\(229\) −5.52285 −0.364960 −0.182480 0.983210i \(-0.558412\pi\)
−0.182480 + 0.983210i \(0.558412\pi\)
\(230\) 0 0
\(231\) 31.3763 2.06441
\(232\) 0 0
\(233\) −25.1830 −1.64979 −0.824897 0.565283i \(-0.808767\pi\)
−0.824897 + 0.565283i \(0.808767\pi\)
\(234\) 0 0
\(235\) 0.333684 0.0217671
\(236\) 0 0
\(237\) −24.3132 −1.57931
\(238\) 0 0
\(239\) 30.3838 1.96536 0.982681 0.185305i \(-0.0593272\pi\)
0.982681 + 0.185305i \(0.0593272\pi\)
\(240\) 0 0
\(241\) 8.80077 0.566907 0.283454 0.958986i \(-0.408520\pi\)
0.283454 + 0.958986i \(0.408520\pi\)
\(242\) 0 0
\(243\) 15.4713 0.992487
\(244\) 0 0
\(245\) −1.45353 −0.0928626
\(246\) 0 0
\(247\) −6.17308 −0.392784
\(248\) 0 0
\(249\) −28.7001 −1.81879
\(250\) 0 0
\(251\) 13.3007 0.839530 0.419765 0.907633i \(-0.362112\pi\)
0.419765 + 0.907633i \(0.362112\pi\)
\(252\) 0 0
\(253\) 6.66757 0.419186
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −4.07113 −0.253950 −0.126975 0.991906i \(-0.540527\pi\)
−0.126975 + 0.991906i \(0.540527\pi\)
\(258\) 0 0
\(259\) −20.4212 −1.26891
\(260\) 0 0
\(261\) −13.5883 −0.841097
\(262\) 0 0
\(263\) 8.00344 0.493513 0.246757 0.969078i \(-0.420635\pi\)
0.246757 + 0.969078i \(0.420635\pi\)
\(264\) 0 0
\(265\) −3.97367 −0.244100
\(266\) 0 0
\(267\) −20.7220 −1.26816
\(268\) 0 0
\(269\) −24.5174 −1.49485 −0.747426 0.664345i \(-0.768711\pi\)
−0.747426 + 0.664345i \(0.768711\pi\)
\(270\) 0 0
\(271\) −2.94219 −0.178725 −0.0893626 0.995999i \(-0.528483\pi\)
−0.0893626 + 0.995999i \(0.528483\pi\)
\(272\) 0 0
\(273\) 20.9462 1.26772
\(274\) 0 0
\(275\) 14.8224 0.893822
\(276\) 0 0
\(277\) −8.24285 −0.495265 −0.247632 0.968854i \(-0.579653\pi\)
−0.247632 + 0.968854i \(0.579653\pi\)
\(278\) 0 0
\(279\) 6.87365 0.411515
\(280\) 0 0
\(281\) 2.97000 0.177176 0.0885878 0.996068i \(-0.471765\pi\)
0.0885878 + 0.996068i \(0.471765\pi\)
\(282\) 0 0
\(283\) 7.29636 0.433724 0.216862 0.976202i \(-0.430418\pi\)
0.216862 + 0.976202i \(0.430418\pi\)
\(284\) 0 0
\(285\) −5.32916 −0.315672
\(286\) 0 0
\(287\) −20.4486 −1.20704
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) 22.1222 1.29683
\(292\) 0 0
\(293\) −1.35734 −0.0792964 −0.0396482 0.999214i \(-0.512624\pi\)
−0.0396482 + 0.999214i \(0.512624\pi\)
\(294\) 0 0
\(295\) −11.0025 −0.640589
\(296\) 0 0
\(297\) −17.1908 −0.997511
\(298\) 0 0
\(299\) 4.45113 0.257415
\(300\) 0 0
\(301\) 12.0455 0.694294
\(302\) 0 0
\(303\) −24.1351 −1.38653
\(304\) 0 0
\(305\) −1.51282 −0.0866239
\(306\) 0 0
\(307\) −25.9552 −1.48134 −0.740672 0.671867i \(-0.765493\pi\)
−0.740672 + 0.671867i \(0.765493\pi\)
\(308\) 0 0
\(309\) −17.4625 −0.993407
\(310\) 0 0
\(311\) 5.79539 0.328626 0.164313 0.986408i \(-0.447459\pi\)
0.164313 + 0.986408i \(0.447459\pi\)
\(312\) 0 0
\(313\) −3.63081 −0.205226 −0.102613 0.994721i \(-0.532720\pi\)
−0.102613 + 0.994721i \(0.532720\pi\)
\(314\) 0 0
\(315\) 6.41436 0.361408
\(316\) 0 0
\(317\) −1.56313 −0.0877942 −0.0438971 0.999036i \(-0.513977\pi\)
−0.0438971 + 0.999036i \(0.513977\pi\)
\(318\) 0 0
\(319\) 48.6305 2.72278
\(320\) 0 0
\(321\) 24.1185 1.34616
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 9.89510 0.548881
\(326\) 0 0
\(327\) −37.7983 −2.09025
\(328\) 0 0
\(329\) 0.521501 0.0287513
\(330\) 0 0
\(331\) 14.1104 0.775576 0.387788 0.921749i \(-0.373239\pi\)
0.387788 + 0.921749i \(0.373239\pi\)
\(332\) 0 0
\(333\) −13.6599 −0.748557
\(334\) 0 0
\(335\) −3.53289 −0.193023
\(336\) 0 0
\(337\) 30.6088 1.66737 0.833685 0.552241i \(-0.186227\pi\)
0.833685 + 0.552241i \(0.186227\pi\)
\(338\) 0 0
\(339\) −6.44324 −0.349949
\(340\) 0 0
\(341\) −24.5997 −1.33215
\(342\) 0 0
\(343\) −19.5301 −1.05452
\(344\) 0 0
\(345\) 3.84262 0.206880
\(346\) 0 0
\(347\) 31.0919 1.66910 0.834549 0.550933i \(-0.185728\pi\)
0.834549 + 0.550933i \(0.185728\pi\)
\(348\) 0 0
\(349\) 27.8189 1.48911 0.744557 0.667559i \(-0.232661\pi\)
0.744557 + 0.667559i \(0.232661\pi\)
\(350\) 0 0
\(351\) −11.4762 −0.612555
\(352\) 0 0
\(353\) 4.21923 0.224567 0.112283 0.993676i \(-0.464184\pi\)
0.112283 + 0.993676i \(0.464184\pi\)
\(354\) 0 0
\(355\) 16.3671 0.868673
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −3.62787 −0.191472 −0.0957358 0.995407i \(-0.530520\pi\)
−0.0957358 + 0.995407i \(0.530520\pi\)
\(360\) 0 0
\(361\) −16.5454 −0.870812
\(362\) 0 0
\(363\) −51.3940 −2.69749
\(364\) 0 0
\(365\) 13.6126 0.712514
\(366\) 0 0
\(367\) 7.79468 0.406879 0.203440 0.979087i \(-0.434788\pi\)
0.203440 + 0.979087i \(0.434788\pi\)
\(368\) 0 0
\(369\) −13.6782 −0.712061
\(370\) 0 0
\(371\) −6.21028 −0.322422
\(372\) 0 0
\(373\) 7.31810 0.378917 0.189458 0.981889i \(-0.439327\pi\)
0.189458 + 0.981889i \(0.439327\pi\)
\(374\) 0 0
\(375\) 25.5499 1.31939
\(376\) 0 0
\(377\) 32.4647 1.67202
\(378\) 0 0
\(379\) 17.2876 0.888004 0.444002 0.896026i \(-0.353558\pi\)
0.444002 + 0.896026i \(0.353558\pi\)
\(380\) 0 0
\(381\) −10.2549 −0.525373
\(382\) 0 0
\(383\) 22.9908 1.17478 0.587389 0.809305i \(-0.300156\pi\)
0.587389 + 0.809305i \(0.300156\pi\)
\(384\) 0 0
\(385\) −22.9560 −1.16994
\(386\) 0 0
\(387\) 8.05737 0.409579
\(388\) 0 0
\(389\) −2.74492 −0.139173 −0.0695866 0.997576i \(-0.522168\pi\)
−0.0695866 + 0.997576i \(0.522168\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 12.0668 0.608692
\(394\) 0 0
\(395\) 17.7884 0.895030
\(396\) 0 0
\(397\) 32.2334 1.61775 0.808874 0.587983i \(-0.200078\pi\)
0.808874 + 0.587983i \(0.200078\pi\)
\(398\) 0 0
\(399\) −8.32873 −0.416958
\(400\) 0 0
\(401\) 33.7526 1.68552 0.842762 0.538286i \(-0.180928\pi\)
0.842762 + 0.538286i \(0.180928\pi\)
\(402\) 0 0
\(403\) −16.4222 −0.818050
\(404\) 0 0
\(405\) −17.7123 −0.880131
\(406\) 0 0
\(407\) 48.8865 2.42322
\(408\) 0 0
\(409\) −18.0760 −0.893798 −0.446899 0.894584i \(-0.647472\pi\)
−0.446899 + 0.894584i \(0.647472\pi\)
\(410\) 0 0
\(411\) −17.1214 −0.844534
\(412\) 0 0
\(413\) −17.1953 −0.846126
\(414\) 0 0
\(415\) 20.9980 1.03075
\(416\) 0 0
\(417\) 44.0525 2.15726
\(418\) 0 0
\(419\) 12.8385 0.627201 0.313601 0.949555i \(-0.398465\pi\)
0.313601 + 0.949555i \(0.398465\pi\)
\(420\) 0 0
\(421\) −13.4991 −0.657906 −0.328953 0.944346i \(-0.606696\pi\)
−0.328953 + 0.944346i \(0.606696\pi\)
\(422\) 0 0
\(423\) 0.348837 0.0169610
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −2.36433 −0.114418
\(428\) 0 0
\(429\) −50.1433 −2.42094
\(430\) 0 0
\(431\) 6.69704 0.322585 0.161292 0.986907i \(-0.448434\pi\)
0.161292 + 0.986907i \(0.448434\pi\)
\(432\) 0 0
\(433\) 1.24299 0.0597342 0.0298671 0.999554i \(-0.490492\pi\)
0.0298671 + 0.999554i \(0.490492\pi\)
\(434\) 0 0
\(435\) 28.0265 1.34377
\(436\) 0 0
\(437\) −1.76988 −0.0846650
\(438\) 0 0
\(439\) −40.4205 −1.92917 −0.964583 0.263781i \(-0.915030\pi\)
−0.964583 + 0.263781i \(0.915030\pi\)
\(440\) 0 0
\(441\) −1.51953 −0.0723588
\(442\) 0 0
\(443\) 11.2390 0.533979 0.266990 0.963699i \(-0.413971\pi\)
0.266990 + 0.963699i \(0.413971\pi\)
\(444\) 0 0
\(445\) 15.1609 0.718696
\(446\) 0 0
\(447\) −42.5818 −2.01405
\(448\) 0 0
\(449\) −29.5756 −1.39576 −0.697878 0.716216i \(-0.745872\pi\)
−0.697878 + 0.716216i \(0.745872\pi\)
\(450\) 0 0
\(451\) 48.9522 2.30507
\(452\) 0 0
\(453\) 4.00422 0.188135
\(454\) 0 0
\(455\) −15.3249 −0.718444
\(456\) 0 0
\(457\) −18.9754 −0.887630 −0.443815 0.896118i \(-0.646375\pi\)
−0.443815 + 0.896118i \(0.646375\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −39.2233 −1.82681 −0.913405 0.407051i \(-0.866557\pi\)
−0.913405 + 0.407051i \(0.866557\pi\)
\(462\) 0 0
\(463\) 39.7484 1.84726 0.923632 0.383280i \(-0.125205\pi\)
0.923632 + 0.383280i \(0.125205\pi\)
\(464\) 0 0
\(465\) −14.1772 −0.657450
\(466\) 0 0
\(467\) 25.9493 1.20079 0.600395 0.799703i \(-0.295010\pi\)
0.600395 + 0.799703i \(0.295010\pi\)
\(468\) 0 0
\(469\) −5.52141 −0.254955
\(470\) 0 0
\(471\) −35.1656 −1.62035
\(472\) 0 0
\(473\) −28.8360 −1.32588
\(474\) 0 0
\(475\) −3.93454 −0.180529
\(476\) 0 0
\(477\) −4.15411 −0.190204
\(478\) 0 0
\(479\) 17.3613 0.793258 0.396629 0.917979i \(-0.370180\pi\)
0.396629 + 0.917979i \(0.370180\pi\)
\(480\) 0 0
\(481\) 32.6356 1.48806
\(482\) 0 0
\(483\) 6.00547 0.273258
\(484\) 0 0
\(485\) −16.1854 −0.734941
\(486\) 0 0
\(487\) 1.08027 0.0489517 0.0244759 0.999700i \(-0.492208\pi\)
0.0244759 + 0.999700i \(0.492208\pi\)
\(488\) 0 0
\(489\) −30.3978 −1.37463
\(490\) 0 0
\(491\) −19.1493 −0.864194 −0.432097 0.901827i \(-0.642226\pi\)
−0.432097 + 0.901827i \(0.642226\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −15.3554 −0.690176
\(496\) 0 0
\(497\) 25.5794 1.14739
\(498\) 0 0
\(499\) −13.8789 −0.621306 −0.310653 0.950523i \(-0.600548\pi\)
−0.310653 + 0.950523i \(0.600548\pi\)
\(500\) 0 0
\(501\) 50.2735 2.24605
\(502\) 0 0
\(503\) −10.1670 −0.453323 −0.226661 0.973974i \(-0.572781\pi\)
−0.226661 + 0.973974i \(0.572781\pi\)
\(504\) 0 0
\(505\) 17.6581 0.785774
\(506\) 0 0
\(507\) −5.44408 −0.241780
\(508\) 0 0
\(509\) 2.58258 0.114471 0.0572354 0.998361i \(-0.481771\pi\)
0.0572354 + 0.998361i \(0.481771\pi\)
\(510\) 0 0
\(511\) 21.2745 0.941130
\(512\) 0 0
\(513\) 4.56324 0.201472
\(514\) 0 0
\(515\) 12.7762 0.562985
\(516\) 0 0
\(517\) −1.24843 −0.0549059
\(518\) 0 0
\(519\) 40.2983 1.76890
\(520\) 0 0
\(521\) −4.72330 −0.206932 −0.103466 0.994633i \(-0.532993\pi\)
−0.103466 + 0.994633i \(0.532993\pi\)
\(522\) 0 0
\(523\) 8.50844 0.372048 0.186024 0.982545i \(-0.440440\pi\)
0.186024 + 0.982545i \(0.440440\pi\)
\(524\) 0 0
\(525\) 13.3505 0.582663
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −21.7238 −0.944514
\(530\) 0 0
\(531\) −11.5021 −0.499148
\(532\) 0 0
\(533\) 32.6795 1.41551
\(534\) 0 0
\(535\) −17.6459 −0.762899
\(536\) 0 0
\(537\) −32.7488 −1.41321
\(538\) 0 0
\(539\) 5.43817 0.234238
\(540\) 0 0
\(541\) −0.320440 −0.0137768 −0.00688839 0.999976i \(-0.502193\pi\)
−0.00688839 + 0.999976i \(0.502193\pi\)
\(542\) 0 0
\(543\) −48.5199 −2.08219
\(544\) 0 0
\(545\) 27.6545 1.18459
\(546\) 0 0
\(547\) 20.0987 0.859358 0.429679 0.902982i \(-0.358627\pi\)
0.429679 + 0.902982i \(0.358627\pi\)
\(548\) 0 0
\(549\) −1.58152 −0.0674976
\(550\) 0 0
\(551\) −12.9088 −0.549933
\(552\) 0 0
\(553\) 27.8007 1.18221
\(554\) 0 0
\(555\) 28.1740 1.19592
\(556\) 0 0
\(557\) 29.5029 1.25008 0.625039 0.780594i \(-0.285083\pi\)
0.625039 + 0.780594i \(0.285083\pi\)
\(558\) 0 0
\(559\) −19.2503 −0.814202
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 11.3687 0.479132 0.239566 0.970880i \(-0.422995\pi\)
0.239566 + 0.970880i \(0.422995\pi\)
\(564\) 0 0
\(565\) 4.71409 0.198323
\(566\) 0 0
\(567\) −27.6818 −1.16253
\(568\) 0 0
\(569\) 6.38076 0.267495 0.133748 0.991015i \(-0.457299\pi\)
0.133748 + 0.991015i \(0.457299\pi\)
\(570\) 0 0
\(571\) 27.1399 1.13577 0.567884 0.823108i \(-0.307762\pi\)
0.567884 + 0.823108i \(0.307762\pi\)
\(572\) 0 0
\(573\) 23.7736 0.993157
\(574\) 0 0
\(575\) 2.83702 0.118312
\(576\) 0 0
\(577\) 3.41114 0.142008 0.0710038 0.997476i \(-0.477380\pi\)
0.0710038 + 0.997476i \(0.477380\pi\)
\(578\) 0 0
\(579\) 11.1242 0.462305
\(580\) 0 0
\(581\) 32.8169 1.36147
\(582\) 0 0
\(583\) 14.8669 0.615724
\(584\) 0 0
\(585\) −10.2510 −0.423825
\(586\) 0 0
\(587\) −20.1025 −0.829721 −0.414860 0.909885i \(-0.636170\pi\)
−0.414860 + 0.909885i \(0.636170\pi\)
\(588\) 0 0
\(589\) 6.52990 0.269060
\(590\) 0 0
\(591\) 6.35329 0.261339
\(592\) 0 0
\(593\) −1.39793 −0.0574060 −0.0287030 0.999588i \(-0.509138\pi\)
−0.0287030 + 0.999588i \(0.509138\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −32.1679 −1.31655
\(598\) 0 0
\(599\) −14.6858 −0.600047 −0.300024 0.953932i \(-0.596995\pi\)
−0.300024 + 0.953932i \(0.596995\pi\)
\(600\) 0 0
\(601\) 21.3490 0.870845 0.435422 0.900226i \(-0.356599\pi\)
0.435422 + 0.900226i \(0.356599\pi\)
\(602\) 0 0
\(603\) −3.69332 −0.150404
\(604\) 0 0
\(605\) 37.6016 1.52872
\(606\) 0 0
\(607\) 34.4365 1.39773 0.698867 0.715251i \(-0.253688\pi\)
0.698867 + 0.715251i \(0.253688\pi\)
\(608\) 0 0
\(609\) 43.8014 1.77492
\(610\) 0 0
\(611\) −0.833426 −0.0337168
\(612\) 0 0
\(613\) −15.6670 −0.632783 −0.316391 0.948629i \(-0.602471\pi\)
−0.316391 + 0.948629i \(0.602471\pi\)
\(614\) 0 0
\(615\) 28.2119 1.13761
\(616\) 0 0
\(617\) −9.86658 −0.397213 −0.198607 0.980079i \(-0.563642\pi\)
−0.198607 + 0.980079i \(0.563642\pi\)
\(618\) 0 0
\(619\) −17.7457 −0.713259 −0.356629 0.934246i \(-0.616074\pi\)
−0.356629 + 0.934246i \(0.616074\pi\)
\(620\) 0 0
\(621\) −3.29034 −0.132037
\(622\) 0 0
\(623\) 23.6944 0.949294
\(624\) 0 0
\(625\) −6.13642 −0.245457
\(626\) 0 0
\(627\) 19.9383 0.796258
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 41.4514 1.65015 0.825076 0.565021i \(-0.191132\pi\)
0.825076 + 0.565021i \(0.191132\pi\)
\(632\) 0 0
\(633\) 37.9283 1.50751
\(634\) 0 0
\(635\) 7.50282 0.297740
\(636\) 0 0
\(637\) 3.63041 0.143842
\(638\) 0 0
\(639\) 17.1103 0.676872
\(640\) 0 0
\(641\) 9.06623 0.358095 0.179047 0.983840i \(-0.442698\pi\)
0.179047 + 0.983840i \(0.442698\pi\)
\(642\) 0 0
\(643\) −41.1618 −1.62326 −0.811632 0.584169i \(-0.801420\pi\)
−0.811632 + 0.584169i \(0.801420\pi\)
\(644\) 0 0
\(645\) −16.6186 −0.654357
\(646\) 0 0
\(647\) 8.21161 0.322832 0.161416 0.986886i \(-0.448394\pi\)
0.161416 + 0.986886i \(0.448394\pi\)
\(648\) 0 0
\(649\) 41.1641 1.61583
\(650\) 0 0
\(651\) −22.1569 −0.868397
\(652\) 0 0
\(653\) −5.12970 −0.200741 −0.100370 0.994950i \(-0.532003\pi\)
−0.100370 + 0.994950i \(0.532003\pi\)
\(654\) 0 0
\(655\) −8.82852 −0.344959
\(656\) 0 0
\(657\) 14.2307 0.555193
\(658\) 0 0
\(659\) −14.7505 −0.574596 −0.287298 0.957841i \(-0.592757\pi\)
−0.287298 + 0.957841i \(0.592757\pi\)
\(660\) 0 0
\(661\) 22.1806 0.862725 0.431362 0.902179i \(-0.358033\pi\)
0.431362 + 0.902179i \(0.358033\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 6.09358 0.236299
\(666\) 0 0
\(667\) 9.30795 0.360405
\(668\) 0 0
\(669\) 4.11529 0.159106
\(670\) 0 0
\(671\) 5.66000 0.218502
\(672\) 0 0
\(673\) 37.2607 1.43630 0.718148 0.695891i \(-0.244990\pi\)
0.718148 + 0.695891i \(0.244990\pi\)
\(674\) 0 0
\(675\) −7.31461 −0.281539
\(676\) 0 0
\(677\) 10.4097 0.400075 0.200038 0.979788i \(-0.435894\pi\)
0.200038 + 0.979788i \(0.435894\pi\)
\(678\) 0 0
\(679\) −25.2955 −0.970752
\(680\) 0 0
\(681\) 42.7186 1.63698
\(682\) 0 0
\(683\) −0.741019 −0.0283543 −0.0141772 0.999899i \(-0.504513\pi\)
−0.0141772 + 0.999899i \(0.504513\pi\)
\(684\) 0 0
\(685\) 12.5266 0.478616
\(686\) 0 0
\(687\) 11.9083 0.454331
\(688\) 0 0
\(689\) 9.92483 0.378106
\(690\) 0 0
\(691\) −36.2813 −1.38021 −0.690104 0.723710i \(-0.742435\pi\)
−0.690104 + 0.723710i \(0.742435\pi\)
\(692\) 0 0
\(693\) −23.9984 −0.911624
\(694\) 0 0
\(695\) −32.2303 −1.22256
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 54.2995 2.05380
\(700\) 0 0
\(701\) −31.4714 −1.18866 −0.594329 0.804222i \(-0.702582\pi\)
−0.594329 + 0.804222i \(0.702582\pi\)
\(702\) 0 0
\(703\) −12.9768 −0.489428
\(704\) 0 0
\(705\) −0.719488 −0.0270975
\(706\) 0 0
\(707\) 27.5971 1.03789
\(708\) 0 0
\(709\) 24.6786 0.926825 0.463412 0.886143i \(-0.346625\pi\)
0.463412 + 0.886143i \(0.346625\pi\)
\(710\) 0 0
\(711\) 18.5961 0.697410
\(712\) 0 0
\(713\) −4.70842 −0.176332
\(714\) 0 0
\(715\) 36.6866 1.37200
\(716\) 0 0
\(717\) −65.5134 −2.44664
\(718\) 0 0
\(719\) 9.43430 0.351840 0.175920 0.984404i \(-0.443710\pi\)
0.175920 + 0.984404i \(0.443710\pi\)
\(720\) 0 0
\(721\) 19.9674 0.743623
\(722\) 0 0
\(723\) −18.9762 −0.705732
\(724\) 0 0
\(725\) 20.6921 0.768484
\(726\) 0 0
\(727\) 18.1106 0.671685 0.335843 0.941918i \(-0.390979\pi\)
0.335843 + 0.941918i \(0.390979\pi\)
\(728\) 0 0
\(729\) 0.323978 0.0119992
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −16.5979 −0.613056 −0.306528 0.951862i \(-0.599167\pi\)
−0.306528 + 0.951862i \(0.599167\pi\)
\(734\) 0 0
\(735\) 3.13410 0.115603
\(736\) 0 0
\(737\) 13.2178 0.486884
\(738\) 0 0
\(739\) 12.4648 0.458527 0.229263 0.973364i \(-0.426368\pi\)
0.229263 + 0.973364i \(0.426368\pi\)
\(740\) 0 0
\(741\) 13.3104 0.488969
\(742\) 0 0
\(743\) −17.7169 −0.649970 −0.324985 0.945719i \(-0.605359\pi\)
−0.324985 + 0.945719i \(0.605359\pi\)
\(744\) 0 0
\(745\) 31.1543 1.14140
\(746\) 0 0
\(747\) 21.9515 0.803162
\(748\) 0 0
\(749\) −27.5781 −1.00768
\(750\) 0 0
\(751\) −46.5548 −1.69881 −0.849404 0.527743i \(-0.823038\pi\)
−0.849404 + 0.527743i \(0.823038\pi\)
\(752\) 0 0
\(753\) −28.6788 −1.04511
\(754\) 0 0
\(755\) −2.92963 −0.106620
\(756\) 0 0
\(757\) 20.6174 0.749354 0.374677 0.927155i \(-0.377754\pi\)
0.374677 + 0.927155i \(0.377754\pi\)
\(758\) 0 0
\(759\) −14.3766 −0.521837
\(760\) 0 0
\(761\) 39.7886 1.44234 0.721168 0.692760i \(-0.243606\pi\)
0.721168 + 0.692760i \(0.243606\pi\)
\(762\) 0 0
\(763\) 43.2202 1.56467
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 27.4803 0.992257
\(768\) 0 0
\(769\) 35.0869 1.26527 0.632633 0.774451i \(-0.281974\pi\)
0.632633 + 0.774451i \(0.281974\pi\)
\(770\) 0 0
\(771\) 8.77817 0.316138
\(772\) 0 0
\(773\) −15.8480 −0.570014 −0.285007 0.958525i \(-0.591996\pi\)
−0.285007 + 0.958525i \(0.591996\pi\)
\(774\) 0 0
\(775\) −10.4671 −0.375988
\(776\) 0 0
\(777\) 44.0320 1.57964
\(778\) 0 0
\(779\) −12.9942 −0.465565
\(780\) 0 0
\(781\) −61.2349 −2.19116
\(782\) 0 0
\(783\) −23.9984 −0.857633
\(784\) 0 0
\(785\) 25.7284 0.918286
\(786\) 0 0
\(787\) 19.7284 0.703240 0.351620 0.936143i \(-0.385631\pi\)
0.351620 + 0.936143i \(0.385631\pi\)
\(788\) 0 0
\(789\) −17.2570 −0.614365
\(790\) 0 0
\(791\) 7.36747 0.261957
\(792\) 0 0
\(793\) 3.77850 0.134178
\(794\) 0 0
\(795\) 8.56801 0.303876
\(796\) 0 0
\(797\) 5.27058 0.186693 0.0933467 0.995634i \(-0.470243\pi\)
0.0933467 + 0.995634i \(0.470243\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 15.8494 0.560009
\(802\) 0 0
\(803\) −50.9294 −1.79726
\(804\) 0 0
\(805\) −4.39381 −0.154861
\(806\) 0 0
\(807\) 52.8643 1.86091
\(808\) 0 0
\(809\) 10.4484 0.367346 0.183673 0.982987i \(-0.441201\pi\)
0.183673 + 0.982987i \(0.441201\pi\)
\(810\) 0 0
\(811\) 11.7259 0.411753 0.205877 0.978578i \(-0.433995\pi\)
0.205877 + 0.978578i \(0.433995\pi\)
\(812\) 0 0
\(813\) 6.34393 0.222491
\(814\) 0 0
\(815\) 22.2401 0.779035
\(816\) 0 0
\(817\) 7.65442 0.267794
\(818\) 0 0
\(819\) −16.0208 −0.559813
\(820\) 0 0
\(821\) 37.0630 1.29351 0.646754 0.762699i \(-0.276126\pi\)
0.646754 + 0.762699i \(0.276126\pi\)
\(822\) 0 0
\(823\) 9.45683 0.329645 0.164822 0.986323i \(-0.447295\pi\)
0.164822 + 0.986323i \(0.447295\pi\)
\(824\) 0 0
\(825\) −31.9599 −1.11270
\(826\) 0 0
\(827\) −7.97078 −0.277171 −0.138586 0.990350i \(-0.544256\pi\)
−0.138586 + 0.990350i \(0.544256\pi\)
\(828\) 0 0
\(829\) 12.3271 0.428136 0.214068 0.976819i \(-0.431329\pi\)
0.214068 + 0.976819i \(0.431329\pi\)
\(830\) 0 0
\(831\) 17.7732 0.616546
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −36.7818 −1.27289
\(836\) 0 0
\(837\) 12.1396 0.419605
\(838\) 0 0
\(839\) 38.2843 1.32172 0.660860 0.750509i \(-0.270192\pi\)
0.660860 + 0.750509i \(0.270192\pi\)
\(840\) 0 0
\(841\) 38.8883 1.34098
\(842\) 0 0
\(843\) −6.40391 −0.220562
\(844\) 0 0
\(845\) 3.98307 0.137022
\(846\) 0 0
\(847\) 58.7661 2.01923
\(848\) 0 0
\(849\) −15.7324 −0.539934
\(850\) 0 0
\(851\) 9.35696 0.320752
\(852\) 0 0
\(853\) −7.04137 −0.241092 −0.120546 0.992708i \(-0.538465\pi\)
−0.120546 + 0.992708i \(0.538465\pi\)
\(854\) 0 0
\(855\) 4.07605 0.139398
\(856\) 0 0
\(857\) 54.4516 1.86003 0.930016 0.367520i \(-0.119793\pi\)
0.930016 + 0.367520i \(0.119793\pi\)
\(858\) 0 0
\(859\) 5.59907 0.191038 0.0955189 0.995428i \(-0.469549\pi\)
0.0955189 + 0.995428i \(0.469549\pi\)
\(860\) 0 0
\(861\) 44.0912 1.50262
\(862\) 0 0
\(863\) −14.3588 −0.488779 −0.244389 0.969677i \(-0.578587\pi\)
−0.244389 + 0.969677i \(0.578587\pi\)
\(864\) 0 0
\(865\) −29.4836 −1.00247
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −66.5526 −2.25764
\(870\) 0 0
\(871\) 8.82392 0.298987
\(872\) 0 0
\(873\) −16.9204 −0.572668
\(874\) 0 0
\(875\) −29.2148 −0.987639
\(876\) 0 0
\(877\) 32.1960 1.08718 0.543591 0.839350i \(-0.317064\pi\)
0.543591 + 0.839350i \(0.317064\pi\)
\(878\) 0 0
\(879\) 2.92668 0.0987145
\(880\) 0 0
\(881\) 36.2745 1.22212 0.611060 0.791584i \(-0.290743\pi\)
0.611060 + 0.791584i \(0.290743\pi\)
\(882\) 0 0
\(883\) 15.5374 0.522876 0.261438 0.965220i \(-0.415803\pi\)
0.261438 + 0.965220i \(0.415803\pi\)
\(884\) 0 0
\(885\) 23.7235 0.797457
\(886\) 0 0
\(887\) −40.9925 −1.37639 −0.688197 0.725524i \(-0.741597\pi\)
−0.688197 + 0.725524i \(0.741597\pi\)
\(888\) 0 0
\(889\) 11.7258 0.393272
\(890\) 0 0
\(891\) 66.2679 2.22006
\(892\) 0 0
\(893\) 0.331391 0.0110896
\(894\) 0 0
\(895\) 23.9601 0.800898
\(896\) 0 0
\(897\) −9.59751 −0.320451
\(898\) 0 0
\(899\) −34.3412 −1.14534
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −25.9726 −0.864313
\(904\) 0 0
\(905\) 35.4988 1.18002
\(906\) 0 0
\(907\) 26.5196 0.880568 0.440284 0.897859i \(-0.354878\pi\)
0.440284 + 0.897859i \(0.354878\pi\)
\(908\) 0 0
\(909\) 18.4599 0.612277
\(910\) 0 0
\(911\) 36.7889 1.21887 0.609435 0.792836i \(-0.291397\pi\)
0.609435 + 0.792836i \(0.291397\pi\)
\(912\) 0 0
\(913\) −78.5608 −2.59998
\(914\) 0 0
\(915\) 3.26194 0.107836
\(916\) 0 0
\(917\) −13.7977 −0.455641
\(918\) 0 0
\(919\) −39.2016 −1.29314 −0.646570 0.762854i \(-0.723797\pi\)
−0.646570 + 0.762854i \(0.723797\pi\)
\(920\) 0 0
\(921\) 55.9646 1.84410
\(922\) 0 0
\(923\) −40.8791 −1.34555
\(924\) 0 0
\(925\) 20.8010 0.683933
\(926\) 0 0
\(927\) 13.3563 0.438679
\(928\) 0 0
\(929\) −20.0588 −0.658108 −0.329054 0.944311i \(-0.606730\pi\)
−0.329054 + 0.944311i \(0.606730\pi\)
\(930\) 0 0
\(931\) −1.44354 −0.0473102
\(932\) 0 0
\(933\) −12.4960 −0.409101
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −20.5652 −0.671835 −0.335917 0.941891i \(-0.609046\pi\)
−0.335917 + 0.941891i \(0.609046\pi\)
\(938\) 0 0
\(939\) 7.82874 0.255481
\(940\) 0 0
\(941\) 2.14891 0.0700526 0.0350263 0.999386i \(-0.488849\pi\)
0.0350263 + 0.999386i \(0.488849\pi\)
\(942\) 0 0
\(943\) 9.36953 0.305114
\(944\) 0 0
\(945\) 11.3284 0.368514
\(946\) 0 0
\(947\) 49.1259 1.59638 0.798188 0.602408i \(-0.205792\pi\)
0.798188 + 0.602408i \(0.205792\pi\)
\(948\) 0 0
\(949\) −33.9994 −1.10367
\(950\) 0 0
\(951\) 3.37042 0.109293
\(952\) 0 0
\(953\) −0.461467 −0.0149484 −0.00747419 0.999972i \(-0.502379\pi\)
−0.00747419 + 0.999972i \(0.502379\pi\)
\(954\) 0 0
\(955\) −17.3936 −0.562843
\(956\) 0 0
\(957\) −104.857 −3.38954
\(958\) 0 0
\(959\) 19.5773 0.632183
\(960\) 0 0
\(961\) −13.6285 −0.439630
\(962\) 0 0
\(963\) −18.4472 −0.594452
\(964\) 0 0
\(965\) −8.13883 −0.261998
\(966\) 0 0
\(967\) 35.2346 1.13307 0.566534 0.824038i \(-0.308284\pi\)
0.566534 + 0.824038i \(0.308284\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −5.11831 −0.164254 −0.0821271 0.996622i \(-0.526171\pi\)
−0.0821271 + 0.996622i \(0.526171\pi\)
\(972\) 0 0
\(973\) −50.3714 −1.61483
\(974\) 0 0
\(975\) −21.3358 −0.683292
\(976\) 0 0
\(977\) −34.6117 −1.10732 −0.553662 0.832741i \(-0.686770\pi\)
−0.553662 + 0.832741i \(0.686770\pi\)
\(978\) 0 0
\(979\) −56.7223 −1.81285
\(980\) 0 0
\(981\) 28.9103 0.923035
\(982\) 0 0
\(983\) −17.7230 −0.565277 −0.282638 0.959227i \(-0.591210\pi\)
−0.282638 + 0.959227i \(0.591210\pi\)
\(984\) 0 0
\(985\) −4.64828 −0.148107
\(986\) 0 0
\(987\) −1.12446 −0.0357919
\(988\) 0 0
\(989\) −5.51926 −0.175502
\(990\) 0 0
\(991\) 33.7595 1.07241 0.536203 0.844089i \(-0.319858\pi\)
0.536203 + 0.844089i \(0.319858\pi\)
\(992\) 0 0
\(993\) −30.4247 −0.965499
\(994\) 0 0
\(995\) 23.5351 0.746114
\(996\) 0 0
\(997\) 8.61257 0.272763 0.136381 0.990656i \(-0.456453\pi\)
0.136381 + 0.990656i \(0.456453\pi\)
\(998\) 0 0
\(999\) −24.1248 −0.763274
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9248.2.a.bz.1.5 20
4.3 odd 2 9248.2.a.by.1.16 20
17.10 odd 16 544.2.bb.f.321.1 yes 20
17.12 odd 16 544.2.bb.f.161.1 yes 20
17.16 even 2 inner 9248.2.a.bz.1.16 20
68.27 even 16 544.2.bb.e.321.5 yes 20
68.63 even 16 544.2.bb.e.161.5 20
68.67 odd 2 9248.2.a.by.1.5 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
544.2.bb.e.161.5 20 68.63 even 16
544.2.bb.e.321.5 yes 20 68.27 even 16
544.2.bb.f.161.1 yes 20 17.12 odd 16
544.2.bb.f.321.1 yes 20 17.10 odd 16
9248.2.a.by.1.5 20 68.67 odd 2
9248.2.a.by.1.16 20 4.3 odd 2
9248.2.a.bz.1.5 20 1.1 even 1 trivial
9248.2.a.bz.1.16 20 17.16 even 2 inner