Properties

Label 9248.2.a.r.1.2
Level $9248$
Weight $2$
Character 9248.1
Self dual yes
Analytic conductor $73.846$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9248,2,Mod(1,9248)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9248, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9248.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9248 = 2^{5} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9248.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.8456517893\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.347296\) of defining polynomial
Character \(\chi\) \(=\) 9248.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.34730 q^{3} +2.22668 q^{5} +1.46791 q^{7} -1.18479 q^{9} -1.87939 q^{11} +5.87939 q^{13} -3.00000 q^{15} +2.81521 q^{19} -1.97771 q^{21} +9.24897 q^{23} -0.0418891 q^{25} +5.63816 q^{27} -7.00774 q^{29} +5.26857 q^{31} +2.53209 q^{33} +3.26857 q^{35} -0.120615 q^{37} -7.92127 q^{39} +3.59627 q^{41} +6.29086 q^{43} -2.63816 q^{45} +2.33275 q^{47} -4.84524 q^{49} -3.92902 q^{53} -4.18479 q^{55} -3.79292 q^{57} +7.24897 q^{59} -3.22668 q^{61} -1.73917 q^{63} +13.0915 q^{65} +0.0145479 q^{67} -12.4611 q^{69} +1.67230 q^{71} -11.5253 q^{73} +0.0564370 q^{75} -2.75877 q^{77} +5.54664 q^{79} -4.04189 q^{81} +9.53714 q^{83} +9.44150 q^{87} +2.35504 q^{89} +8.63041 q^{91} -7.09833 q^{93} +6.26857 q^{95} +7.61081 q^{97} +2.22668 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{3} + 9 q^{7} + 12 q^{13} - 9 q^{15} + 12 q^{19} - 12 q^{21} + 15 q^{23} + 3 q^{25} + 3 q^{29} + 6 q^{31} + 3 q^{33} - 6 q^{37} - 15 q^{39} - 3 q^{41} + 3 q^{43} + 9 q^{45} - 12 q^{47} + 12 q^{49}+ \cdots + 27 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.34730 −0.777862 −0.388931 0.921267i \(-0.627156\pi\)
−0.388931 + 0.921267i \(0.627156\pi\)
\(4\) 0 0
\(5\) 2.22668 0.995802 0.497901 0.867234i \(-0.334104\pi\)
0.497901 + 0.867234i \(0.334104\pi\)
\(6\) 0 0
\(7\) 1.46791 0.554818 0.277409 0.960752i \(-0.410524\pi\)
0.277409 + 0.960752i \(0.410524\pi\)
\(8\) 0 0
\(9\) −1.18479 −0.394931
\(10\) 0 0
\(11\) −1.87939 −0.566656 −0.283328 0.959023i \(-0.591439\pi\)
−0.283328 + 0.959023i \(0.591439\pi\)
\(12\) 0 0
\(13\) 5.87939 1.63065 0.815324 0.579005i \(-0.196559\pi\)
0.815324 + 0.579005i \(0.196559\pi\)
\(14\) 0 0
\(15\) −3.00000 −0.774597
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) 2.81521 0.645853 0.322926 0.946424i \(-0.395333\pi\)
0.322926 + 0.946424i \(0.395333\pi\)
\(20\) 0 0
\(21\) −1.97771 −0.431572
\(22\) 0 0
\(23\) 9.24897 1.92854 0.964272 0.264915i \(-0.0853438\pi\)
0.964272 + 0.264915i \(0.0853438\pi\)
\(24\) 0 0
\(25\) −0.0418891 −0.00837781
\(26\) 0 0
\(27\) 5.63816 1.08506
\(28\) 0 0
\(29\) −7.00774 −1.30130 −0.650652 0.759376i \(-0.725504\pi\)
−0.650652 + 0.759376i \(0.725504\pi\)
\(30\) 0 0
\(31\) 5.26857 0.946263 0.473132 0.880992i \(-0.343124\pi\)
0.473132 + 0.880992i \(0.343124\pi\)
\(32\) 0 0
\(33\) 2.53209 0.440780
\(34\) 0 0
\(35\) 3.26857 0.552489
\(36\) 0 0
\(37\) −0.120615 −0.0198289 −0.00991447 0.999951i \(-0.503156\pi\)
−0.00991447 + 0.999951i \(0.503156\pi\)
\(38\) 0 0
\(39\) −7.92127 −1.26842
\(40\) 0 0
\(41\) 3.59627 0.561642 0.280821 0.959760i \(-0.409393\pi\)
0.280821 + 0.959760i \(0.409393\pi\)
\(42\) 0 0
\(43\) 6.29086 0.959347 0.479674 0.877447i \(-0.340755\pi\)
0.479674 + 0.877447i \(0.340755\pi\)
\(44\) 0 0
\(45\) −2.63816 −0.393273
\(46\) 0 0
\(47\) 2.33275 0.340266 0.170133 0.985421i \(-0.445580\pi\)
0.170133 + 0.985421i \(0.445580\pi\)
\(48\) 0 0
\(49\) −4.84524 −0.692177
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −3.92902 −0.539692 −0.269846 0.962904i \(-0.586973\pi\)
−0.269846 + 0.962904i \(0.586973\pi\)
\(54\) 0 0
\(55\) −4.18479 −0.564277
\(56\) 0 0
\(57\) −3.79292 −0.502384
\(58\) 0 0
\(59\) 7.24897 0.943736 0.471868 0.881669i \(-0.343580\pi\)
0.471868 + 0.881669i \(0.343580\pi\)
\(60\) 0 0
\(61\) −3.22668 −0.413134 −0.206567 0.978432i \(-0.566229\pi\)
−0.206567 + 0.978432i \(0.566229\pi\)
\(62\) 0 0
\(63\) −1.73917 −0.219115
\(64\) 0 0
\(65\) 13.0915 1.62380
\(66\) 0 0
\(67\) 0.0145479 0.00177731 0.000888656 1.00000i \(-0.499717\pi\)
0.000888656 1.00000i \(0.499717\pi\)
\(68\) 0 0
\(69\) −12.4611 −1.50014
\(70\) 0 0
\(71\) 1.67230 0.198466 0.0992330 0.995064i \(-0.468361\pi\)
0.0992330 + 0.995064i \(0.468361\pi\)
\(72\) 0 0
\(73\) −11.5253 −1.34893 −0.674466 0.738306i \(-0.735626\pi\)
−0.674466 + 0.738306i \(0.735626\pi\)
\(74\) 0 0
\(75\) 0.0564370 0.00651678
\(76\) 0 0
\(77\) −2.75877 −0.314391
\(78\) 0 0
\(79\) 5.54664 0.624045 0.312023 0.950075i \(-0.398993\pi\)
0.312023 + 0.950075i \(0.398993\pi\)
\(80\) 0 0
\(81\) −4.04189 −0.449099
\(82\) 0 0
\(83\) 9.53714 1.04684 0.523419 0.852076i \(-0.324656\pi\)
0.523419 + 0.852076i \(0.324656\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 9.44150 1.01224
\(88\) 0 0
\(89\) 2.35504 0.249633 0.124817 0.992180i \(-0.460166\pi\)
0.124817 + 0.992180i \(0.460166\pi\)
\(90\) 0 0
\(91\) 8.63041 0.904713
\(92\) 0 0
\(93\) −7.09833 −0.736062
\(94\) 0 0
\(95\) 6.26857 0.643142
\(96\) 0 0
\(97\) 7.61081 0.772761 0.386381 0.922339i \(-0.373725\pi\)
0.386381 + 0.922339i \(0.373725\pi\)
\(98\) 0 0
\(99\) 2.22668 0.223790
\(100\) 0 0
\(101\) −13.7861 −1.37177 −0.685885 0.727710i \(-0.740585\pi\)
−0.685885 + 0.727710i \(0.740585\pi\)
\(102\) 0 0
\(103\) −16.0496 −1.58142 −0.790709 0.612193i \(-0.790288\pi\)
−0.790709 + 0.612193i \(0.790288\pi\)
\(104\) 0 0
\(105\) −4.40373 −0.429760
\(106\) 0 0
\(107\) −19.3628 −1.87187 −0.935935 0.352172i \(-0.885443\pi\)
−0.935935 + 0.352172i \(0.885443\pi\)
\(108\) 0 0
\(109\) 13.7520 1.31720 0.658600 0.752494i \(-0.271149\pi\)
0.658600 + 0.752494i \(0.271149\pi\)
\(110\) 0 0
\(111\) 0.162504 0.0154242
\(112\) 0 0
\(113\) 8.15570 0.767223 0.383612 0.923494i \(-0.374680\pi\)
0.383612 + 0.923494i \(0.374680\pi\)
\(114\) 0 0
\(115\) 20.5945 1.92045
\(116\) 0 0
\(117\) −6.96585 −0.643993
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −7.46791 −0.678901
\(122\) 0 0
\(123\) −4.84524 −0.436880
\(124\) 0 0
\(125\) −11.2267 −1.00414
\(126\) 0 0
\(127\) −20.1061 −1.78412 −0.892062 0.451912i \(-0.850742\pi\)
−0.892062 + 0.451912i \(0.850742\pi\)
\(128\) 0 0
\(129\) −8.47565 −0.746240
\(130\) 0 0
\(131\) 5.80066 0.506806 0.253403 0.967361i \(-0.418450\pi\)
0.253403 + 0.967361i \(0.418450\pi\)
\(132\) 0 0
\(133\) 4.13247 0.358331
\(134\) 0 0
\(135\) 12.5544 1.08051
\(136\) 0 0
\(137\) 19.5749 1.67240 0.836199 0.548426i \(-0.184773\pi\)
0.836199 + 0.548426i \(0.184773\pi\)
\(138\) 0 0
\(139\) 20.4611 1.73549 0.867744 0.497011i \(-0.165569\pi\)
0.867744 + 0.497011i \(0.165569\pi\)
\(140\) 0 0
\(141\) −3.14290 −0.264680
\(142\) 0 0
\(143\) −11.0496 −0.924016
\(144\) 0 0
\(145\) −15.6040 −1.29584
\(146\) 0 0
\(147\) 6.52797 0.538418
\(148\) 0 0
\(149\) 12.8033 1.04889 0.524446 0.851444i \(-0.324273\pi\)
0.524446 + 0.851444i \(0.324273\pi\)
\(150\) 0 0
\(151\) 11.6604 0.948914 0.474457 0.880279i \(-0.342645\pi\)
0.474457 + 0.880279i \(0.342645\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 11.7314 0.942291
\(156\) 0 0
\(157\) −6.63816 −0.529783 −0.264891 0.964278i \(-0.585336\pi\)
−0.264891 + 0.964278i \(0.585336\pi\)
\(158\) 0 0
\(159\) 5.29355 0.419806
\(160\) 0 0
\(161\) 13.5767 1.06999
\(162\) 0 0
\(163\) 0.0564370 0.00442049 0.00221024 0.999998i \(-0.499296\pi\)
0.00221024 + 0.999998i \(0.499296\pi\)
\(164\) 0 0
\(165\) 5.63816 0.438930
\(166\) 0 0
\(167\) −5.88444 −0.455351 −0.227676 0.973737i \(-0.573113\pi\)
−0.227676 + 0.973737i \(0.573113\pi\)
\(168\) 0 0
\(169\) 21.5672 1.65901
\(170\) 0 0
\(171\) −3.33544 −0.255067
\(172\) 0 0
\(173\) 17.0523 1.29646 0.648232 0.761443i \(-0.275509\pi\)
0.648232 + 0.761443i \(0.275509\pi\)
\(174\) 0 0
\(175\) −0.0614894 −0.00464816
\(176\) 0 0
\(177\) −9.76651 −0.734096
\(178\) 0 0
\(179\) −22.9959 −1.71879 −0.859396 0.511310i \(-0.829160\pi\)
−0.859396 + 0.511310i \(0.829160\pi\)
\(180\) 0 0
\(181\) 5.91622 0.439749 0.219875 0.975528i \(-0.429435\pi\)
0.219875 + 0.975528i \(0.429435\pi\)
\(182\) 0 0
\(183\) 4.34730 0.321361
\(184\) 0 0
\(185\) −0.268571 −0.0197457
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 8.27631 0.602013
\(190\) 0 0
\(191\) −14.0642 −1.01765 −0.508824 0.860871i \(-0.669920\pi\)
−0.508824 + 0.860871i \(0.669920\pi\)
\(192\) 0 0
\(193\) 19.8794 1.43095 0.715475 0.698639i \(-0.246210\pi\)
0.715475 + 0.698639i \(0.246210\pi\)
\(194\) 0 0
\(195\) −17.6382 −1.26309
\(196\) 0 0
\(197\) −9.60401 −0.684257 −0.342129 0.939653i \(-0.611148\pi\)
−0.342129 + 0.939653i \(0.611148\pi\)
\(198\) 0 0
\(199\) 22.6459 1.60533 0.802663 0.596433i \(-0.203416\pi\)
0.802663 + 0.596433i \(0.203416\pi\)
\(200\) 0 0
\(201\) −0.0196004 −0.00138250
\(202\) 0 0
\(203\) −10.2867 −0.721988
\(204\) 0 0
\(205\) 8.00774 0.559285
\(206\) 0 0
\(207\) −10.9581 −0.761641
\(208\) 0 0
\(209\) −5.29086 −0.365976
\(210\) 0 0
\(211\) −0.645897 −0.0444653 −0.0222327 0.999753i \(-0.507077\pi\)
−0.0222327 + 0.999753i \(0.507077\pi\)
\(212\) 0 0
\(213\) −2.25309 −0.154379
\(214\) 0 0
\(215\) 14.0077 0.955320
\(216\) 0 0
\(217\) 7.73379 0.525004
\(218\) 0 0
\(219\) 15.5280 1.04928
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 2.32770 0.155874 0.0779370 0.996958i \(-0.475167\pi\)
0.0779370 + 0.996958i \(0.475167\pi\)
\(224\) 0 0
\(225\) 0.0496299 0.00330866
\(226\) 0 0
\(227\) 5.66044 0.375697 0.187848 0.982198i \(-0.439849\pi\)
0.187848 + 0.982198i \(0.439849\pi\)
\(228\) 0 0
\(229\) 10.3969 0.687048 0.343524 0.939144i \(-0.388379\pi\)
0.343524 + 0.939144i \(0.388379\pi\)
\(230\) 0 0
\(231\) 3.71688 0.244553
\(232\) 0 0
\(233\) −22.0155 −1.44228 −0.721141 0.692788i \(-0.756382\pi\)
−0.721141 + 0.692788i \(0.756382\pi\)
\(234\) 0 0
\(235\) 5.19429 0.338838
\(236\) 0 0
\(237\) −7.47296 −0.485421
\(238\) 0 0
\(239\) 5.33544 0.345121 0.172560 0.984999i \(-0.444796\pi\)
0.172560 + 0.984999i \(0.444796\pi\)
\(240\) 0 0
\(241\) −8.69459 −0.560068 −0.280034 0.959990i \(-0.590346\pi\)
−0.280034 + 0.959990i \(0.590346\pi\)
\(242\) 0 0
\(243\) −11.4688 −0.735727
\(244\) 0 0
\(245\) −10.7888 −0.689271
\(246\) 0 0
\(247\) 16.5517 1.05316
\(248\) 0 0
\(249\) −12.8494 −0.814295
\(250\) 0 0
\(251\) 25.1293 1.58615 0.793073 0.609126i \(-0.208480\pi\)
0.793073 + 0.609126i \(0.208480\pi\)
\(252\) 0 0
\(253\) −17.3824 −1.09282
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −24.5476 −1.53124 −0.765618 0.643296i \(-0.777567\pi\)
−0.765618 + 0.643296i \(0.777567\pi\)
\(258\) 0 0
\(259\) −0.177052 −0.0110015
\(260\) 0 0
\(261\) 8.30272 0.513925
\(262\) 0 0
\(263\) −16.0128 −0.987391 −0.493696 0.869635i \(-0.664354\pi\)
−0.493696 + 0.869635i \(0.664354\pi\)
\(264\) 0 0
\(265\) −8.74867 −0.537426
\(266\) 0 0
\(267\) −3.17293 −0.194180
\(268\) 0 0
\(269\) 3.81016 0.232309 0.116155 0.993231i \(-0.462943\pi\)
0.116155 + 0.993231i \(0.462943\pi\)
\(270\) 0 0
\(271\) −28.0770 −1.70555 −0.852777 0.522275i \(-0.825084\pi\)
−0.852777 + 0.522275i \(0.825084\pi\)
\(272\) 0 0
\(273\) −11.6277 −0.703742
\(274\) 0 0
\(275\) 0.0787257 0.00474734
\(276\) 0 0
\(277\) 23.6905 1.42342 0.711711 0.702472i \(-0.247920\pi\)
0.711711 + 0.702472i \(0.247920\pi\)
\(278\) 0 0
\(279\) −6.24216 −0.373709
\(280\) 0 0
\(281\) −0.117926 −0.00703490 −0.00351745 0.999994i \(-0.501120\pi\)
−0.00351745 + 0.999994i \(0.501120\pi\)
\(282\) 0 0
\(283\) 19.8675 1.18100 0.590501 0.807037i \(-0.298930\pi\)
0.590501 + 0.807037i \(0.298930\pi\)
\(284\) 0 0
\(285\) −8.44562 −0.500275
\(286\) 0 0
\(287\) 5.27900 0.311610
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) −10.2540 −0.601101
\(292\) 0 0
\(293\) −8.43882 −0.493001 −0.246500 0.969143i \(-0.579281\pi\)
−0.246500 + 0.969143i \(0.579281\pi\)
\(294\) 0 0
\(295\) 16.1411 0.939774
\(296\) 0 0
\(297\) −10.5963 −0.614858
\(298\) 0 0
\(299\) 54.3783 3.14478
\(300\) 0 0
\(301\) 9.23442 0.532263
\(302\) 0 0
\(303\) 18.5740 1.06705
\(304\) 0 0
\(305\) −7.18479 −0.411400
\(306\) 0 0
\(307\) 30.2226 1.72489 0.862446 0.506148i \(-0.168931\pi\)
0.862446 + 0.506148i \(0.168931\pi\)
\(308\) 0 0
\(309\) 21.6236 1.23012
\(310\) 0 0
\(311\) −7.78611 −0.441510 −0.220755 0.975329i \(-0.570852\pi\)
−0.220755 + 0.975329i \(0.570852\pi\)
\(312\) 0 0
\(313\) 1.64084 0.0927460 0.0463730 0.998924i \(-0.485234\pi\)
0.0463730 + 0.998924i \(0.485234\pi\)
\(314\) 0 0
\(315\) −3.87258 −0.218195
\(316\) 0 0
\(317\) 13.4142 0.753414 0.376707 0.926332i \(-0.377056\pi\)
0.376707 + 0.926332i \(0.377056\pi\)
\(318\) 0 0
\(319\) 13.1702 0.737392
\(320\) 0 0
\(321\) 26.0874 1.45606
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −0.246282 −0.0136613
\(326\) 0 0
\(327\) −18.5280 −1.02460
\(328\) 0 0
\(329\) 3.42427 0.188786
\(330\) 0 0
\(331\) −29.7229 −1.63372 −0.816858 0.576838i \(-0.804286\pi\)
−0.816858 + 0.576838i \(0.804286\pi\)
\(332\) 0 0
\(333\) 0.142903 0.00783106
\(334\) 0 0
\(335\) 0.0323936 0.00176985
\(336\) 0 0
\(337\) −15.0669 −0.820744 −0.410372 0.911918i \(-0.634601\pi\)
−0.410372 + 0.911918i \(0.634601\pi\)
\(338\) 0 0
\(339\) −10.9881 −0.596794
\(340\) 0 0
\(341\) −9.90167 −0.536206
\(342\) 0 0
\(343\) −17.3878 −0.938851
\(344\) 0 0
\(345\) −27.7469 −1.49384
\(346\) 0 0
\(347\) 10.6955 0.574166 0.287083 0.957906i \(-0.407314\pi\)
0.287083 + 0.957906i \(0.407314\pi\)
\(348\) 0 0
\(349\) 20.7733 1.11197 0.555985 0.831192i \(-0.312341\pi\)
0.555985 + 0.831192i \(0.312341\pi\)
\(350\) 0 0
\(351\) 33.1489 1.76936
\(352\) 0 0
\(353\) −22.7520 −1.21096 −0.605482 0.795859i \(-0.707020\pi\)
−0.605482 + 0.795859i \(0.707020\pi\)
\(354\) 0 0
\(355\) 3.72369 0.197633
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −11.4020 −0.601773 −0.300887 0.953660i \(-0.597283\pi\)
−0.300887 + 0.953660i \(0.597283\pi\)
\(360\) 0 0
\(361\) −11.0746 −0.582874
\(362\) 0 0
\(363\) 10.0615 0.528091
\(364\) 0 0
\(365\) −25.6631 −1.34327
\(366\) 0 0
\(367\) 16.3200 0.851895 0.425947 0.904748i \(-0.359941\pi\)
0.425947 + 0.904748i \(0.359941\pi\)
\(368\) 0 0
\(369\) −4.26083 −0.221810
\(370\) 0 0
\(371\) −5.76744 −0.299431
\(372\) 0 0
\(373\) −33.9094 −1.75576 −0.877881 0.478878i \(-0.841044\pi\)
−0.877881 + 0.478878i \(0.841044\pi\)
\(374\) 0 0
\(375\) 15.1257 0.781086
\(376\) 0 0
\(377\) −41.2012 −2.12197
\(378\) 0 0
\(379\) 28.3354 1.45549 0.727747 0.685846i \(-0.240568\pi\)
0.727747 + 0.685846i \(0.240568\pi\)
\(380\) 0 0
\(381\) 27.0888 1.38780
\(382\) 0 0
\(383\) −19.9290 −1.01833 −0.509163 0.860670i \(-0.670045\pi\)
−0.509163 + 0.860670i \(0.670045\pi\)
\(384\) 0 0
\(385\) −6.14290 −0.313071
\(386\) 0 0
\(387\) −7.45336 −0.378876
\(388\) 0 0
\(389\) 1.06418 0.0539560 0.0269780 0.999636i \(-0.491412\pi\)
0.0269780 + 0.999636i \(0.491412\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −7.81521 −0.394225
\(394\) 0 0
\(395\) 12.3506 0.621426
\(396\) 0 0
\(397\) −13.1584 −0.660400 −0.330200 0.943911i \(-0.607116\pi\)
−0.330200 + 0.943911i \(0.607116\pi\)
\(398\) 0 0
\(399\) −5.56767 −0.278732
\(400\) 0 0
\(401\) 29.4492 1.47063 0.735313 0.677728i \(-0.237035\pi\)
0.735313 + 0.677728i \(0.237035\pi\)
\(402\) 0 0
\(403\) 30.9760 1.54302
\(404\) 0 0
\(405\) −9.00000 −0.447214
\(406\) 0 0
\(407\) 0.226682 0.0112362
\(408\) 0 0
\(409\) −20.3286 −1.00519 −0.502593 0.864523i \(-0.667621\pi\)
−0.502593 + 0.864523i \(0.667621\pi\)
\(410\) 0 0
\(411\) −26.3732 −1.30089
\(412\) 0 0
\(413\) 10.6408 0.523602
\(414\) 0 0
\(415\) 21.2362 1.04244
\(416\) 0 0
\(417\) −27.5672 −1.34997
\(418\) 0 0
\(419\) −2.37639 −0.116094 −0.0580472 0.998314i \(-0.518487\pi\)
−0.0580472 + 0.998314i \(0.518487\pi\)
\(420\) 0 0
\(421\) 4.52435 0.220503 0.110252 0.993904i \(-0.464834\pi\)
0.110252 + 0.993904i \(0.464834\pi\)
\(422\) 0 0
\(423\) −2.76382 −0.134382
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −4.73648 −0.229214
\(428\) 0 0
\(429\) 14.8871 0.718757
\(430\) 0 0
\(431\) 8.87670 0.427575 0.213788 0.976880i \(-0.431420\pi\)
0.213788 + 0.976880i \(0.431420\pi\)
\(432\) 0 0
\(433\) 33.9445 1.63127 0.815634 0.578568i \(-0.196388\pi\)
0.815634 + 0.578568i \(0.196388\pi\)
\(434\) 0 0
\(435\) 21.0232 1.00799
\(436\) 0 0
\(437\) 26.0378 1.24556
\(438\) 0 0
\(439\) 16.9240 0.807737 0.403868 0.914817i \(-0.367665\pi\)
0.403868 + 0.914817i \(0.367665\pi\)
\(440\) 0 0
\(441\) 5.74060 0.273362
\(442\) 0 0
\(443\) 21.7365 1.03273 0.516366 0.856368i \(-0.327285\pi\)
0.516366 + 0.856368i \(0.327285\pi\)
\(444\) 0 0
\(445\) 5.24392 0.248586
\(446\) 0 0
\(447\) −17.2499 −0.815892
\(448\) 0 0
\(449\) −20.8057 −0.981882 −0.490941 0.871193i \(-0.663347\pi\)
−0.490941 + 0.871193i \(0.663347\pi\)
\(450\) 0 0
\(451\) −6.75877 −0.318258
\(452\) 0 0
\(453\) −15.7101 −0.738124
\(454\) 0 0
\(455\) 19.2172 0.900916
\(456\) 0 0
\(457\) 12.7374 0.595831 0.297916 0.954592i \(-0.403709\pi\)
0.297916 + 0.954592i \(0.403709\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 30.5722 1.42389 0.711945 0.702235i \(-0.247814\pi\)
0.711945 + 0.702235i \(0.247814\pi\)
\(462\) 0 0
\(463\) −41.6732 −1.93672 −0.968360 0.249558i \(-0.919715\pi\)
−0.968360 + 0.249558i \(0.919715\pi\)
\(464\) 0 0
\(465\) −15.8057 −0.732972
\(466\) 0 0
\(467\) −22.3533 −1.03439 −0.517193 0.855869i \(-0.673023\pi\)
−0.517193 + 0.855869i \(0.673023\pi\)
\(468\) 0 0
\(469\) 0.0213551 0.000986085 0
\(470\) 0 0
\(471\) 8.94356 0.412098
\(472\) 0 0
\(473\) −11.8229 −0.543620
\(474\) 0 0
\(475\) −0.117926 −0.00541083
\(476\) 0 0
\(477\) 4.65507 0.213141
\(478\) 0 0
\(479\) −5.99050 −0.273713 −0.136857 0.990591i \(-0.543700\pi\)
−0.136857 + 0.990591i \(0.543700\pi\)
\(480\) 0 0
\(481\) −0.709141 −0.0323340
\(482\) 0 0
\(483\) −18.2918 −0.832305
\(484\) 0 0
\(485\) 16.9469 0.769517
\(486\) 0 0
\(487\) 29.9786 1.35846 0.679231 0.733925i \(-0.262313\pi\)
0.679231 + 0.733925i \(0.262313\pi\)
\(488\) 0 0
\(489\) −0.0760373 −0.00343853
\(490\) 0 0
\(491\) 5.66550 0.255680 0.127840 0.991795i \(-0.459196\pi\)
0.127840 + 0.991795i \(0.459196\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 4.95811 0.222851
\(496\) 0 0
\(497\) 2.45479 0.110113
\(498\) 0 0
\(499\) 29.6236 1.32613 0.663067 0.748560i \(-0.269254\pi\)
0.663067 + 0.748560i \(0.269254\pi\)
\(500\) 0 0
\(501\) 7.92808 0.354201
\(502\) 0 0
\(503\) 28.7374 1.28134 0.640669 0.767817i \(-0.278657\pi\)
0.640669 + 0.767817i \(0.278657\pi\)
\(504\) 0 0
\(505\) −30.6973 −1.36601
\(506\) 0 0
\(507\) −29.0574 −1.29048
\(508\) 0 0
\(509\) 17.5699 0.778770 0.389385 0.921075i \(-0.372688\pi\)
0.389385 + 0.921075i \(0.372688\pi\)
\(510\) 0 0
\(511\) −16.9181 −0.748412
\(512\) 0 0
\(513\) 15.8726 0.700791
\(514\) 0 0
\(515\) −35.7374 −1.57478
\(516\) 0 0
\(517\) −4.38413 −0.192814
\(518\) 0 0
\(519\) −22.9745 −1.00847
\(520\) 0 0
\(521\) −6.42190 −0.281349 −0.140674 0.990056i \(-0.544927\pi\)
−0.140674 + 0.990056i \(0.544927\pi\)
\(522\) 0 0
\(523\) 7.02498 0.307181 0.153590 0.988135i \(-0.450916\pi\)
0.153590 + 0.988135i \(0.450916\pi\)
\(524\) 0 0
\(525\) 0.0828445 0.00361563
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 62.5435 2.71928
\(530\) 0 0
\(531\) −8.58853 −0.372710
\(532\) 0 0
\(533\) 21.1438 0.915841
\(534\) 0 0
\(535\) −43.1147 −1.86401
\(536\) 0 0
\(537\) 30.9823 1.33698
\(538\) 0 0
\(539\) 9.10607 0.392226
\(540\) 0 0
\(541\) −0.0692302 −0.00297644 −0.00148822 0.999999i \(-0.500474\pi\)
−0.00148822 + 0.999999i \(0.500474\pi\)
\(542\) 0 0
\(543\) −7.97090 −0.342064
\(544\) 0 0
\(545\) 30.6212 1.31167
\(546\) 0 0
\(547\) 19.3756 0.828440 0.414220 0.910177i \(-0.364054\pi\)
0.414220 + 0.910177i \(0.364054\pi\)
\(548\) 0 0
\(549\) 3.82295 0.163159
\(550\) 0 0
\(551\) −19.7282 −0.840451
\(552\) 0 0
\(553\) 8.14197 0.346232
\(554\) 0 0
\(555\) 0.361844 0.0153594
\(556\) 0 0
\(557\) 14.2695 0.604618 0.302309 0.953210i \(-0.402243\pi\)
0.302309 + 0.953210i \(0.402243\pi\)
\(558\) 0 0
\(559\) 36.9864 1.56436
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.60576 0.0676748 0.0338374 0.999427i \(-0.489227\pi\)
0.0338374 + 0.999427i \(0.489227\pi\)
\(564\) 0 0
\(565\) 18.1601 0.764003
\(566\) 0 0
\(567\) −5.93313 −0.249168
\(568\) 0 0
\(569\) −7.29860 −0.305973 −0.152987 0.988228i \(-0.548889\pi\)
−0.152987 + 0.988228i \(0.548889\pi\)
\(570\) 0 0
\(571\) −3.54933 −0.148535 −0.0742673 0.997238i \(-0.523662\pi\)
−0.0742673 + 0.997238i \(0.523662\pi\)
\(572\) 0 0
\(573\) 18.9486 0.791590
\(574\) 0 0
\(575\) −0.387431 −0.0161570
\(576\) 0 0
\(577\) 40.6382 1.69179 0.845894 0.533351i \(-0.179067\pi\)
0.845894 + 0.533351i \(0.179067\pi\)
\(578\) 0 0
\(579\) −26.7834 −1.11308
\(580\) 0 0
\(581\) 13.9997 0.580804
\(582\) 0 0
\(583\) 7.38413 0.305820
\(584\) 0 0
\(585\) −15.5107 −0.641290
\(586\) 0 0
\(587\) −24.4415 −1.00881 −0.504404 0.863468i \(-0.668288\pi\)
−0.504404 + 0.863468i \(0.668288\pi\)
\(588\) 0 0
\(589\) 14.8321 0.611147
\(590\) 0 0
\(591\) 12.9394 0.532258
\(592\) 0 0
\(593\) −42.9881 −1.76531 −0.882656 0.470020i \(-0.844247\pi\)
−0.882656 + 0.470020i \(0.844247\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −30.5107 −1.24872
\(598\) 0 0
\(599\) 36.2864 1.48262 0.741311 0.671161i \(-0.234204\pi\)
0.741311 + 0.671161i \(0.234204\pi\)
\(600\) 0 0
\(601\) −22.7989 −0.929987 −0.464993 0.885314i \(-0.653943\pi\)
−0.464993 + 0.885314i \(0.653943\pi\)
\(602\) 0 0
\(603\) −0.0172363 −0.000701915 0
\(604\) 0 0
\(605\) −16.6287 −0.676051
\(606\) 0 0
\(607\) −21.2003 −0.860493 −0.430246 0.902712i \(-0.641573\pi\)
−0.430246 + 0.902712i \(0.641573\pi\)
\(608\) 0 0
\(609\) 13.8593 0.561607
\(610\) 0 0
\(611\) 13.7151 0.554855
\(612\) 0 0
\(613\) 19.1274 0.772549 0.386275 0.922384i \(-0.373762\pi\)
0.386275 + 0.922384i \(0.373762\pi\)
\(614\) 0 0
\(615\) −10.7888 −0.435046
\(616\) 0 0
\(617\) 37.4293 1.50685 0.753424 0.657535i \(-0.228401\pi\)
0.753424 + 0.657535i \(0.228401\pi\)
\(618\) 0 0
\(619\) −26.0702 −1.04785 −0.523924 0.851765i \(-0.675532\pi\)
−0.523924 + 0.851765i \(0.675532\pi\)
\(620\) 0 0
\(621\) 52.1471 2.09259
\(622\) 0 0
\(623\) 3.45699 0.138501
\(624\) 0 0
\(625\) −24.7888 −0.991552
\(626\) 0 0
\(627\) 7.12836 0.284679
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −1.24216 −0.0494497 −0.0247249 0.999694i \(-0.507871\pi\)
−0.0247249 + 0.999694i \(0.507871\pi\)
\(632\) 0 0
\(633\) 0.870214 0.0345879
\(634\) 0 0
\(635\) −44.7698 −1.77664
\(636\) 0 0
\(637\) −28.4870 −1.12870
\(638\) 0 0
\(639\) −1.98133 −0.0783803
\(640\) 0 0
\(641\) 0.154763 0.00611277 0.00305639 0.999995i \(-0.499027\pi\)
0.00305639 + 0.999995i \(0.499027\pi\)
\(642\) 0 0
\(643\) 30.5594 1.20515 0.602573 0.798064i \(-0.294142\pi\)
0.602573 + 0.798064i \(0.294142\pi\)
\(644\) 0 0
\(645\) −18.8726 −0.743107
\(646\) 0 0
\(647\) 32.4593 1.27611 0.638054 0.769991i \(-0.279740\pi\)
0.638054 + 0.769991i \(0.279740\pi\)
\(648\) 0 0
\(649\) −13.6236 −0.534773
\(650\) 0 0
\(651\) −10.4197 −0.408381
\(652\) 0 0
\(653\) −7.80840 −0.305566 −0.152783 0.988260i \(-0.548824\pi\)
−0.152783 + 0.988260i \(0.548824\pi\)
\(654\) 0 0
\(655\) 12.9162 0.504679
\(656\) 0 0
\(657\) 13.6551 0.532735
\(658\) 0 0
\(659\) 42.0069 1.63636 0.818179 0.574964i \(-0.194984\pi\)
0.818179 + 0.574964i \(0.194984\pi\)
\(660\) 0 0
\(661\) 28.5084 1.10885 0.554424 0.832235i \(-0.312939\pi\)
0.554424 + 0.832235i \(0.312939\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 9.20170 0.356827
\(666\) 0 0
\(667\) −64.8144 −2.50962
\(668\) 0 0
\(669\) −3.13610 −0.121248
\(670\) 0 0
\(671\) 6.06418 0.234105
\(672\) 0 0
\(673\) 31.5885 1.21765 0.608824 0.793305i \(-0.291642\pi\)
0.608824 + 0.793305i \(0.291642\pi\)
\(674\) 0 0
\(675\) −0.236177 −0.00909046
\(676\) 0 0
\(677\) −44.3405 −1.70414 −0.852072 0.523425i \(-0.824654\pi\)
−0.852072 + 0.523425i \(0.824654\pi\)
\(678\) 0 0
\(679\) 11.1720 0.428742
\(680\) 0 0
\(681\) −7.62630 −0.292240
\(682\) 0 0
\(683\) 15.6313 0.598117 0.299058 0.954235i \(-0.403327\pi\)
0.299058 + 0.954235i \(0.403327\pi\)
\(684\) 0 0
\(685\) 43.5871 1.66538
\(686\) 0 0
\(687\) −14.0077 −0.534429
\(688\) 0 0
\(689\) −23.1002 −0.880047
\(690\) 0 0
\(691\) 6.88207 0.261806 0.130903 0.991395i \(-0.458212\pi\)
0.130903 + 0.991395i \(0.458212\pi\)
\(692\) 0 0
\(693\) 3.26857 0.124163
\(694\) 0 0
\(695\) 45.5604 1.72820
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 29.6614 1.12190
\(700\) 0 0
\(701\) 38.4097 1.45072 0.725358 0.688372i \(-0.241674\pi\)
0.725358 + 0.688372i \(0.241674\pi\)
\(702\) 0 0
\(703\) −0.339556 −0.0128066
\(704\) 0 0
\(705\) −6.99825 −0.263569
\(706\) 0 0
\(707\) −20.2368 −0.761083
\(708\) 0 0
\(709\) 1.95306 0.0733487 0.0366743 0.999327i \(-0.488324\pi\)
0.0366743 + 0.999327i \(0.488324\pi\)
\(710\) 0 0
\(711\) −6.57161 −0.246455
\(712\) 0 0
\(713\) 48.7289 1.82491
\(714\) 0 0
\(715\) −24.6040 −0.920138
\(716\) 0 0
\(717\) −7.18841 −0.268456
\(718\) 0 0
\(719\) −21.3841 −0.797494 −0.398747 0.917061i \(-0.630555\pi\)
−0.398747 + 0.917061i \(0.630555\pi\)
\(720\) 0 0
\(721\) −23.5594 −0.877399
\(722\) 0 0
\(723\) 11.7142 0.435656
\(724\) 0 0
\(725\) 0.293548 0.0109021
\(726\) 0 0
\(727\) −25.8780 −0.959760 −0.479880 0.877334i \(-0.659320\pi\)
−0.479880 + 0.877334i \(0.659320\pi\)
\(728\) 0 0
\(729\) 27.5776 1.02139
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −2.98309 −0.110183 −0.0550914 0.998481i \(-0.517545\pi\)
−0.0550914 + 0.998481i \(0.517545\pi\)
\(734\) 0 0
\(735\) 14.5357 0.536158
\(736\) 0 0
\(737\) −0.0273411 −0.00100712
\(738\) 0 0
\(739\) 9.75196 0.358732 0.179366 0.983782i \(-0.442595\pi\)
0.179366 + 0.983782i \(0.442595\pi\)
\(740\) 0 0
\(741\) −22.3000 −0.819212
\(742\) 0 0
\(743\) 15.0746 0.553034 0.276517 0.961009i \(-0.410820\pi\)
0.276517 + 0.961009i \(0.410820\pi\)
\(744\) 0 0
\(745\) 28.5090 1.04449
\(746\) 0 0
\(747\) −11.2995 −0.413428
\(748\) 0 0
\(749\) −28.4228 −1.03855
\(750\) 0 0
\(751\) 42.9231 1.56629 0.783144 0.621841i \(-0.213615\pi\)
0.783144 + 0.621841i \(0.213615\pi\)
\(752\) 0 0
\(753\) −33.8566 −1.23380
\(754\) 0 0
\(755\) 25.9641 0.944930
\(756\) 0 0
\(757\) 32.0648 1.16541 0.582707 0.812682i \(-0.301993\pi\)
0.582707 + 0.812682i \(0.301993\pi\)
\(758\) 0 0
\(759\) 23.4192 0.850064
\(760\) 0 0
\(761\) −21.0556 −0.763265 −0.381633 0.924314i \(-0.624638\pi\)
−0.381633 + 0.924314i \(0.624638\pi\)
\(762\) 0 0
\(763\) 20.1867 0.730806
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 42.6195 1.53890
\(768\) 0 0
\(769\) −48.4475 −1.74706 −0.873531 0.486769i \(-0.838175\pi\)
−0.873531 + 0.486769i \(0.838175\pi\)
\(770\) 0 0
\(771\) 33.0729 1.19109
\(772\) 0 0
\(773\) −31.1702 −1.12112 −0.560558 0.828115i \(-0.689413\pi\)
−0.560558 + 0.828115i \(0.689413\pi\)
\(774\) 0 0
\(775\) −0.220696 −0.00792762
\(776\) 0 0
\(777\) 0.238541 0.00855762
\(778\) 0 0
\(779\) 10.1242 0.362738
\(780\) 0 0
\(781\) −3.14290 −0.112462
\(782\) 0 0
\(783\) −39.5107 −1.41200
\(784\) 0 0
\(785\) −14.7811 −0.527559
\(786\) 0 0
\(787\) −34.5536 −1.23170 −0.615851 0.787863i \(-0.711188\pi\)
−0.615851 + 0.787863i \(0.711188\pi\)
\(788\) 0 0
\(789\) 21.5740 0.768054
\(790\) 0 0
\(791\) 11.9718 0.425670
\(792\) 0 0
\(793\) −18.9709 −0.673677
\(794\) 0 0
\(795\) 11.7870 0.418043
\(796\) 0 0
\(797\) 23.5936 0.835727 0.417864 0.908510i \(-0.362779\pi\)
0.417864 + 0.908510i \(0.362779\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −2.79023 −0.0985879
\(802\) 0 0
\(803\) 21.6604 0.764380
\(804\) 0 0
\(805\) 30.2309 1.06550
\(806\) 0 0
\(807\) −5.13341 −0.180705
\(808\) 0 0
\(809\) 35.1162 1.23462 0.617309 0.786720i \(-0.288223\pi\)
0.617309 + 0.786720i \(0.288223\pi\)
\(810\) 0 0
\(811\) −10.0601 −0.353256 −0.176628 0.984278i \(-0.556519\pi\)
−0.176628 + 0.984278i \(0.556519\pi\)
\(812\) 0 0
\(813\) 37.8280 1.32669
\(814\) 0 0
\(815\) 0.125667 0.00440193
\(816\) 0 0
\(817\) 17.7101 0.619597
\(818\) 0 0
\(819\) −10.2253 −0.357299
\(820\) 0 0
\(821\) −3.33687 −0.116457 −0.0582287 0.998303i \(-0.518545\pi\)
−0.0582287 + 0.998303i \(0.518545\pi\)
\(822\) 0 0
\(823\) −15.3405 −0.534736 −0.267368 0.963595i \(-0.586154\pi\)
−0.267368 + 0.963595i \(0.586154\pi\)
\(824\) 0 0
\(825\) −0.106067 −0.00369277
\(826\) 0 0
\(827\) −2.77156 −0.0963767 −0.0481884 0.998838i \(-0.515345\pi\)
−0.0481884 + 0.998838i \(0.515345\pi\)
\(828\) 0 0
\(829\) 18.3259 0.636486 0.318243 0.948009i \(-0.396907\pi\)
0.318243 + 0.948009i \(0.396907\pi\)
\(830\) 0 0
\(831\) −31.9181 −1.10723
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −13.1028 −0.453440
\(836\) 0 0
\(837\) 29.7050 1.02676
\(838\) 0 0
\(839\) 35.3814 1.22150 0.610752 0.791822i \(-0.290867\pi\)
0.610752 + 0.791822i \(0.290867\pi\)
\(840\) 0 0
\(841\) 20.1084 0.693394
\(842\) 0 0
\(843\) 0.158882 0.00547218
\(844\) 0 0
\(845\) 48.0232 1.65205
\(846\) 0 0
\(847\) −10.9622 −0.376667
\(848\) 0 0
\(849\) −26.7674 −0.918656
\(850\) 0 0
\(851\) −1.11556 −0.0382410
\(852\) 0 0
\(853\) −23.4679 −0.803526 −0.401763 0.915744i \(-0.631602\pi\)
−0.401763 + 0.915744i \(0.631602\pi\)
\(854\) 0 0
\(855\) −7.42696 −0.253997
\(856\) 0 0
\(857\) 20.3013 0.693479 0.346739 0.937962i \(-0.387289\pi\)
0.346739 + 0.937962i \(0.387289\pi\)
\(858\) 0 0
\(859\) −11.6827 −0.398610 −0.199305 0.979938i \(-0.563868\pi\)
−0.199305 + 0.979938i \(0.563868\pi\)
\(860\) 0 0
\(861\) −7.11238 −0.242389
\(862\) 0 0
\(863\) 25.1985 0.857768 0.428884 0.903360i \(-0.358907\pi\)
0.428884 + 0.903360i \(0.358907\pi\)
\(864\) 0 0
\(865\) 37.9701 1.29102
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −10.4243 −0.353619
\(870\) 0 0
\(871\) 0.0855328 0.00289817
\(872\) 0 0
\(873\) −9.01724 −0.305187
\(874\) 0 0
\(875\) −16.4798 −0.557118
\(876\) 0 0
\(877\) −26.8648 −0.907161 −0.453581 0.891215i \(-0.649854\pi\)
−0.453581 + 0.891215i \(0.649854\pi\)
\(878\) 0 0
\(879\) 11.3696 0.383487
\(880\) 0 0
\(881\) −22.8639 −0.770304 −0.385152 0.922853i \(-0.625851\pi\)
−0.385152 + 0.922853i \(0.625851\pi\)
\(882\) 0 0
\(883\) 34.7547 1.16959 0.584794 0.811182i \(-0.301176\pi\)
0.584794 + 0.811182i \(0.301176\pi\)
\(884\) 0 0
\(885\) −21.7469 −0.731014
\(886\) 0 0
\(887\) 28.3577 0.952159 0.476080 0.879402i \(-0.342057\pi\)
0.476080 + 0.879402i \(0.342057\pi\)
\(888\) 0 0
\(889\) −29.5139 −0.989865
\(890\) 0 0
\(891\) 7.59627 0.254485
\(892\) 0 0
\(893\) 6.56717 0.219762
\(894\) 0 0
\(895\) −51.2045 −1.71158
\(896\) 0 0
\(897\) −73.2636 −2.44620
\(898\) 0 0
\(899\) −36.9208 −1.23138
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −12.4415 −0.414027
\(904\) 0 0
\(905\) 13.1735 0.437903
\(906\) 0 0
\(907\) 32.0060 1.06274 0.531371 0.847139i \(-0.321677\pi\)
0.531371 + 0.847139i \(0.321677\pi\)
\(908\) 0 0
\(909\) 16.3337 0.541754
\(910\) 0 0
\(911\) 24.7297 0.819331 0.409665 0.912236i \(-0.365645\pi\)
0.409665 + 0.912236i \(0.365645\pi\)
\(912\) 0 0
\(913\) −17.9240 −0.593197
\(914\) 0 0
\(915\) 9.68004 0.320012
\(916\) 0 0
\(917\) 8.51485 0.281185
\(918\) 0 0
\(919\) 8.54252 0.281792 0.140896 0.990024i \(-0.455002\pi\)
0.140896 + 0.990024i \(0.455002\pi\)
\(920\) 0 0
\(921\) −40.7187 −1.34173
\(922\) 0 0
\(923\) 9.83212 0.323628
\(924\) 0 0
\(925\) 0.00505244 0.000166123 0
\(926\) 0 0
\(927\) 19.0155 0.624550
\(928\) 0 0
\(929\) −39.3182 −1.28999 −0.644994 0.764188i \(-0.723140\pi\)
−0.644994 + 0.764188i \(0.723140\pi\)
\(930\) 0 0
\(931\) −13.6403 −0.447044
\(932\) 0 0
\(933\) 10.4902 0.343434
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 7.39868 0.241704 0.120852 0.992671i \(-0.461437\pi\)
0.120852 + 0.992671i \(0.461437\pi\)
\(938\) 0 0
\(939\) −2.21070 −0.0721436
\(940\) 0 0
\(941\) −0.517541 −0.0168714 −0.00843568 0.999964i \(-0.502685\pi\)
−0.00843568 + 0.999964i \(0.502685\pi\)
\(942\) 0 0
\(943\) 33.2618 1.08315
\(944\) 0 0
\(945\) 18.4287 0.599486
\(946\) 0 0
\(947\) 13.9135 0.452129 0.226065 0.974112i \(-0.427414\pi\)
0.226065 + 0.974112i \(0.427414\pi\)
\(948\) 0 0
\(949\) −67.7616 −2.19963
\(950\) 0 0
\(951\) −18.0729 −0.586052
\(952\) 0 0
\(953\) −32.3628 −1.04833 −0.524167 0.851616i \(-0.675623\pi\)
−0.524167 + 0.851616i \(0.675623\pi\)
\(954\) 0 0
\(955\) −31.3164 −1.01338
\(956\) 0 0
\(957\) −17.7442 −0.573589
\(958\) 0 0
\(959\) 28.7342 0.927877
\(960\) 0 0
\(961\) −3.24216 −0.104586
\(962\) 0 0
\(963\) 22.9409 0.739259
\(964\) 0 0
\(965\) 44.2651 1.42494
\(966\) 0 0
\(967\) −20.6058 −0.662637 −0.331318 0.943519i \(-0.607493\pi\)
−0.331318 + 0.943519i \(0.607493\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 19.9753 0.641039 0.320520 0.947242i \(-0.396142\pi\)
0.320520 + 0.947242i \(0.396142\pi\)
\(972\) 0 0
\(973\) 30.0351 0.962881
\(974\) 0 0
\(975\) 0.331815 0.0106266
\(976\) 0 0
\(977\) 19.7929 0.633232 0.316616 0.948554i \(-0.397453\pi\)
0.316616 + 0.948554i \(0.397453\pi\)
\(978\) 0 0
\(979\) −4.42602 −0.141456
\(980\) 0 0
\(981\) −16.2932 −0.520203
\(982\) 0 0
\(983\) −29.4492 −0.939285 −0.469643 0.882857i \(-0.655617\pi\)
−0.469643 + 0.882857i \(0.655617\pi\)
\(984\) 0 0
\(985\) −21.3851 −0.681385
\(986\) 0 0
\(987\) −4.61350 −0.146849
\(988\) 0 0
\(989\) 58.1840 1.85014
\(990\) 0 0
\(991\) 16.0615 0.510210 0.255105 0.966913i \(-0.417890\pi\)
0.255105 + 0.966913i \(0.417890\pi\)
\(992\) 0 0
\(993\) 40.0455 1.27081
\(994\) 0 0
\(995\) 50.4252 1.59859
\(996\) 0 0
\(997\) 10.7965 0.341930 0.170965 0.985277i \(-0.445312\pi\)
0.170965 + 0.985277i \(0.445312\pi\)
\(998\) 0 0
\(999\) −0.680045 −0.0215157
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9248.2.a.r.1.2 3
4.3 odd 2 9248.2.a.w.1.2 yes 3
17.16 even 2 9248.2.a.v.1.2 yes 3
68.67 odd 2 9248.2.a.s.1.2 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9248.2.a.r.1.2 3 1.1 even 1 trivial
9248.2.a.s.1.2 yes 3 68.67 odd 2
9248.2.a.v.1.2 yes 3 17.16 even 2
9248.2.a.w.1.2 yes 3 4.3 odd 2