Properties

Label 9248.2.a.z.1.1
Level $9248$
Weight $2$
Character 9248.1
Self dual yes
Analytic conductor $73.846$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9248,2,Mod(1,9248)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9248, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9248.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9248 = 2^{5} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9248.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.8456517893\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.45968.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 9x^{2} + 17 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.51053\) of defining polynomial
Character \(\chi\) \(=\) 9248.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.51053 q^{3} +0.302776 q^{5} +3.27066 q^{7} +3.30278 q^{9} +0.760128 q^{11} +5.90833 q^{13} -0.760128 q^{15} +2.51053 q^{19} -8.21110 q^{21} +3.27066 q^{23} -4.90833 q^{25} -0.760128 q^{27} -7.30278 q^{29} -0.760128 q^{31} -1.90833 q^{33} +0.990277 q^{35} -4.00000 q^{37} -14.8330 q^{39} -5.21110 q^{41} -10.8023 q^{43} +1.00000 q^{45} +9.28200 q^{47} +3.69722 q^{49} -2.09167 q^{53} +0.230148 q^{55} -6.30278 q^{57} -13.0826 q^{59} -14.2111 q^{61} +10.8023 q^{63} +1.78890 q^{65} -10.0421 q^{67} -8.21110 q^{69} -10.0421 q^{71} -12.2111 q^{73} +12.3225 q^{75} +2.48612 q^{77} -8.00000 q^{81} +12.5527 q^{83} +18.3339 q^{87} +9.21110 q^{89} +19.3241 q^{91} +1.90833 q^{93} +0.760128 q^{95} +1.51388 q^{97} +2.51053 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{5} + 6 q^{9} + 2 q^{13} - 4 q^{21} + 2 q^{25} - 22 q^{29} + 14 q^{33} - 16 q^{37} + 8 q^{41} + 4 q^{45} + 22 q^{49} - 30 q^{53} - 18 q^{57} - 28 q^{61} + 36 q^{65} - 4 q^{69} - 20 q^{73} + 46 q^{77}+ \cdots - 30 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.51053 −1.44946 −0.724728 0.689035i \(-0.758035\pi\)
−0.724728 + 0.689035i \(0.758035\pi\)
\(4\) 0 0
\(5\) 0.302776 0.135405 0.0677027 0.997706i \(-0.478433\pi\)
0.0677027 + 0.997706i \(0.478433\pi\)
\(6\) 0 0
\(7\) 3.27066 1.23619 0.618097 0.786102i \(-0.287904\pi\)
0.618097 + 0.786102i \(0.287904\pi\)
\(8\) 0 0
\(9\) 3.30278 1.10093
\(10\) 0 0
\(11\) 0.760128 0.229187 0.114594 0.993412i \(-0.463443\pi\)
0.114594 + 0.993412i \(0.463443\pi\)
\(12\) 0 0
\(13\) 5.90833 1.63868 0.819338 0.573311i \(-0.194341\pi\)
0.819338 + 0.573311i \(0.194341\pi\)
\(14\) 0 0
\(15\) −0.760128 −0.196264
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) 2.51053 0.575956 0.287978 0.957637i \(-0.407017\pi\)
0.287978 + 0.957637i \(0.407017\pi\)
\(20\) 0 0
\(21\) −8.21110 −1.79181
\(22\) 0 0
\(23\) 3.27066 0.681980 0.340990 0.940067i \(-0.389238\pi\)
0.340990 + 0.940067i \(0.389238\pi\)
\(24\) 0 0
\(25\) −4.90833 −0.981665
\(26\) 0 0
\(27\) −0.760128 −0.146287
\(28\) 0 0
\(29\) −7.30278 −1.35609 −0.678046 0.735020i \(-0.737173\pi\)
−0.678046 + 0.735020i \(0.737173\pi\)
\(30\) 0 0
\(31\) −0.760128 −0.136523 −0.0682615 0.997667i \(-0.521745\pi\)
−0.0682615 + 0.997667i \(0.521745\pi\)
\(32\) 0 0
\(33\) −1.90833 −0.332197
\(34\) 0 0
\(35\) 0.990277 0.167387
\(36\) 0 0
\(37\) −4.00000 −0.657596 −0.328798 0.944400i \(-0.606644\pi\)
−0.328798 + 0.944400i \(0.606644\pi\)
\(38\) 0 0
\(39\) −14.8330 −2.37519
\(40\) 0 0
\(41\) −5.21110 −0.813837 −0.406919 0.913464i \(-0.633397\pi\)
−0.406919 + 0.913464i \(0.633397\pi\)
\(42\) 0 0
\(43\) −10.8023 −1.64733 −0.823665 0.567077i \(-0.808074\pi\)
−0.823665 + 0.567077i \(0.808074\pi\)
\(44\) 0 0
\(45\) 1.00000 0.149071
\(46\) 0 0
\(47\) 9.28200 1.35392 0.676960 0.736020i \(-0.263297\pi\)
0.676960 + 0.736020i \(0.263297\pi\)
\(48\) 0 0
\(49\) 3.69722 0.528175
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −2.09167 −0.287313 −0.143657 0.989628i \(-0.545886\pi\)
−0.143657 + 0.989628i \(0.545886\pi\)
\(54\) 0 0
\(55\) 0.230148 0.0310332
\(56\) 0 0
\(57\) −6.30278 −0.834823
\(58\) 0 0
\(59\) −13.0826 −1.70322 −0.851608 0.524180i \(-0.824372\pi\)
−0.851608 + 0.524180i \(0.824372\pi\)
\(60\) 0 0
\(61\) −14.2111 −1.81955 −0.909773 0.415107i \(-0.863744\pi\)
−0.909773 + 0.415107i \(0.863744\pi\)
\(62\) 0 0
\(63\) 10.8023 1.36096
\(64\) 0 0
\(65\) 1.78890 0.221885
\(66\) 0 0
\(67\) −10.0421 −1.22684 −0.613421 0.789756i \(-0.710207\pi\)
−0.613421 + 0.789756i \(0.710207\pi\)
\(68\) 0 0
\(69\) −8.21110 −0.988501
\(70\) 0 0
\(71\) −10.0421 −1.19178 −0.595891 0.803065i \(-0.703201\pi\)
−0.595891 + 0.803065i \(0.703201\pi\)
\(72\) 0 0
\(73\) −12.2111 −1.42920 −0.714601 0.699533i \(-0.753392\pi\)
−0.714601 + 0.699533i \(0.753392\pi\)
\(74\) 0 0
\(75\) 12.3225 1.42288
\(76\) 0 0
\(77\) 2.48612 0.283320
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) −8.00000 −0.888889
\(82\) 0 0
\(83\) 12.5527 1.37783 0.688917 0.724840i \(-0.258086\pi\)
0.688917 + 0.724840i \(0.258086\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 18.3339 1.96560
\(88\) 0 0
\(89\) 9.21110 0.976375 0.488187 0.872739i \(-0.337658\pi\)
0.488187 + 0.872739i \(0.337658\pi\)
\(90\) 0 0
\(91\) 19.3241 2.02572
\(92\) 0 0
\(93\) 1.90833 0.197884
\(94\) 0 0
\(95\) 0.760128 0.0779875
\(96\) 0 0
\(97\) 1.51388 0.153711 0.0768555 0.997042i \(-0.475512\pi\)
0.0768555 + 0.997042i \(0.475512\pi\)
\(98\) 0 0
\(99\) 2.51053 0.252318
\(100\) 0 0
\(101\) 3.00000 0.298511 0.149256 0.988799i \(-0.452312\pi\)
0.149256 + 0.988799i \(0.452312\pi\)
\(102\) 0 0
\(103\) 13.0826 1.28907 0.644536 0.764574i \(-0.277051\pi\)
0.644536 + 0.764574i \(0.277051\pi\)
\(104\) 0 0
\(105\) −2.48612 −0.242621
\(106\) 0 0
\(107\) −9.28200 −0.897325 −0.448663 0.893701i \(-0.648099\pi\)
−0.448663 + 0.893701i \(0.648099\pi\)
\(108\) 0 0
\(109\) −9.42221 −0.902484 −0.451242 0.892402i \(-0.649019\pi\)
−0.451242 + 0.892402i \(0.649019\pi\)
\(110\) 0 0
\(111\) 10.0421 0.953157
\(112\) 0 0
\(113\) −12.9083 −1.21431 −0.607157 0.794582i \(-0.707690\pi\)
−0.607157 + 0.794582i \(0.707690\pi\)
\(114\) 0 0
\(115\) 0.990277 0.0923438
\(116\) 0 0
\(117\) 19.5139 1.80406
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −10.4222 −0.947473
\(122\) 0 0
\(123\) 13.0826 1.17962
\(124\) 0 0
\(125\) −3.00000 −0.268328
\(126\) 0 0
\(127\) 10.8023 0.958546 0.479273 0.877666i \(-0.340900\pi\)
0.479273 + 0.877666i \(0.340900\pi\)
\(128\) 0 0
\(129\) 27.1194 2.38773
\(130\) 0 0
\(131\) −10.0421 −0.877385 −0.438693 0.898637i \(-0.644558\pi\)
−0.438693 + 0.898637i \(0.644558\pi\)
\(132\) 0 0
\(133\) 8.21110 0.711993
\(134\) 0 0
\(135\) −0.230148 −0.0198080
\(136\) 0 0
\(137\) −17.2111 −1.47044 −0.735222 0.677827i \(-0.762922\pi\)
−0.735222 + 0.677827i \(0.762922\pi\)
\(138\) 0 0
\(139\) −19.8541 −1.68400 −0.842002 0.539474i \(-0.818623\pi\)
−0.842002 + 0.539474i \(0.818623\pi\)
\(140\) 0 0
\(141\) −23.3028 −1.96245
\(142\) 0 0
\(143\) 4.49109 0.375563
\(144\) 0 0
\(145\) −2.21110 −0.183622
\(146\) 0 0
\(147\) −9.28200 −0.765567
\(148\) 0 0
\(149\) −5.21110 −0.426910 −0.213455 0.976953i \(-0.568472\pi\)
−0.213455 + 0.976953i \(0.568472\pi\)
\(150\) 0 0
\(151\) −0.760128 −0.0618584 −0.0309292 0.999522i \(-0.509847\pi\)
−0.0309292 + 0.999522i \(0.509847\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.230148 −0.0184860
\(156\) 0 0
\(157\) −3.09167 −0.246742 −0.123371 0.992361i \(-0.539371\pi\)
−0.123371 + 0.992361i \(0.539371\pi\)
\(158\) 0 0
\(159\) 5.25121 0.416448
\(160\) 0 0
\(161\) 10.6972 0.843059
\(162\) 0 0
\(163\) 9.28200 0.727023 0.363511 0.931590i \(-0.381578\pi\)
0.363511 + 0.931590i \(0.381578\pi\)
\(164\) 0 0
\(165\) −0.577795 −0.0449813
\(166\) 0 0
\(167\) 7.53160 0.582813 0.291406 0.956599i \(-0.405877\pi\)
0.291406 + 0.956599i \(0.405877\pi\)
\(168\) 0 0
\(169\) 21.9083 1.68526
\(170\) 0 0
\(171\) 8.29173 0.634084
\(172\) 0 0
\(173\) 6.21110 0.472221 0.236111 0.971726i \(-0.424127\pi\)
0.236111 + 0.971726i \(0.424127\pi\)
\(174\) 0 0
\(175\) −16.0535 −1.21353
\(176\) 0 0
\(177\) 32.8444 2.46874
\(178\) 0 0
\(179\) −23.3549 −1.74563 −0.872815 0.488052i \(-0.837708\pi\)
−0.872815 + 0.488052i \(0.837708\pi\)
\(180\) 0 0
\(181\) −3.78890 −0.281627 −0.140813 0.990036i \(-0.544972\pi\)
−0.140813 + 0.990036i \(0.544972\pi\)
\(182\) 0 0
\(183\) 35.6774 2.63735
\(184\) 0 0
\(185\) −1.21110 −0.0890420
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −2.48612 −0.180839
\(190\) 0 0
\(191\) 17.5737 1.27159 0.635795 0.771858i \(-0.280672\pi\)
0.635795 + 0.771858i \(0.280672\pi\)
\(192\) 0 0
\(193\) −5.00000 −0.359908 −0.179954 0.983675i \(-0.557595\pi\)
−0.179954 + 0.983675i \(0.557595\pi\)
\(194\) 0 0
\(195\) −4.49109 −0.321613
\(196\) 0 0
\(197\) 23.9361 1.70538 0.852688 0.522421i \(-0.174971\pi\)
0.852688 + 0.522421i \(0.174971\pi\)
\(198\) 0 0
\(199\) 20.8444 1.47762 0.738810 0.673914i \(-0.235388\pi\)
0.738810 + 0.673914i \(0.235388\pi\)
\(200\) 0 0
\(201\) 25.2111 1.77825
\(202\) 0 0
\(203\) −23.8849 −1.67639
\(204\) 0 0
\(205\) −1.57779 −0.110198
\(206\) 0 0
\(207\) 10.8023 0.750809
\(208\) 0 0
\(209\) 1.90833 0.132002
\(210\) 0 0
\(211\) −16.3533 −1.12581 −0.562904 0.826522i \(-0.690316\pi\)
−0.562904 + 0.826522i \(0.690316\pi\)
\(212\) 0 0
\(213\) 25.2111 1.72744
\(214\) 0 0
\(215\) −3.27066 −0.223057
\(216\) 0 0
\(217\) −2.48612 −0.168769
\(218\) 0 0
\(219\) 30.6564 2.07157
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −9.81198 −0.657059 −0.328530 0.944494i \(-0.606553\pi\)
−0.328530 + 0.944494i \(0.606553\pi\)
\(224\) 0 0
\(225\) −16.2111 −1.08074
\(226\) 0 0
\(227\) 7.76175 0.515165 0.257583 0.966256i \(-0.417074\pi\)
0.257583 + 0.966256i \(0.417074\pi\)
\(228\) 0 0
\(229\) −21.2111 −1.40167 −0.700835 0.713324i \(-0.747189\pi\)
−0.700835 + 0.713324i \(0.747189\pi\)
\(230\) 0 0
\(231\) −6.24149 −0.410660
\(232\) 0 0
\(233\) −6.42221 −0.420733 −0.210366 0.977623i \(-0.567466\pi\)
−0.210366 + 0.977623i \(0.567466\pi\)
\(234\) 0 0
\(235\) 2.81036 0.183328
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −13.8428 −0.895415 −0.447707 0.894180i \(-0.647759\pi\)
−0.447707 + 0.894180i \(0.647759\pi\)
\(240\) 0 0
\(241\) −3.09167 −0.199152 −0.0995761 0.995030i \(-0.531749\pi\)
−0.0995761 + 0.995030i \(0.531749\pi\)
\(242\) 0 0
\(243\) 22.3646 1.43469
\(244\) 0 0
\(245\) 1.11943 0.0715177
\(246\) 0 0
\(247\) 14.8330 0.943804
\(248\) 0 0
\(249\) −31.5139 −1.99711
\(250\) 0 0
\(251\) 10.5721 0.667306 0.333653 0.942696i \(-0.391719\pi\)
0.333653 + 0.942696i \(0.391719\pi\)
\(252\) 0 0
\(253\) 2.48612 0.156301
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 29.5139 1.84103 0.920513 0.390713i \(-0.127771\pi\)
0.920513 + 0.390713i \(0.127771\pi\)
\(258\) 0 0
\(259\) −13.0826 −0.812916
\(260\) 0 0
\(261\) −24.1194 −1.49296
\(262\) 0 0
\(263\) 30.6564 1.89035 0.945177 0.326560i \(-0.105889\pi\)
0.945177 + 0.326560i \(0.105889\pi\)
\(264\) 0 0
\(265\) −0.633308 −0.0389038
\(266\) 0 0
\(267\) −23.1248 −1.41521
\(268\) 0 0
\(269\) 17.9083 1.09189 0.545945 0.837821i \(-0.316171\pi\)
0.545945 + 0.837821i \(0.316171\pi\)
\(270\) 0 0
\(271\) −6.77147 −0.411338 −0.205669 0.978622i \(-0.565937\pi\)
−0.205669 + 0.978622i \(0.565937\pi\)
\(272\) 0 0
\(273\) −48.5139 −2.93619
\(274\) 0 0
\(275\) −3.73096 −0.224985
\(276\) 0 0
\(277\) −10.7889 −0.648242 −0.324121 0.946016i \(-0.605069\pi\)
−0.324121 + 0.946016i \(0.605069\pi\)
\(278\) 0 0
\(279\) −2.51053 −0.150302
\(280\) 0 0
\(281\) 20.9083 1.24729 0.623643 0.781709i \(-0.285652\pi\)
0.623643 + 0.781709i \(0.285652\pi\)
\(282\) 0 0
\(283\) −26.1653 −1.55536 −0.777682 0.628657i \(-0.783605\pi\)
−0.777682 + 0.628657i \(0.783605\pi\)
\(284\) 0 0
\(285\) −1.90833 −0.113040
\(286\) 0 0
\(287\) −17.0438 −1.00606
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) −3.80064 −0.222798
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) −3.96111 −0.230625
\(296\) 0 0
\(297\) −0.577795 −0.0335271
\(298\) 0 0
\(299\) 19.3241 1.11754
\(300\) 0 0
\(301\) −35.3305 −2.03642
\(302\) 0 0
\(303\) −7.53160 −0.432679
\(304\) 0 0
\(305\) −4.30278 −0.246376
\(306\) 0 0
\(307\) 9.81198 0.559999 0.280000 0.960000i \(-0.409666\pi\)
0.280000 + 0.960000i \(0.409666\pi\)
\(308\) 0 0
\(309\) −32.8444 −1.86845
\(310\) 0 0
\(311\) 15.5932 0.884208 0.442104 0.896964i \(-0.354232\pi\)
0.442104 + 0.896964i \(0.354232\pi\)
\(312\) 0 0
\(313\) −10.4222 −0.589098 −0.294549 0.955636i \(-0.595169\pi\)
−0.294549 + 0.955636i \(0.595169\pi\)
\(314\) 0 0
\(315\) 3.27066 0.184281
\(316\) 0 0
\(317\) −13.4222 −0.753866 −0.376933 0.926240i \(-0.623021\pi\)
−0.376933 + 0.926240i \(0.623021\pi\)
\(318\) 0 0
\(319\) −5.55105 −0.310799
\(320\) 0 0
\(321\) 23.3028 1.30063
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −29.0000 −1.60863
\(326\) 0 0
\(327\) 23.6548 1.30811
\(328\) 0 0
\(329\) 30.3583 1.67371
\(330\) 0 0
\(331\) 12.8525 0.706437 0.353219 0.935541i \(-0.385087\pi\)
0.353219 + 0.935541i \(0.385087\pi\)
\(332\) 0 0
\(333\) −13.2111 −0.723964
\(334\) 0 0
\(335\) −3.04051 −0.166121
\(336\) 0 0
\(337\) −7.11943 −0.387820 −0.193910 0.981019i \(-0.562117\pi\)
−0.193910 + 0.981019i \(0.562117\pi\)
\(338\) 0 0
\(339\) 32.4068 1.76009
\(340\) 0 0
\(341\) −0.577795 −0.0312893
\(342\) 0 0
\(343\) −10.8023 −0.583267
\(344\) 0 0
\(345\) −2.48612 −0.133848
\(346\) 0 0
\(347\) 2.51053 0.134772 0.0673862 0.997727i \(-0.478534\pi\)
0.0673862 + 0.997727i \(0.478534\pi\)
\(348\) 0 0
\(349\) −2.57779 −0.137986 −0.0689931 0.997617i \(-0.521979\pi\)
−0.0689931 + 0.997617i \(0.521979\pi\)
\(350\) 0 0
\(351\) −4.49109 −0.239716
\(352\) 0 0
\(353\) −24.6333 −1.31110 −0.655549 0.755152i \(-0.727563\pi\)
−0.655549 + 0.755152i \(0.727563\pi\)
\(354\) 0 0
\(355\) −3.04051 −0.161374
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 13.3128 0.702622 0.351311 0.936259i \(-0.385736\pi\)
0.351311 + 0.936259i \(0.385736\pi\)
\(360\) 0 0
\(361\) −12.6972 −0.668275
\(362\) 0 0
\(363\) 26.1653 1.37332
\(364\) 0 0
\(365\) −3.69722 −0.193522
\(366\) 0 0
\(367\) −26.1653 −1.36582 −0.682908 0.730504i \(-0.739285\pi\)
−0.682908 + 0.730504i \(0.739285\pi\)
\(368\) 0 0
\(369\) −17.2111 −0.895974
\(370\) 0 0
\(371\) −6.84115 −0.355175
\(372\) 0 0
\(373\) 6.21110 0.321599 0.160799 0.986987i \(-0.448593\pi\)
0.160799 + 0.986987i \(0.448593\pi\)
\(374\) 0 0
\(375\) 7.53160 0.388930
\(376\) 0 0
\(377\) −43.1472 −2.22219
\(378\) 0 0
\(379\) −0.760128 −0.0390452 −0.0195226 0.999809i \(-0.506215\pi\)
−0.0195226 + 0.999809i \(0.506215\pi\)
\(380\) 0 0
\(381\) −27.1194 −1.38937
\(382\) 0 0
\(383\) 27.6159 1.41110 0.705552 0.708658i \(-0.250699\pi\)
0.705552 + 0.708658i \(0.250699\pi\)
\(384\) 0 0
\(385\) 0.752737 0.0383630
\(386\) 0 0
\(387\) −35.6774 −1.81359
\(388\) 0 0
\(389\) 17.0000 0.861934 0.430967 0.902368i \(-0.358172\pi\)
0.430967 + 0.902368i \(0.358172\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 25.2111 1.27173
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −28.2111 −1.41587 −0.707937 0.706275i \(-0.750374\pi\)
−0.707937 + 0.706275i \(0.750374\pi\)
\(398\) 0 0
\(399\) −20.6142 −1.03200
\(400\) 0 0
\(401\) −11.3305 −0.565820 −0.282910 0.959146i \(-0.591300\pi\)
−0.282910 + 0.959146i \(0.591300\pi\)
\(402\) 0 0
\(403\) −4.49109 −0.223717
\(404\) 0 0
\(405\) −2.42221 −0.120360
\(406\) 0 0
\(407\) −3.04051 −0.150713
\(408\) 0 0
\(409\) −19.7889 −0.978498 −0.489249 0.872144i \(-0.662729\pi\)
−0.489249 + 0.872144i \(0.662729\pi\)
\(410\) 0 0
\(411\) 43.2090 2.13134
\(412\) 0 0
\(413\) −42.7889 −2.10550
\(414\) 0 0
\(415\) 3.80064 0.186566
\(416\) 0 0
\(417\) 49.8444 2.44089
\(418\) 0 0
\(419\) 30.8865 1.50891 0.754453 0.656354i \(-0.227902\pi\)
0.754453 + 0.656354i \(0.227902\pi\)
\(420\) 0 0
\(421\) 37.5139 1.82831 0.914157 0.405360i \(-0.132854\pi\)
0.914157 + 0.405360i \(0.132854\pi\)
\(422\) 0 0
\(423\) 30.6564 1.49056
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −46.4797 −2.24931
\(428\) 0 0
\(429\) −11.2750 −0.544363
\(430\) 0 0
\(431\) −36.4376 −1.75514 −0.877568 0.479452i \(-0.840835\pi\)
−0.877568 + 0.479452i \(0.840835\pi\)
\(432\) 0 0
\(433\) 25.2111 1.21157 0.605784 0.795629i \(-0.292860\pi\)
0.605784 + 0.795629i \(0.292860\pi\)
\(434\) 0 0
\(435\) 5.55105 0.266152
\(436\) 0 0
\(437\) 8.21110 0.392790
\(438\) 0 0
\(439\) 40.1685 1.91714 0.958570 0.284858i \(-0.0919466\pi\)
0.958570 + 0.284858i \(0.0919466\pi\)
\(440\) 0 0
\(441\) 12.2111 0.581481
\(442\) 0 0
\(443\) −12.3225 −0.585460 −0.292730 0.956195i \(-0.594564\pi\)
−0.292730 + 0.956195i \(0.594564\pi\)
\(444\) 0 0
\(445\) 2.78890 0.132206
\(446\) 0 0
\(447\) 13.0826 0.618788
\(448\) 0 0
\(449\) −9.90833 −0.467603 −0.233801 0.972284i \(-0.575117\pi\)
−0.233801 + 0.972284i \(0.575117\pi\)
\(450\) 0 0
\(451\) −3.96111 −0.186521
\(452\) 0 0
\(453\) 1.90833 0.0896610
\(454\) 0 0
\(455\) 5.85088 0.274293
\(456\) 0 0
\(457\) 14.7250 0.688806 0.344403 0.938822i \(-0.388081\pi\)
0.344403 + 0.938822i \(0.388081\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −27.6333 −1.28701 −0.643506 0.765441i \(-0.722521\pi\)
−0.643506 + 0.765441i \(0.722521\pi\)
\(462\) 0 0
\(463\) −20.0843 −0.933395 −0.466697 0.884417i \(-0.654556\pi\)
−0.466697 + 0.884417i \(0.654556\pi\)
\(464\) 0 0
\(465\) 0.577795 0.0267946
\(466\) 0 0
\(467\) −6.31117 −0.292046 −0.146023 0.989281i \(-0.546647\pi\)
−0.146023 + 0.989281i \(0.546647\pi\)
\(468\) 0 0
\(469\) −32.8444 −1.51661
\(470\) 0 0
\(471\) 7.76175 0.357642
\(472\) 0 0
\(473\) −8.21110 −0.377547
\(474\) 0 0
\(475\) −12.3225 −0.565396
\(476\) 0 0
\(477\) −6.90833 −0.316311
\(478\) 0 0
\(479\) 22.3646 1.02187 0.510933 0.859620i \(-0.329300\pi\)
0.510933 + 0.859620i \(0.329300\pi\)
\(480\) 0 0
\(481\) −23.6333 −1.07759
\(482\) 0 0
\(483\) −26.8557 −1.22198
\(484\) 0 0
\(485\) 0.458365 0.0208133
\(486\) 0 0
\(487\) 9.51215 0.431037 0.215518 0.976500i \(-0.430856\pi\)
0.215518 + 0.976500i \(0.430856\pi\)
\(488\) 0 0
\(489\) −23.3028 −1.05379
\(490\) 0 0
\(491\) −36.4376 −1.64440 −0.822202 0.569195i \(-0.807255\pi\)
−0.822202 + 0.569195i \(0.807255\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0.760128 0.0341652
\(496\) 0 0
\(497\) −32.8444 −1.47327
\(498\) 0 0
\(499\) −33.3971 −1.49506 −0.747529 0.664229i \(-0.768760\pi\)
−0.747529 + 0.664229i \(0.768760\pi\)
\(500\) 0 0
\(501\) −18.9083 −0.844762
\(502\) 0 0
\(503\) 0.760128 0.0338924 0.0169462 0.999856i \(-0.494606\pi\)
0.0169462 + 0.999856i \(0.494606\pi\)
\(504\) 0 0
\(505\) 0.908327 0.0404200
\(506\) 0 0
\(507\) −55.0016 −2.44271
\(508\) 0 0
\(509\) 18.2111 0.807193 0.403596 0.914937i \(-0.367760\pi\)
0.403596 + 0.914937i \(0.367760\pi\)
\(510\) 0 0
\(511\) −39.9384 −1.76677
\(512\) 0 0
\(513\) −1.90833 −0.0842547
\(514\) 0 0
\(515\) 3.96111 0.174547
\(516\) 0 0
\(517\) 7.05551 0.310301
\(518\) 0 0
\(519\) −15.5932 −0.684465
\(520\) 0 0
\(521\) 5.21110 0.228303 0.114151 0.993463i \(-0.463585\pi\)
0.114151 + 0.993463i \(0.463585\pi\)
\(522\) 0 0
\(523\) −9.28200 −0.405874 −0.202937 0.979192i \(-0.565049\pi\)
−0.202937 + 0.979192i \(0.565049\pi\)
\(524\) 0 0
\(525\) 40.3028 1.75896
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −12.3028 −0.534903
\(530\) 0 0
\(531\) −43.2090 −1.87511
\(532\) 0 0
\(533\) −30.7889 −1.33362
\(534\) 0 0
\(535\) −2.81036 −0.121503
\(536\) 0 0
\(537\) 58.6333 2.53021
\(538\) 0 0
\(539\) 2.81036 0.121051
\(540\) 0 0
\(541\) 7.30278 0.313971 0.156985 0.987601i \(-0.449822\pi\)
0.156985 + 0.987601i \(0.449822\pi\)
\(542\) 0 0
\(543\) 9.51215 0.408206
\(544\) 0 0
\(545\) −2.85281 −0.122201
\(546\) 0 0
\(547\) −3.80064 −0.162504 −0.0812518 0.996694i \(-0.525892\pi\)
−0.0812518 + 0.996694i \(0.525892\pi\)
\(548\) 0 0
\(549\) −46.9361 −2.00318
\(550\) 0 0
\(551\) −18.3339 −0.781049
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 3.04051 0.129063
\(556\) 0 0
\(557\) 2.78890 0.118169 0.0590847 0.998253i \(-0.481182\pi\)
0.0590847 + 0.998253i \(0.481182\pi\)
\(558\) 0 0
\(559\) −63.8233 −2.69944
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 23.1248 0.974593 0.487297 0.873237i \(-0.337983\pi\)
0.487297 + 0.873237i \(0.337983\pi\)
\(564\) 0 0
\(565\) −3.90833 −0.164425
\(566\) 0 0
\(567\) −26.1653 −1.09884
\(568\) 0 0
\(569\) −36.2111 −1.51805 −0.759024 0.651062i \(-0.774324\pi\)
−0.759024 + 0.651062i \(0.774324\pi\)
\(570\) 0 0
\(571\) 10.5721 0.442429 0.221215 0.975225i \(-0.428998\pi\)
0.221215 + 0.975225i \(0.428998\pi\)
\(572\) 0 0
\(573\) −44.1194 −1.84312
\(574\) 0 0
\(575\) −16.0535 −0.669476
\(576\) 0 0
\(577\) −10.6333 −0.442670 −0.221335 0.975198i \(-0.571041\pi\)
−0.221335 + 0.975198i \(0.571041\pi\)
\(578\) 0 0
\(579\) 12.5527 0.521671
\(580\) 0 0
\(581\) 41.0555 1.70327
\(582\) 0 0
\(583\) −1.58994 −0.0658486
\(584\) 0 0
\(585\) 5.90833 0.244279
\(586\) 0 0
\(587\) 9.51215 0.392609 0.196304 0.980543i \(-0.437106\pi\)
0.196304 + 0.980543i \(0.437106\pi\)
\(588\) 0 0
\(589\) −1.90833 −0.0786312
\(590\) 0 0
\(591\) −60.0923 −2.47187
\(592\) 0 0
\(593\) −7.78890 −0.319852 −0.159926 0.987129i \(-0.551126\pi\)
−0.159926 + 0.987129i \(0.551126\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −52.3305 −2.14175
\(598\) 0 0
\(599\) −7.76175 −0.317136 −0.158568 0.987348i \(-0.550688\pi\)
−0.158568 + 0.987348i \(0.550688\pi\)
\(600\) 0 0
\(601\) −38.7527 −1.58076 −0.790379 0.612619i \(-0.790116\pi\)
−0.790379 + 0.612619i \(0.790116\pi\)
\(602\) 0 0
\(603\) −33.1669 −1.35066
\(604\) 0 0
\(605\) −3.15559 −0.128293
\(606\) 0 0
\(607\) −7.76175 −0.315040 −0.157520 0.987516i \(-0.550350\pi\)
−0.157520 + 0.987516i \(0.550350\pi\)
\(608\) 0 0
\(609\) 59.9638 2.42986
\(610\) 0 0
\(611\) 54.8411 2.21863
\(612\) 0 0
\(613\) 25.2111 1.01827 0.509133 0.860688i \(-0.329966\pi\)
0.509133 + 0.860688i \(0.329966\pi\)
\(614\) 0 0
\(615\) 3.96111 0.159727
\(616\) 0 0
\(617\) 25.0555 1.00870 0.504348 0.863500i \(-0.331733\pi\)
0.504348 + 0.863500i \(0.331733\pi\)
\(618\) 0 0
\(619\) 10.8023 0.434179 0.217090 0.976152i \(-0.430344\pi\)
0.217090 + 0.976152i \(0.430344\pi\)
\(620\) 0 0
\(621\) −2.48612 −0.0997646
\(622\) 0 0
\(623\) 30.1264 1.20699
\(624\) 0 0
\(625\) 23.6333 0.945332
\(626\) 0 0
\(627\) −4.79092 −0.191331
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −2.51053 −0.0999427 −0.0499714 0.998751i \(-0.515913\pi\)
−0.0499714 + 0.998751i \(0.515913\pi\)
\(632\) 0 0
\(633\) 41.0555 1.63181
\(634\) 0 0
\(635\) 3.27066 0.129792
\(636\) 0 0
\(637\) 21.8444 0.865507
\(638\) 0 0
\(639\) −33.1669 −1.31206
\(640\) 0 0
\(641\) −9.72498 −0.384114 −0.192057 0.981384i \(-0.561516\pi\)
−0.192057 + 0.981384i \(0.561516\pi\)
\(642\) 0 0
\(643\) 33.1669 1.30798 0.653988 0.756505i \(-0.273095\pi\)
0.653988 + 0.756505i \(0.273095\pi\)
\(644\) 0 0
\(645\) 8.21110 0.323312
\(646\) 0 0
\(647\) −20.8444 −0.819478 −0.409739 0.912203i \(-0.634380\pi\)
−0.409739 + 0.912203i \(0.634380\pi\)
\(648\) 0 0
\(649\) −9.94449 −0.390355
\(650\) 0 0
\(651\) 6.24149 0.244623
\(652\) 0 0
\(653\) 27.4222 1.07311 0.536557 0.843864i \(-0.319725\pi\)
0.536557 + 0.843864i \(0.319725\pi\)
\(654\) 0 0
\(655\) −3.04051 −0.118803
\(656\) 0 0
\(657\) −40.3305 −1.57344
\(658\) 0 0
\(659\) −20.8444 −0.811982 −0.405991 0.913877i \(-0.633074\pi\)
−0.405991 + 0.913877i \(0.633074\pi\)
\(660\) 0 0
\(661\) 14.4861 0.563445 0.281722 0.959496i \(-0.409094\pi\)
0.281722 + 0.959496i \(0.409094\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.48612 0.0964077
\(666\) 0 0
\(667\) −23.8849 −0.924827
\(668\) 0 0
\(669\) 24.6333 0.952379
\(670\) 0 0
\(671\) −10.8023 −0.417017
\(672\) 0 0
\(673\) 14.4222 0.555935 0.277968 0.960590i \(-0.410339\pi\)
0.277968 + 0.960590i \(0.410339\pi\)
\(674\) 0 0
\(675\) 3.73096 0.143605
\(676\) 0 0
\(677\) 40.5139 1.55707 0.778537 0.627598i \(-0.215962\pi\)
0.778537 + 0.627598i \(0.215962\pi\)
\(678\) 0 0
\(679\) 4.95138 0.190017
\(680\) 0 0
\(681\) −19.4861 −0.746710
\(682\) 0 0
\(683\) −31.7163 −1.21359 −0.606796 0.794858i \(-0.707545\pi\)
−0.606796 + 0.794858i \(0.707545\pi\)
\(684\) 0 0
\(685\) −5.21110 −0.199106
\(686\) 0 0
\(687\) 53.2512 2.03166
\(688\) 0 0
\(689\) −12.3583 −0.470813
\(690\) 0 0
\(691\) 24.6450 0.937541 0.468771 0.883320i \(-0.344697\pi\)
0.468771 + 0.883320i \(0.344697\pi\)
\(692\) 0 0
\(693\) 8.21110 0.311914
\(694\) 0 0
\(695\) −6.01134 −0.228023
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 16.1232 0.609834
\(700\) 0 0
\(701\) −9.78890 −0.369722 −0.184861 0.982765i \(-0.559183\pi\)
−0.184861 + 0.982765i \(0.559183\pi\)
\(702\) 0 0
\(703\) −10.0421 −0.378746
\(704\) 0 0
\(705\) −7.05551 −0.265726
\(706\) 0 0
\(707\) 9.81198 0.369018
\(708\) 0 0
\(709\) −6.09167 −0.228778 −0.114389 0.993436i \(-0.536491\pi\)
−0.114389 + 0.993436i \(0.536491\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −2.48612 −0.0931060
\(714\) 0 0
\(715\) 1.35979 0.0508533
\(716\) 0 0
\(717\) 34.7527 1.29786
\(718\) 0 0
\(719\) 25.4052 0.947453 0.473726 0.880672i \(-0.342909\pi\)
0.473726 + 0.880672i \(0.342909\pi\)
\(720\) 0 0
\(721\) 42.7889 1.59354
\(722\) 0 0
\(723\) 7.76175 0.288662
\(724\) 0 0
\(725\) 35.8444 1.33123
\(726\) 0 0
\(727\) −49.2901 −1.82807 −0.914034 0.405638i \(-0.867049\pi\)
−0.914034 + 0.405638i \(0.867049\pi\)
\(728\) 0 0
\(729\) −32.1472 −1.19064
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 5.90833 0.218229 0.109115 0.994029i \(-0.465198\pi\)
0.109115 + 0.994029i \(0.465198\pi\)
\(734\) 0 0
\(735\) −2.81036 −0.103662
\(736\) 0 0
\(737\) −7.63331 −0.281177
\(738\) 0 0
\(739\) 40.9287 1.50558 0.752792 0.658258i \(-0.228706\pi\)
0.752792 + 0.658258i \(0.228706\pi\)
\(740\) 0 0
\(741\) −37.2389 −1.36800
\(742\) 0 0
\(743\) −17.8039 −0.653161 −0.326580 0.945169i \(-0.605896\pi\)
−0.326580 + 0.945169i \(0.605896\pi\)
\(744\) 0 0
\(745\) −1.57779 −0.0578059
\(746\) 0 0
\(747\) 41.4586 1.51689
\(748\) 0 0
\(749\) −30.3583 −1.10927
\(750\) 0 0
\(751\) 12.3225 0.449655 0.224828 0.974399i \(-0.427818\pi\)
0.224828 + 0.974399i \(0.427818\pi\)
\(752\) 0 0
\(753\) −26.5416 −0.967231
\(754\) 0 0
\(755\) −0.230148 −0.00837595
\(756\) 0 0
\(757\) −7.78890 −0.283092 −0.141546 0.989932i \(-0.545207\pi\)
−0.141546 + 0.989932i \(0.545207\pi\)
\(758\) 0 0
\(759\) −6.24149 −0.226552
\(760\) 0 0
\(761\) −19.7889 −0.717347 −0.358673 0.933463i \(-0.616771\pi\)
−0.358673 + 0.933463i \(0.616771\pi\)
\(762\) 0 0
\(763\) −30.8168 −1.11564
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −77.2965 −2.79102
\(768\) 0 0
\(769\) 28.3305 1.02163 0.510813 0.859692i \(-0.329345\pi\)
0.510813 + 0.859692i \(0.329345\pi\)
\(770\) 0 0
\(771\) −74.0956 −2.66849
\(772\) 0 0
\(773\) −24.6333 −0.885998 −0.442999 0.896522i \(-0.646086\pi\)
−0.442999 + 0.896522i \(0.646086\pi\)
\(774\) 0 0
\(775\) 3.73096 0.134020
\(776\) 0 0
\(777\) 32.8444 1.17829
\(778\) 0 0
\(779\) −13.0826 −0.468734
\(780\) 0 0
\(781\) −7.63331 −0.273141
\(782\) 0 0
\(783\) 5.55105 0.198378
\(784\) 0 0
\(785\) −0.936083 −0.0334102
\(786\) 0 0
\(787\) 6.08103 0.216765 0.108383 0.994109i \(-0.465433\pi\)
0.108383 + 0.994109i \(0.465433\pi\)
\(788\) 0 0
\(789\) −76.9638 −2.73999
\(790\) 0 0
\(791\) −42.2188 −1.50113
\(792\) 0 0
\(793\) −83.9638 −2.98164
\(794\) 0 0
\(795\) 1.58994 0.0563894
\(796\) 0 0
\(797\) 33.8444 1.19883 0.599415 0.800438i \(-0.295400\pi\)
0.599415 + 0.800438i \(0.295400\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 30.4222 1.07492
\(802\) 0 0
\(803\) −9.28200 −0.327555
\(804\) 0 0
\(805\) 3.23886 0.114155
\(806\) 0 0
\(807\) −44.9594 −1.58265
\(808\) 0 0
\(809\) 47.6333 1.67470 0.837349 0.546669i \(-0.184104\pi\)
0.837349 + 0.546669i \(0.184104\pi\)
\(810\) 0 0
\(811\) 13.0826 0.459394 0.229697 0.973262i \(-0.426227\pi\)
0.229697 + 0.973262i \(0.426227\pi\)
\(812\) 0 0
\(813\) 17.0000 0.596216
\(814\) 0 0
\(815\) 2.81036 0.0984428
\(816\) 0 0
\(817\) −27.1194 −0.948789
\(818\) 0 0
\(819\) 63.8233 2.23017
\(820\) 0 0
\(821\) −31.4222 −1.09664 −0.548321 0.836268i \(-0.684733\pi\)
−0.548321 + 0.836268i \(0.684733\pi\)
\(822\) 0 0
\(823\) −26.3258 −0.917658 −0.458829 0.888525i \(-0.651731\pi\)
−0.458829 + 0.888525i \(0.651731\pi\)
\(824\) 0 0
\(825\) 9.36669 0.326106
\(826\) 0 0
\(827\) 26.9254 0.936289 0.468144 0.883652i \(-0.344923\pi\)
0.468144 + 0.883652i \(0.344923\pi\)
\(828\) 0 0
\(829\) −2.42221 −0.0841267 −0.0420633 0.999115i \(-0.513393\pi\)
−0.0420633 + 0.999115i \(0.513393\pi\)
\(830\) 0 0
\(831\) 27.0859 0.939599
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 2.28038 0.0789160
\(836\) 0 0
\(837\) 0.577795 0.0199715
\(838\) 0 0
\(839\) −37.1280 −1.28180 −0.640901 0.767624i \(-0.721439\pi\)
−0.640901 + 0.767624i \(0.721439\pi\)
\(840\) 0 0
\(841\) 24.3305 0.838984
\(842\) 0 0
\(843\) −52.4910 −1.80789
\(844\) 0 0
\(845\) 6.63331 0.228193
\(846\) 0 0
\(847\) −34.0875 −1.17126
\(848\) 0 0
\(849\) 65.6888 2.25443
\(850\) 0 0
\(851\) −13.0826 −0.448467
\(852\) 0 0
\(853\) −34.2111 −1.17137 −0.585683 0.810540i \(-0.699174\pi\)
−0.585683 + 0.810540i \(0.699174\pi\)
\(854\) 0 0
\(855\) 2.51053 0.0858584
\(856\) 0 0
\(857\) 14.5778 0.497968 0.248984 0.968508i \(-0.419903\pi\)
0.248984 + 0.968508i \(0.419903\pi\)
\(858\) 0 0
\(859\) 3.96111 0.135151 0.0675756 0.997714i \(-0.478474\pi\)
0.0675756 + 0.997714i \(0.478474\pi\)
\(860\) 0 0
\(861\) 42.7889 1.45824
\(862\) 0 0
\(863\) 6.31117 0.214835 0.107417 0.994214i \(-0.465742\pi\)
0.107417 + 0.994214i \(0.465742\pi\)
\(864\) 0 0
\(865\) 1.88057 0.0639413
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −59.3322 −2.01039
\(872\) 0 0
\(873\) 5.00000 0.169224
\(874\) 0 0
\(875\) −9.81198 −0.331706
\(876\) 0 0
\(877\) 7.33053 0.247534 0.123767 0.992311i \(-0.460502\pi\)
0.123767 + 0.992311i \(0.460502\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −33.3583 −1.12387 −0.561935 0.827182i \(-0.689943\pi\)
−0.561935 + 0.827182i \(0.689943\pi\)
\(882\) 0 0
\(883\) −15.5932 −0.524752 −0.262376 0.964966i \(-0.584506\pi\)
−0.262376 + 0.964966i \(0.584506\pi\)
\(884\) 0 0
\(885\) 9.94449 0.334280
\(886\) 0 0
\(887\) 6.31117 0.211908 0.105954 0.994371i \(-0.466210\pi\)
0.105954 + 0.994371i \(0.466210\pi\)
\(888\) 0 0
\(889\) 35.3305 1.18495
\(890\) 0 0
\(891\) −6.08103 −0.203722
\(892\) 0 0
\(893\) 23.3028 0.779798
\(894\) 0 0
\(895\) −7.07130 −0.236368
\(896\) 0 0
\(897\) −48.5139 −1.61983
\(898\) 0 0
\(899\) 5.55105 0.185138
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 88.6985 2.95170
\(904\) 0 0
\(905\) −1.14719 −0.0381337
\(906\) 0 0
\(907\) 32.6369 1.08369 0.541846 0.840478i \(-0.317726\pi\)
0.541846 + 0.840478i \(0.317726\pi\)
\(908\) 0 0
\(909\) 9.90833 0.328638
\(910\) 0 0
\(911\) 26.3954 0.874520 0.437260 0.899335i \(-0.355949\pi\)
0.437260 + 0.899335i \(0.355949\pi\)
\(912\) 0 0
\(913\) 9.54163 0.315782
\(914\) 0 0
\(915\) 10.8023 0.357112
\(916\) 0 0
\(917\) −32.8444 −1.08462
\(918\) 0 0
\(919\) 29.5964 0.976296 0.488148 0.872761i \(-0.337673\pi\)
0.488148 + 0.872761i \(0.337673\pi\)
\(920\) 0 0
\(921\) −24.6333 −0.811695
\(922\) 0 0
\(923\) −59.3322 −1.95294
\(924\) 0 0
\(925\) 19.6333 0.645539
\(926\) 0 0
\(927\) 43.2090 1.41917
\(928\) 0 0
\(929\) 21.9083 0.718789 0.359394 0.933186i \(-0.382983\pi\)
0.359394 + 0.933186i \(0.382983\pi\)
\(930\) 0 0
\(931\) 9.28200 0.304205
\(932\) 0 0
\(933\) −39.1472 −1.28162
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 25.1472 0.821523 0.410761 0.911743i \(-0.365263\pi\)
0.410761 + 0.911743i \(0.365263\pi\)
\(938\) 0 0
\(939\) 26.1653 0.853872
\(940\) 0 0
\(941\) 31.3305 1.02135 0.510673 0.859775i \(-0.329396\pi\)
0.510673 + 0.859775i \(0.329396\pi\)
\(942\) 0 0
\(943\) −17.0438 −0.555021
\(944\) 0 0
\(945\) −0.752737 −0.0244865
\(946\) 0 0
\(947\) 4.72123 0.153419 0.0767097 0.997053i \(-0.475559\pi\)
0.0767097 + 0.997053i \(0.475559\pi\)
\(948\) 0 0
\(949\) −72.1472 −2.34200
\(950\) 0 0
\(951\) 33.6969 1.09270
\(952\) 0 0
\(953\) 14.4861 0.469252 0.234626 0.972086i \(-0.424614\pi\)
0.234626 + 0.972086i \(0.424614\pi\)
\(954\) 0 0
\(955\) 5.32090 0.172180
\(956\) 0 0
\(957\) 13.9361 0.450490
\(958\) 0 0
\(959\) −56.2917 −1.81775
\(960\) 0 0
\(961\) −30.4222 −0.981361
\(962\) 0 0
\(963\) −30.6564 −0.987888
\(964\) 0 0
\(965\) −1.51388 −0.0487335
\(966\) 0 0
\(967\) −20.3144 −0.653267 −0.326634 0.945151i \(-0.605914\pi\)
−0.326634 + 0.945151i \(0.605914\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −16.8136 −0.539574 −0.269787 0.962920i \(-0.586953\pi\)
−0.269787 + 0.962920i \(0.586953\pi\)
\(972\) 0 0
\(973\) −64.9361 −2.08176
\(974\) 0 0
\(975\) 72.8055 2.33164
\(976\) 0 0
\(977\) 31.3028 1.00146 0.500732 0.865602i \(-0.333064\pi\)
0.500732 + 0.865602i \(0.333064\pi\)
\(978\) 0 0
\(979\) 7.00162 0.223773
\(980\) 0 0
\(981\) −31.1194 −0.993567
\(982\) 0 0
\(983\) 23.1248 0.737566 0.368783 0.929516i \(-0.379775\pi\)
0.368783 + 0.929516i \(0.379775\pi\)
\(984\) 0 0
\(985\) 7.24726 0.230917
\(986\) 0 0
\(987\) −76.2155 −2.42597
\(988\) 0 0
\(989\) −35.3305 −1.12345
\(990\) 0 0
\(991\) 44.6596 1.41866 0.709330 0.704877i \(-0.248998\pi\)
0.709330 + 0.704877i \(0.248998\pi\)
\(992\) 0 0
\(993\) −32.2666 −1.02395
\(994\) 0 0
\(995\) 6.31117 0.200078
\(996\) 0 0
\(997\) −28.6972 −0.908850 −0.454425 0.890785i \(-0.650155\pi\)
−0.454425 + 0.890785i \(0.650155\pi\)
\(998\) 0 0
\(999\) 3.04051 0.0961976
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9248.2.a.z.1.1 4
4.3 odd 2 inner 9248.2.a.z.1.4 yes 4
17.16 even 2 9248.2.a.bi.1.4 yes 4
68.67 odd 2 9248.2.a.bi.1.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9248.2.a.z.1.1 4 1.1 even 1 trivial
9248.2.a.z.1.4 yes 4 4.3 odd 2 inner
9248.2.a.bi.1.1 yes 4 68.67 odd 2
9248.2.a.bi.1.4 yes 4 17.16 even 2