Properties

Label 925.2.b.b
Level $925$
Weight $2$
Character orbit 925.b
Analytic conductor $7.386$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [925,2,Mod(149,925)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(925, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("925.149");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 37)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 i q^{2} - 3 i q^{3} - 2 q^{4} + 6 q^{6} + i q^{7} - 6 q^{9} - 5 q^{11} + 6 i q^{12} - 2 i q^{13} - 2 q^{14} - 4 q^{16} - 12 i q^{18} + 3 q^{21} - 10 i q^{22} + 2 i q^{23} + 4 q^{26} + 9 i q^{27} + \cdots + 30 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{4} + 12 q^{6} - 12 q^{9} - 10 q^{11} - 4 q^{14} - 8 q^{16} + 6 q^{21} + 8 q^{26} - 12 q^{29} - 8 q^{31} + 24 q^{36} - 12 q^{39} - 18 q^{41} + 20 q^{44} - 8 q^{46} + 12 q^{49} - 36 q^{54} - 16 q^{59}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
149.1
1.00000i
1.00000i
2.00000i 3.00000i −2.00000 0 6.00000 1.00000i 0 −6.00000 0
149.2 2.00000i 3.00000i −2.00000 0 6.00000 1.00000i 0 −6.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 925.2.b.b 2
5.b even 2 1 inner 925.2.b.b 2
5.c odd 4 1 37.2.a.a 1
5.c odd 4 1 925.2.a.e 1
15.e even 4 1 333.2.a.d 1
15.e even 4 1 8325.2.a.e 1
20.e even 4 1 592.2.a.e 1
35.f even 4 1 1813.2.a.a 1
40.i odd 4 1 2368.2.a.q 1
40.k even 4 1 2368.2.a.b 1
55.e even 4 1 4477.2.a.b 1
60.l odd 4 1 5328.2.a.r 1
65.h odd 4 1 6253.2.a.c 1
185.f even 4 1 1369.2.b.c 2
185.h odd 4 1 1369.2.a.e 1
185.k even 4 1 1369.2.b.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
37.2.a.a 1 5.c odd 4 1
333.2.a.d 1 15.e even 4 1
592.2.a.e 1 20.e even 4 1
925.2.a.e 1 5.c odd 4 1
925.2.b.b 2 1.a even 1 1 trivial
925.2.b.b 2 5.b even 2 1 inner
1369.2.a.e 1 185.h odd 4 1
1369.2.b.c 2 185.f even 4 1
1369.2.b.c 2 185.k even 4 1
1813.2.a.a 1 35.f even 4 1
2368.2.a.b 1 40.k even 4 1
2368.2.a.q 1 40.i odd 4 1
4477.2.a.b 1 55.e even 4 1
5328.2.a.r 1 60.l odd 4 1
6253.2.a.c 1 65.h odd 4 1
8325.2.a.e 1 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(925, [\chi])\):

\( T_{2}^{2} + 4 \) Copy content Toggle raw display
\( T_{3}^{2} + 9 \) Copy content Toggle raw display
\( T_{7}^{2} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 4 \) Copy content Toggle raw display
$3$ \( T^{2} + 9 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 1 \) Copy content Toggle raw display
$11$ \( (T + 5)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 4 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 4 \) Copy content Toggle raw display
$29$ \( (T + 6)^{2} \) Copy content Toggle raw display
$31$ \( (T + 4)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 1 \) Copy content Toggle raw display
$41$ \( (T + 9)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 4 \) Copy content Toggle raw display
$47$ \( T^{2} + 81 \) Copy content Toggle raw display
$53$ \( T^{2} + 1 \) Copy content Toggle raw display
$59$ \( (T + 8)^{2} \) Copy content Toggle raw display
$61$ \( (T + 8)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 64 \) Copy content Toggle raw display
$71$ \( (T - 9)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 1 \) Copy content Toggle raw display
$79$ \( (T + 4)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 225 \) Copy content Toggle raw display
$89$ \( (T + 4)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 16 \) Copy content Toggle raw display
show more
show less