Properties

Label 927.1.v.a.145.1
Level $927$
Weight $1$
Character 927.145
Analytic conductor $0.463$
Analytic rank $0$
Dimension $16$
Projective image $D_{34}$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [927,1,Mod(10,927)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(927, base_ring=CyclotomicField(34))
 
chi = DirichletCharacter(H, H._module([0, 15]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("927.10");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 927 = 3^{2} \cdot 103 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 927.v (of order \(34\), degree \(16\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.462633266711\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\Q(\zeta_{34})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{15} + x^{14} - x^{13} + x^{12} - x^{11} + x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{34}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{34} - \cdots)\)

Embedding invariants

Embedding label 145.1
Root \(0.850217 - 0.526432i\) of defining polynomial
Character \(\chi\) \(=\) 927.145
Dual form 927.1.v.a.748.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.982973 + 0.183750i) q^{4} +(-0.404479 - 1.42160i) q^{7} +(-0.538007 - 1.89090i) q^{13} +(0.932472 + 0.361242i) q^{16} +(0.658809 + 0.600584i) q^{19} +(-0.602635 + 0.798017i) q^{25} +(-0.136374 - 1.47171i) q^{28} +(-0.380338 + 0.981767i) q^{31} +(1.01267 + 1.63552i) q^{37} +(-0.840204 + 1.35698i) q^{43} +(-1.00711 + 0.623578i) q^{49} +(-0.181395 - 1.95756i) q^{52} +(1.12388 - 1.48826i) q^{61} +(0.850217 + 0.526432i) q^{64} +(-1.91545 - 0.544991i) q^{67} +(0.646741 + 0.322039i) q^{73} +(0.537235 + 0.711414i) q^{76} +(0.243964 + 0.489946i) q^{79} +(-2.47048 + 1.52966i) q^{91} +(-0.726337 - 0.961826i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + q^{4} - 2 q^{7} + 2 q^{13} - q^{16} - 2 q^{19} - q^{25} + 2 q^{28} - 3 q^{49} - 2 q^{52} + 2 q^{61} + q^{64} + 2 q^{76} + 2 q^{79} - 13 q^{91} - 15 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/927\mathbb{Z}\right)^\times\).

\(n\) \(722\) \(829\)
\(\chi(n)\) \(1\) \(e\left(\frac{29}{34}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 −0.995734 0.0922684i \(-0.970588\pi\)
0.995734 + 0.0922684i \(0.0294118\pi\)
\(3\) 0 0
\(4\) 0.982973 + 0.183750i 0.982973 + 0.183750i
\(5\) 0 0 −0.445738 0.895163i \(-0.647059\pi\)
0.445738 + 0.895163i \(0.352941\pi\)
\(6\) 0 0
\(7\) −0.404479 1.42160i −0.404479 1.42160i −0.850217 0.526432i \(-0.823529\pi\)
0.445738 0.895163i \(-0.352941\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 0.0922684 0.995734i \(-0.470588\pi\)
−0.0922684 + 0.995734i \(0.529412\pi\)
\(12\) 0 0
\(13\) −0.538007 1.89090i −0.538007 1.89090i −0.445738 0.895163i \(-0.647059\pi\)
−0.0922684 0.995734i \(-0.529412\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0.932472 + 0.361242i 0.932472 + 0.361242i
\(17\) 0 0 −0.798017 0.602635i \(-0.794118\pi\)
0.798017 + 0.602635i \(0.205882\pi\)
\(18\) 0 0
\(19\) 0.658809 + 0.600584i 0.658809 + 0.600584i 0.932472 0.361242i \(-0.117647\pi\)
−0.273663 + 0.961826i \(0.588235\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 0.995734 0.0922684i \(-0.0294118\pi\)
−0.995734 + 0.0922684i \(0.970588\pi\)
\(24\) 0 0
\(25\) −0.602635 + 0.798017i −0.602635 + 0.798017i
\(26\) 0 0
\(27\) 0 0
\(28\) −0.136374 1.47171i −0.136374 1.47171i
\(29\) 0 0 0.895163 0.445738i \(-0.147059\pi\)
−0.895163 + 0.445738i \(0.852941\pi\)
\(30\) 0 0
\(31\) −0.380338 + 0.981767i −0.380338 + 0.981767i 0.602635 + 0.798017i \(0.294118\pi\)
−0.982973 + 0.183750i \(0.941176\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1.01267 + 1.63552i 1.01267 + 1.63552i 0.739009 + 0.673696i \(0.235294\pi\)
0.273663 + 0.961826i \(0.411765\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 −0.895163 0.445738i \(-0.852941\pi\)
0.895163 + 0.445738i \(0.147059\pi\)
\(42\) 0 0
\(43\) −0.840204 + 1.35698i −0.840204 + 1.35698i 0.0922684 + 0.995734i \(0.470588\pi\)
−0.932472 + 0.361242i \(0.882353\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) −1.00711 + 0.623578i −1.00711 + 0.623578i
\(50\) 0 0
\(51\) 0 0
\(52\) −0.181395 1.95756i −0.181395 1.95756i
\(53\) 0 0 −0.739009 0.673696i \(-0.764706\pi\)
0.739009 + 0.673696i \(0.235294\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 −0.961826 0.273663i \(-0.911765\pi\)
0.961826 + 0.273663i \(0.0882353\pi\)
\(60\) 0 0
\(61\) 1.12388 1.48826i 1.12388 1.48826i 0.273663 0.961826i \(-0.411765\pi\)
0.850217 0.526432i \(-0.176471\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0.850217 + 0.526432i 0.850217 + 0.526432i
\(65\) 0 0
\(66\) 0 0
\(67\) −1.91545 0.544991i −1.91545 0.544991i −0.982973 0.183750i \(-0.941176\pi\)
−0.932472 0.361242i \(-0.882353\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.445738 0.895163i \(-0.352941\pi\)
−0.445738 + 0.895163i \(0.647059\pi\)
\(72\) 0 0
\(73\) 0.646741 + 0.322039i 0.646741 + 0.322039i 0.739009 0.673696i \(-0.235294\pi\)
−0.0922684 + 0.995734i \(0.529412\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0.537235 + 0.711414i 0.537235 + 0.711414i
\(77\) 0 0
\(78\) 0 0
\(79\) 0.243964 + 0.489946i 0.243964 + 0.489946i 0.982973 0.183750i \(-0.0588235\pi\)
−0.739009 + 0.673696i \(0.764706\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 0.961826 0.273663i \(-0.0882353\pi\)
−0.961826 + 0.273663i \(0.911765\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 0.982973 0.183750i \(-0.0588235\pi\)
−0.982973 + 0.183750i \(0.941176\pi\)
\(90\) 0 0
\(91\) −2.47048 + 1.52966i −2.47048 + 1.52966i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −0.726337 0.961826i −0.726337 0.961826i 0.273663 0.961826i \(-0.411765\pi\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −0.739009 + 0.673696i −0.739009 + 0.673696i
\(101\) 0 0 0.0922684 0.995734i \(-0.470588\pi\)
−0.0922684 + 0.995734i \(0.529412\pi\)
\(102\) 0 0
\(103\) 0.850217 0.526432i 0.850217 0.526432i
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 0.183750 0.982973i \(-0.441176\pi\)
−0.183750 + 0.982973i \(0.558824\pi\)
\(108\) 0 0
\(109\) 0.576554 0.435393i 0.576554 0.435393i −0.273663 0.961826i \(-0.588235\pi\)
0.850217 + 0.526432i \(0.176471\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0.136374 1.47171i 0.136374 1.47171i
\(113\) 0 0 0.932472 0.361242i \(-0.117647\pi\)
−0.932472 + 0.361242i \(0.882353\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −0.982973 0.183750i −0.982973 0.183750i
\(122\) 0 0
\(123\) 0 0
\(124\) −0.554262 + 0.895163i −0.554262 + 0.895163i
\(125\) 0 0
\(126\) 0 0
\(127\) −1.78269 + 0.887674i −1.78269 + 0.887674i −0.850217 + 0.526432i \(0.823529\pi\)
−0.932472 + 0.361242i \(0.882353\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 0.995734 0.0922684i \(-0.0294118\pi\)
−0.995734 + 0.0922684i \(0.970588\pi\)
\(132\) 0 0
\(133\) 0.587313 1.17948i 0.587313 1.17948i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 0.673696 0.739009i \(-0.264706\pi\)
−0.673696 + 0.739009i \(0.735294\pi\)
\(138\) 0 0
\(139\) −0.465346 + 1.63552i −0.465346 + 1.63552i 0.273663 + 0.961826i \(0.411765\pi\)
−0.739009 + 0.673696i \(0.764706\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0.694903 + 1.79375i 0.694903 + 1.79375i
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) −0.646741 1.66943i −0.646741 1.66943i −0.739009 0.673696i \(-0.764706\pi\)
0.0922684 0.995734i \(-0.470588\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0.942485 + 1.52217i 0.942485 + 1.52217i 0.850217 + 0.526432i \(0.176471\pi\)
0.0922684 + 0.995734i \(0.470588\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0.156896 + 0.0971461i 0.156896 + 0.0971461i 0.602635 0.798017i \(-0.294118\pi\)
−0.445738 + 0.895163i \(0.647059\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.526432 0.850217i \(-0.323529\pi\)
−0.526432 + 0.850217i \(0.676471\pi\)
\(168\) 0 0
\(169\) −2.43582 + 1.50820i −2.43582 + 1.50820i
\(170\) 0 0
\(171\) 0 0
\(172\) −1.07524 + 1.17948i −1.07524 + 1.17948i
\(173\) 0 0 −0.602635 0.798017i \(-0.705882\pi\)
0.602635 + 0.798017i \(0.294118\pi\)
\(174\) 0 0
\(175\) 1.37821 + 0.533922i 1.37821 + 0.533922i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 0.798017 0.602635i \(-0.205882\pi\)
−0.798017 + 0.602635i \(0.794118\pi\)
\(180\) 0 0
\(181\) 0.576554 + 0.435393i 0.576554 + 0.435393i 0.850217 0.526432i \(-0.176471\pi\)
−0.273663 + 0.961826i \(0.588235\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 −0.932472 0.361242i \(-0.882353\pi\)
0.932472 + 0.361242i \(0.117647\pi\)
\(192\) 0 0
\(193\) 1.53511 0.436776i 1.53511 0.436776i 0.602635 0.798017i \(-0.294118\pi\)
0.932472 + 0.361242i \(0.117647\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −1.10455 + 0.427904i −1.10455 + 0.427904i
\(197\) 0 0 0.0922684 0.995734i \(-0.470588\pi\)
−0.0922684 + 0.995734i \(0.529412\pi\)
\(198\) 0 0
\(199\) −1.53511 + 0.436776i −1.53511 + 0.436776i −0.932472 0.361242i \(-0.882353\pi\)
−0.602635 + 0.798017i \(0.705882\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0.181395 1.95756i 0.181395 1.95756i
\(209\) 0 0
\(210\) 0 0
\(211\) 0.328972 0.163808i 0.328972 0.163808i −0.273663 0.961826i \(-0.588235\pi\)
0.602635 + 0.798017i \(0.294118\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 1.54951 + 0.143584i 1.54951 + 0.143584i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −0.111208 + 0.147263i −0.111208 + 0.147263i −0.850217 0.526432i \(-0.823529\pi\)
0.739009 + 0.673696i \(0.235294\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 −0.850217 0.526432i \(-0.823529\pi\)
0.850217 + 0.526432i \(0.176471\pi\)
\(228\) 0 0
\(229\) −0.156896 1.69318i −0.156896 1.69318i −0.602635 0.798017i \(-0.705882\pi\)
0.445738 0.895163i \(-0.352941\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 −0.602635 0.798017i \(-0.705882\pi\)
0.602635 + 0.798017i \(0.294118\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.798017 0.602635i \(-0.205882\pi\)
−0.798017 + 0.602635i \(0.794118\pi\)
\(240\) 0 0
\(241\) −1.34164 1.47171i −1.34164 1.47171i −0.739009 0.673696i \(-0.764706\pi\)
−0.602635 0.798017i \(-0.705882\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 1.37821 1.25640i 1.37821 1.25640i
\(245\) 0 0
\(246\) 0 0
\(247\) 0.781199 1.56886i 0.781199 1.56886i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 0.932472 0.361242i \(-0.117647\pi\)
−0.932472 + 0.361242i \(0.882353\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0.739009 + 0.673696i 0.739009 + 0.673696i
\(257\) 0 0 −0.0922684 0.995734i \(-0.529412\pi\)
0.0922684 + 0.995734i \(0.470588\pi\)
\(258\) 0 0
\(259\) 1.91545 2.10114i 1.91545 2.10114i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −1.78269 0.887674i −1.78269 0.887674i
\(269\) 0 0 −0.183750 0.982973i \(-0.558824\pi\)
0.183750 + 0.982973i \(0.441176\pi\)
\(270\) 0 0
\(271\) −1.29596 1.42160i −1.29596 1.42160i −0.850217 0.526432i \(-0.823529\pi\)
−0.445738 0.895163i \(-0.647059\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 1.60263 + 0.798017i 1.60263 + 0.798017i 1.00000 \(0\)
0.602635 + 0.798017i \(0.294118\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 −0.0922684 0.995734i \(-0.529412\pi\)
0.0922684 + 0.995734i \(0.470588\pi\)
\(282\) 0 0
\(283\) 0.0675278 + 0.361242i 0.0675278 + 0.361242i 1.00000 \(0\)
−0.932472 + 0.361242i \(0.882353\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 0.273663 + 0.961826i 0.273663 + 0.961826i
\(290\) 0 0
\(291\) 0 0
\(292\) 0.576554 + 0.435393i 0.576554 + 0.435393i
\(293\) 0 0 −0.932472 0.361242i \(-0.882353\pi\)
0.932472 + 0.361242i \(0.117647\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 2.26892 + 0.645562i 2.26892 + 0.645562i
\(302\) 0 0
\(303\) 0 0
\(304\) 0.397365 + 0.798017i 0.397365 + 0.798017i
\(305\) 0 0
\(306\) 0 0
\(307\) 1.04837 + 0.0971461i 1.04837 + 0.0971461i 0.602635 0.798017i \(-0.294118\pi\)
0.445738 + 0.895163i \(0.352941\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.995734 0.0922684i \(-0.970588\pi\)
0.995734 + 0.0922684i \(0.0294118\pi\)
\(312\) 0 0
\(313\) −0.538007 0.100571i −0.538007 0.100571i −0.0922684 0.995734i \(-0.529412\pi\)
−0.445738 + 0.895163i \(0.647059\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0.149783 + 0.526432i 0.149783 + 0.526432i
\(317\) 0 0 −0.961826 0.273663i \(-0.911765\pi\)
0.961826 + 0.273663i \(0.0882353\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 1.83319 + 0.710182i 1.83319 + 0.710182i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0.353470 1.89090i 0.353470 1.89090i −0.0922684 0.995734i \(-0.529412\pi\)
0.445738 0.895163i \(-0.352941\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0.0170269 + 0.183750i 0.0170269 + 0.183750i 1.00000 \(0\)
−0.982973 + 0.183750i \(0.941176\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0.201564 + 0.183750i 0.201564 + 0.183750i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 −0.673696 0.739009i \(-0.735294\pi\)
0.673696 + 0.739009i \(0.264706\pi\)
\(348\) 0 0
\(349\) 0.193463 + 1.03494i 0.193463 + 1.03494i 0.932472 + 0.361242i \(0.117647\pi\)
−0.739009 + 0.673696i \(0.764706\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 0.273663 0.961826i \(-0.411765\pi\)
−0.273663 + 0.961826i \(0.588235\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.673696 0.739009i \(-0.264706\pi\)
−0.673696 + 0.739009i \(0.735294\pi\)
\(360\) 0 0
\(361\) −0.0189399 0.204394i −0.0189399 0.204394i
\(362\) 0 0
\(363\) 0 0
\(364\) −2.70949 + 1.04966i −2.70949 + 1.04966i
\(365\) 0 0
\(366\) 0 0
\(367\) 1.58561 0.614268i 1.58561 0.614268i 0.602635 0.798017i \(-0.294118\pi\)
0.982973 + 0.183750i \(0.0588235\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −1.44574 0.895163i −1.44574 0.895163i −0.445738 0.895163i \(-0.647059\pi\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 1.07524 0.811985i 1.07524 0.811985i 0.0922684 0.995734i \(-0.470588\pi\)
0.982973 + 0.183750i \(0.0588235\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 −0.445738 0.895163i \(-0.647059\pi\)
0.445738 + 0.895163i \(0.352941\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) −0.537235 1.07891i −0.537235 1.07891i
\(389\) 0 0 −0.0922684 0.995734i \(-0.529412\pi\)
0.0922684 + 0.995734i \(0.470588\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0.486734 1.25640i 0.486734 1.25640i −0.445738 0.895163i \(-0.647059\pi\)
0.932472 0.361242i \(-0.117647\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −0.850217 + 0.526432i −0.850217 + 0.526432i
\(401\) 0 0 −0.995734 0.0922684i \(-0.970588\pi\)
0.995734 + 0.0922684i \(0.0294118\pi\)
\(402\) 0 0
\(403\) 2.06104 + 0.190984i 2.06104 + 0.190984i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −0.404479 + 0.368731i −0.404479 + 0.368731i −0.850217 0.526432i \(-0.823529\pi\)
0.445738 + 0.895163i \(0.352941\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0.932472 0.361242i 0.932472 0.361242i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 0.961826 0.273663i \(-0.0882353\pi\)
−0.961826 + 0.273663i \(0.911765\pi\)
\(420\) 0 0
\(421\) −0.0822551 + 0.887674i −0.0822551 + 0.887674i 0.850217 + 0.526432i \(0.176471\pi\)
−0.932472 + 0.361242i \(0.882353\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −2.57029 0.995734i −2.57029 0.995734i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.673696 0.739009i \(-0.264706\pi\)
−0.673696 + 0.739009i \(0.735294\pi\)
\(432\) 0 0
\(433\) 0.193463 0.312454i 0.193463 0.312454i −0.739009 0.673696i \(-0.764706\pi\)
0.932472 + 0.361242i \(0.117647\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0.646741 0.322039i 0.646741 0.322039i
\(437\) 0 0
\(438\) 0 0
\(439\) −1.27366 + 0.961826i −1.27366 + 0.961826i −0.273663 + 0.961826i \(0.588235\pi\)
−1.00000 \(1.00000\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 −0.932472 0.361242i \(-0.882353\pi\)
0.932472 + 0.361242i \(0.117647\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0.404479 1.42160i 0.404479 1.42160i
\(449\) 0 0 0.850217 0.526432i \(-0.176471\pi\)
−0.850217 + 0.526432i \(0.823529\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0.486734 + 1.25640i 0.486734 + 1.25640i 0.932472 + 0.361242i \(0.117647\pi\)
−0.445738 + 0.895163i \(0.647059\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 −0.526432 0.850217i \(-0.676471\pi\)
0.526432 + 0.850217i \(0.323529\pi\)
\(462\) 0 0
\(463\) −0.365931 + 0.0339085i −0.365931 + 0.0339085i −0.273663 0.961826i \(-0.588235\pi\)
−0.0922684 + 0.995734i \(0.529412\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 −0.361242 0.932472i \(-0.617647\pi\)
0.361242 + 0.932472i \(0.382353\pi\)
\(468\) 0 0
\(469\) 2.94343i 2.94343i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −0.876298 + 0.163808i −0.876298 + 0.163808i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.273663 0.961826i \(-0.411765\pi\)
−0.273663 + 0.961826i \(0.588235\pi\)
\(480\) 0 0
\(481\) 2.54778 2.79478i 2.54778 2.79478i
\(482\) 0 0
\(483\) 0 0
\(484\) −0.932472 0.361242i −0.932472 0.361242i
\(485\) 0 0
\(486\) 0 0
\(487\) −1.04837 + 0.0971461i −1.04837 + 0.0971461i −0.602635 0.798017i \(-0.705882\pi\)
−0.445738 + 0.895163i \(0.647059\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 0.895163 0.445738i \(-0.147059\pi\)
−0.895163 + 0.445738i \(0.852941\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −0.709310 + 0.778076i −0.709310 + 0.778076i
\(497\) 0 0
\(498\) 0 0
\(499\) −0.694903 + 1.79375i −0.694903 + 1.79375i −0.0922684 + 0.995734i \(0.529412\pi\)
−0.602635 + 0.798017i \(0.705882\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.526432 0.850217i \(-0.676471\pi\)
0.526432 + 0.850217i \(0.323529\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) −1.91545 + 0.544991i −1.91545 + 0.544991i
\(509\) 0 0 0.798017 0.602635i \(-0.205882\pi\)
−0.798017 + 0.602635i \(0.794118\pi\)
\(510\) 0 0
\(511\) 0.196216 1.04966i 0.196216 1.04966i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 −0.602635 0.798017i \(-0.705882\pi\)
0.602635 + 0.798017i \(0.294118\pi\)
\(522\) 0 0
\(523\) 0.243964 0.857445i 0.243964 0.857445i −0.739009 0.673696i \(-0.764706\pi\)
0.982973 0.183750i \(-0.0588235\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 0.982973 0.183750i 0.982973 0.183750i
\(530\) 0 0
\(531\) 0 0
\(532\) 0.794043 1.05148i 0.794043 1.05148i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 0.538007 0.100571i 0.538007 0.100571i 0.0922684 0.995734i \(-0.470588\pi\)
0.445738 + 0.895163i \(0.352941\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −0.757949 + 1.52217i −0.757949 + 1.52217i 0.0922684 + 0.995734i \(0.470588\pi\)
−0.850217 + 0.526432i \(0.823529\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0.597827 0.544991i 0.597827 0.544991i
\(554\) 0 0
\(555\) 0 0
\(556\) −0.757949 + 1.52217i −0.757949 + 1.52217i
\(557\) 0 0 0.602635 0.798017i \(-0.294118\pi\)
−0.602635 + 0.798017i \(0.705882\pi\)
\(558\) 0 0
\(559\) 3.01794 + 0.858677i 3.01794 + 0.858677i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.932472 0.361242i \(-0.117647\pi\)
−0.932472 + 0.361242i \(0.882353\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 0.850217 0.526432i \(-0.176471\pi\)
−0.850217 + 0.526432i \(0.823529\pi\)
\(570\) 0 0
\(571\) 0.184537 0.184537 0.0922684 0.995734i \(-0.470588\pi\)
0.0922684 + 0.995734i \(0.470588\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −1.20614 0.600584i −1.20614 0.600584i −0.273663 0.961826i \(-0.588235\pi\)
−0.932472 + 0.361242i \(0.882353\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 0.361242 0.932472i \(-0.382353\pi\)
−0.361242 + 0.932472i \(0.617647\pi\)
\(588\) 0 0
\(589\) −0.840204 + 0.418372i −0.840204 + 0.418372i
\(590\) 0 0
\(591\) 0 0
\(592\) 0.353470 + 1.89090i 0.353470 + 1.89090i
\(593\) 0 0 0.602635 0.798017i \(-0.294118\pi\)
−0.602635 + 0.798017i \(0.705882\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.739009 0.673696i \(-0.764706\pi\)
0.739009 + 0.673696i \(0.235294\pi\)
\(600\) 0 0
\(601\) −1.53511 1.15926i −1.53511 1.15926i −0.932472 0.361242i \(-0.882353\pi\)
−0.602635 0.798017i \(-0.705882\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −0.328972 1.75984i −0.328972 1.75984i
\(605\) 0 0
\(606\) 0 0
\(607\) −0.172075 + 1.85699i −0.172075 + 1.85699i 0.273663 + 0.961826i \(0.411765\pi\)
−0.445738 + 0.895163i \(0.647059\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −0.876298 1.75984i −0.876298 1.75984i −0.602635 0.798017i \(-0.705882\pi\)
−0.273663 0.961826i \(-0.588235\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) −1.96595 −1.96595 −0.982973 0.183750i \(-0.941176\pi\)
−0.982973 + 0.183750i \(0.941176\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.273663 0.961826i −0.273663 0.961826i
\(626\) 0 0
\(627\) 0 0
\(628\) 0.646741 + 1.66943i 0.646741 + 1.66943i
\(629\) 0 0
\(630\) 0 0
\(631\) −0.243964 0.857445i −0.243964 0.857445i −0.982973 0.183750i \(-0.941176\pi\)
0.739009 0.673696i \(-0.235294\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 1.72096 + 1.56886i 1.72096 + 1.56886i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 0.995734 0.0922684i \(-0.0294118\pi\)
−0.995734 + 0.0922684i \(0.970588\pi\)
\(642\) 0 0
\(643\) 1.12388 1.48826i 1.12388 1.48826i 0.273663 0.961826i \(-0.411765\pi\)
0.850217 0.526432i \(-0.176471\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.895163 0.445738i \(-0.147059\pi\)
−0.895163 + 0.445738i \(0.852941\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0.136374 + 0.124322i 0.136374 + 0.124322i
\(653\) 0 0 0.739009 0.673696i \(-0.235294\pi\)
−0.739009 + 0.673696i \(0.764706\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 −0.895163 0.445738i \(-0.852941\pi\)
0.895163 + 0.445738i \(0.147059\pi\)
\(660\) 0 0
\(661\) −0.193463 + 0.312454i −0.193463 + 0.312454i −0.932472 0.361242i \(-0.882353\pi\)
0.739009 + 0.673696i \(0.235294\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −0.831277 + 0.322039i −0.831277 + 0.322039i −0.739009 0.673696i \(-0.764706\pi\)
−0.0922684 + 0.995734i \(0.529412\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −2.67148 + 1.03494i −2.67148 + 1.03494i
\(677\) 0 0 −0.961826 0.273663i \(-0.911765\pi\)
0.961826 + 0.273663i \(0.0882353\pi\)
\(678\) 0 0
\(679\) −1.07354 + 1.42160i −1.07354 + 1.42160i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 0.739009 0.673696i \(-0.235294\pi\)
−0.739009 + 0.673696i \(0.764706\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −1.27366 + 0.961826i −1.27366 + 0.961826i
\(689\) 0 0
\(690\) 0 0
\(691\) 1.42871 + 0.711414i 1.42871 + 0.711414i 0.982973 0.183750i \(-0.0588235\pi\)
0.445738 + 0.895163i \(0.352941\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 1.25664 + 0.778076i 1.25664 + 0.778076i
\(701\) 0 0 0.961826 0.273663i \(-0.0882353\pi\)
−0.961826 + 0.273663i \(0.911765\pi\)
\(702\) 0 0
\(703\) −0.315110 + 1.68569i −0.315110 + 1.68569i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 1.67148 1.03494i 1.67148 1.03494i 0.739009 0.673696i \(-0.235294\pi\)
0.932472 0.361242i \(-0.117647\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.0922684 0.995734i \(-0.470588\pi\)
−0.0922684 + 0.995734i \(0.529412\pi\)
\(720\) 0 0
\(721\) −1.09227 0.995734i −1.09227 0.995734i
\(722\) 0 0
\(723\) 0 0
\(724\) 0.486734 + 0.533922i 0.486734 + 0.533922i
\(725\) 0 0
\(726\) 0 0
\(727\) −1.07524 + 0.811985i −1.07524 + 0.811985i −0.982973 0.183750i \(-0.941176\pi\)
−0.0922684 + 0.995734i \(0.529412\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −0.840204 1.35698i −0.840204 1.35698i −0.932472 0.361242i \(-0.882353\pi\)
0.0922684 0.995734i \(-0.470588\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −1.18475 0.221468i −1.18475 0.221468i −0.445738 0.895163i \(-0.647059\pi\)
−0.739009 + 0.673696i \(0.764706\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.982973 0.183750i \(-0.941176\pi\)
0.982973 + 0.183750i \(0.0588235\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0.876298 1.75984i 0.876298 1.75984i 0.273663 0.961826i \(-0.411765\pi\)
0.602635 0.798017i \(-0.294118\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −0.510366 + 1.79375i −0.510366 + 1.79375i 0.0922684 + 0.995734i \(0.470588\pi\)
−0.602635 + 0.798017i \(0.705882\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.982973 0.183750i \(-0.0588235\pi\)
−0.982973 + 0.183750i \(0.941176\pi\)
\(762\) 0 0
\(763\) −0.852157 0.643519i −0.852157 0.643519i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −0.260991 0.673696i −0.260991 0.673696i 0.739009 0.673696i \(-0.235294\pi\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 1.58923 0.147263i 1.58923 0.147263i
\(773\) 0 0 0.995734 0.0922684i \(-0.0294118\pi\)
−0.995734 + 0.0922684i \(0.970588\pi\)
\(774\) 0 0
\(775\) −0.554262 0.895163i −0.554262 0.895163i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −1.16437 + 0.217658i −1.16437 + 0.217658i
\(785\) 0 0
\(786\) 0 0
\(787\) 1.02474 0.634493i 1.02474 0.634493i 0.0922684 0.995734i \(-0.470588\pi\)
0.932472 + 0.361242i \(0.117647\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −3.41880 1.32445i −3.41880 1.32445i
\(794\) 0 0
\(795\) 0 0
\(796\) −1.58923 + 0.147263i −1.58923 + 0.147263i
\(797\) 0 0 0.798017 0.602635i \(-0.205882\pi\)
−0.798017 + 0.602635i \(0.794118\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 −0.932472 0.361242i \(-0.882353\pi\)
0.932472 + 0.361242i \(0.117647\pi\)
\(810\) 0 0
\(811\) 1.72198 0.489946i 1.72198 0.489946i 0.739009 0.673696i \(-0.235294\pi\)
0.982973 + 0.183750i \(0.0588235\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −1.36851 + 0.389375i −1.36851 + 0.389375i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 −0.673696 0.739009i \(-0.735294\pi\)
0.673696 + 0.739009i \(0.264706\pi\)
\(822\) 0 0
\(823\) 1.05286i 1.05286i 0.850217 + 0.526432i \(0.176471\pi\)
−0.850217 + 0.526432i \(0.823529\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.739009 0.673696i \(-0.235294\pi\)
−0.739009 + 0.673696i \(0.764706\pi\)
\(828\) 0 0
\(829\) −1.78269 + 0.887674i −1.78269 + 0.887674i −0.850217 + 0.526432i \(0.823529\pi\)
−0.932472 + 0.361242i \(0.882353\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0.538007 1.89090i 0.538007 1.89090i
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 0.361242 0.932472i \(-0.382353\pi\)
−0.361242 + 0.932472i \(0.617647\pi\)
\(840\) 0 0
\(841\) 0.602635 0.798017i 0.602635 0.798017i
\(842\) 0 0
\(843\) 0 0
\(844\) 0.353470 0.100571i 0.353470 0.100571i
\(845\) 0 0
\(846\) 0 0
\(847\) 0.136374 + 1.47171i 0.136374 + 1.47171i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0.537235 + 1.07891i 0.537235 + 1.07891i 0.982973 + 0.183750i \(0.0588235\pi\)
−0.445738 + 0.895163i \(0.647059\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 0.798017 0.602635i \(-0.205882\pi\)
−0.798017 + 0.602635i \(0.794118\pi\)
\(858\) 0 0
\(859\) 1.20614 + 1.32307i 1.20614 + 1.32307i 0.932472 + 0.361242i \(0.117647\pi\)
0.273663 + 0.961826i \(0.411765\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.850217 0.526432i \(-0.823529\pi\)
0.850217 + 0.526432i \(0.176471\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 1.49675 + 0.425861i 1.49675 + 0.425861i
\(869\) 0 0
\(870\) 0 0
\(871\) 3.91512i 3.91512i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1.29596 1.42160i 1.29596 1.42160i 0.445738 0.895163i \(-0.352941\pi\)
0.850217 0.526432i \(-0.176471\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) −0.329838 + 1.15926i −0.329838 + 1.15926i 0.602635 + 0.798017i \(0.294118\pi\)
−0.932472 + 0.361242i \(0.882353\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 −0.183750 0.982973i \(-0.558824\pi\)
0.183750 + 0.982973i \(0.441176\pi\)
\(888\) 0 0
\(889\) 1.98297 + 2.17522i 1.98297 + 2.17522i
\(890\) 0 0
\(891\) 0 0
\(892\) −0.136374 + 0.124322i −0.136374 + 0.124322i
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0.149783 + 0.526432i 0.149783 + 0.526432i 1.00000 \(0\)
−0.850217 + 0.526432i \(0.823529\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 −0.932472 0.361242i \(-0.882353\pi\)
0.932472 + 0.361242i \(0.117647\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0.156896 1.69318i 0.156896 1.69318i
\(917\) 0 0
\(918\) 0 0
\(919\) 1.29596 + 0.368731i 1.29596 + 0.368731i 0.850217 0.526432i \(-0.176471\pi\)
0.445738 + 0.895163i \(0.352941\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −1.91545 0.177492i −1.91545 0.177492i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 −0.995734 0.0922684i \(-0.970588\pi\)
0.995734 + 0.0922684i \(0.0294118\pi\)
\(930\) 0 0
\(931\) −1.03801 0.194037i −1.03801 0.194037i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −0.576554 1.48826i −0.576554 1.48826i −0.850217 0.526432i \(-0.823529\pi\)
0.273663 0.961826i \(-0.411765\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 −0.183750 0.982973i \(-0.558824\pi\)
0.183750 + 0.982973i \(0.441176\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 −0.273663 0.961826i \(-0.588235\pi\)
0.273663 + 0.961826i \(0.411765\pi\)
\(948\) 0 0
\(949\) 0.260991 1.39618i 0.260991 1.39618i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 −0.183750 0.982973i \(-0.558824\pi\)
0.183750 + 0.982973i \(0.441176\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −0.0801997 0.0731117i −0.0801997 0.0731117i
\(962\) 0 0
\(963\) 0 0
\(964\) −1.04837 1.69318i −1.04837 1.69318i
\(965\) 0 0
\(966\) 0 0
\(967\) 0.0675278 + 0.361242i 0.0675278 + 0.361242i 1.00000 \(0\)
−0.932472 + 0.361242i \(0.882353\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 0.273663 0.961826i \(-0.411765\pi\)
−0.273663 + 0.961826i \(0.588235\pi\)
\(972\) 0 0
\(973\) 2.51327 2.51327
\(974\) 0 0
\(975\) 0 0
\(976\) 1.58561 0.981767i 1.58561 0.981767i
\(977\) 0 0 0.673696 0.739009i \(-0.264706\pi\)
−0.673696 + 0.739009i \(0.735294\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 1.05617 1.39860i 1.05617 1.39860i
\(989\) 0 0
\(990\) 0 0
\(991\) −0.156896 0.0971461i −0.156896 0.0971461i 0.445738 0.895163i \(-0.352941\pi\)
−0.602635 + 0.798017i \(0.705882\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0.293271 0.221468i 0.293271 0.221468i −0.445738 0.895163i \(-0.647059\pi\)
0.739009 + 0.673696i \(0.235294\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 927.1.v.a.145.1 16
3.2 odd 2 CM 927.1.v.a.145.1 16
103.27 odd 34 inner 927.1.v.a.748.1 yes 16
309.233 even 34 inner 927.1.v.a.748.1 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
927.1.v.a.145.1 16 1.1 even 1 trivial
927.1.v.a.145.1 16 3.2 odd 2 CM
927.1.v.a.748.1 yes 16 103.27 odd 34 inner
927.1.v.a.748.1 yes 16 309.233 even 34 inner