Properties

Label 927.1.v.a.73.1
Level 927927
Weight 11
Character 927.73
Analytic conductor 0.4630.463
Analytic rank 00
Dimension 1616
Projective image D34D_{34}
CM discriminant -3
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [927,1,Mod(10,927)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(927, base_ring=CyclotomicField(34))
 
chi = DirichletCharacter(H, H._module([0, 15]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("927.10");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 927=32103 927 = 3^{2} \cdot 103
Weight: k k == 1 1
Character orbit: [χ][\chi] == 927.v (of order 3434, degree 1616, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.4626332667110.462633266711
Analytic rank: 00
Dimension: 1616
Coefficient field: Q(ζ34)\Q(\zeta_{34})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x16x15+x14x13+x12x11+x10x9+x8x7+x6x5++1 x^{16} - x^{15} + x^{14} - x^{13} + x^{12} - x^{11} + x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + \cdots + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a4]\Z[a_1, \ldots, a_{4}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D34D_{34}
Projective field: Galois closure of Q[x]/(x34)\mathbb{Q}[x]/(x^{34} - \cdots)

Embedding invariants

Embedding label 73.1
Root 0.2736630.961826i0.273663 - 0.961826i of defining polynomial
Character χ\chi == 927.73
Dual form 927.1.v.a.127.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.09226840.995734i)q4+(1.123881.48826i)q7+(0.111208+0.147263i)q13+(0.982973+0.183750i)q16+(1.58561+0.614268i)q19+(0.4457380.895163i)q25+(1.37821+1.25640i)q28+(0.3534701.89090i)q31+(1.53511+0.436776i)q37+(1.721980.489946i)q43+(0.678142+2.38342i)q49+(0.1363740.124322i)q52+(0.8762981.75984i)q61+(0.273663+0.961826i)q64+(1.07524+0.811985i)q67+(0.1934630.312454i)q73+(0.757949+1.52217i)q76+(1.02474+0.634493i)q79+(0.09418130.331013i)q91+(0.3973650.798017i)q97+O(q100)q+(-0.0922684 - 0.995734i) q^{4} +(-1.12388 - 1.48826i) q^{7} +(0.111208 + 0.147263i) q^{13} +(-0.982973 + 0.183750i) q^{16} +(-1.58561 + 0.614268i) q^{19} +(0.445738 - 0.895163i) q^{25} +(-1.37821 + 1.25640i) q^{28} +(-0.353470 - 1.89090i) q^{31} +(1.53511 + 0.436776i) q^{37} +(1.72198 - 0.489946i) q^{43} +(-0.678142 + 2.38342i) q^{49} +(0.136374 - 0.124322i) q^{52} +(0.876298 - 1.75984i) q^{61} +(0.273663 + 0.961826i) q^{64} +(1.07524 + 0.811985i) q^{67} +(0.193463 - 0.312454i) q^{73} +(0.757949 + 1.52217i) q^{76} +(-1.02474 + 0.634493i) q^{79} +(0.0941813 - 0.331013i) q^{91} +(-0.397365 - 0.798017i) q^{97} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q+q42q7+2q13q162q19q25+2q283q492q52+2q61+q64+2q76+2q7913q9115q97+O(q100) 16 q + q^{4} - 2 q^{7} + 2 q^{13} - q^{16} - 2 q^{19} - q^{25} + 2 q^{28} - 3 q^{49} - 2 q^{52} + 2 q^{61} + q^{64} + 2 q^{76} + 2 q^{79} - 13 q^{91} - 15 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/927Z)×\left(\mathbb{Z}/927\mathbb{Z}\right)^\times.

nn 722722 829829
χ(n)\chi(n) 11 e(1134)e\left(\frac{11}{34}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0 0.673696 0.739009i 0.264706π-0.264706\pi
−0.673696 + 0.739009i 0.735294π0.735294\pi
33 0 0
44 −0.0922684 0.995734i −0.0922684 0.995734i
55 0 0 0.850217 0.526432i 0.176471π-0.176471\pi
−0.850217 + 0.526432i 0.823529π0.823529\pi
66 0 0
77 −1.12388 1.48826i −1.12388 1.48826i −0.850217 0.526432i 0.823529π-0.823529\pi
−0.273663 0.961826i 0.588235π-0.588235\pi
88 0 0
99 0 0
1010 0 0
1111 0 0 −0.739009 0.673696i 0.764706π-0.764706\pi
0.739009 + 0.673696i 0.235294π0.235294\pi
1212 0 0
1313 0.111208 + 0.147263i 0.111208 + 0.147263i 0.850217 0.526432i 0.176471π-0.176471\pi
−0.739009 + 0.673696i 0.764706π0.764706\pi
1414 0 0
1515 0 0
1616 −0.982973 + 0.183750i −0.982973 + 0.183750i
1717 0 0 −0.895163 0.445738i 0.852941π-0.852941\pi
0.895163 + 0.445738i 0.147059π0.147059\pi
1818 0 0
1919 −1.58561 + 0.614268i −1.58561 + 0.614268i −0.982973 0.183750i 0.941176π-0.941176\pi
−0.602635 + 0.798017i 0.705882π0.705882\pi
2020 0 0
2121 0 0
2222 0 0
2323 0 0 −0.673696 0.739009i 0.735294π-0.735294\pi
0.673696 + 0.739009i 0.264706π0.264706\pi
2424 0 0
2525 0.445738 0.895163i 0.445738 0.895163i
2626 0 0
2727 0 0
2828 −1.37821 + 1.25640i −1.37821 + 1.25640i
2929 0 0 −0.526432 0.850217i 0.676471π-0.676471\pi
0.526432 + 0.850217i 0.323529π0.323529\pi
3030 0 0
3131 −0.353470 1.89090i −0.353470 1.89090i −0.445738 0.895163i 0.647059π-0.647059\pi
0.0922684 0.995734i 0.470588π-0.470588\pi
3232 0 0
3333 0 0
3434 0 0
3535 0 0
3636 0 0
3737 1.53511 + 0.436776i 1.53511 + 0.436776i 0.932472 0.361242i 0.117647π-0.117647\pi
0.602635 + 0.798017i 0.294118π0.294118\pi
3838 0 0
3939 0 0
4040 0 0
4141 0 0 0.526432 0.850217i 0.323529π-0.323529\pi
−0.526432 + 0.850217i 0.676471π0.676471\pi
4242 0 0
4343 1.72198 0.489946i 1.72198 0.489946i 0.739009 0.673696i 0.235294π-0.235294\pi
0.982973 + 0.183750i 0.0588235π0.0588235\pi
4444 0 0
4545 0 0
4646 0 0
4747 0 0 1.00000 00
−1.00000 π\pi
4848 0 0
4949 −0.678142 + 2.38342i −0.678142 + 2.38342i
5050 0 0
5151 0 0
5252 0.136374 0.124322i 0.136374 0.124322i
5353 0 0 0.932472 0.361242i 0.117647π-0.117647\pi
−0.932472 + 0.361242i 0.882353π0.882353\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 0 0
5959 0 0 −0.798017 0.602635i 0.794118π-0.794118\pi
0.798017 + 0.602635i 0.205882π0.205882\pi
6060 0 0
6161 0.876298 1.75984i 0.876298 1.75984i 0.273663 0.961826i 0.411765π-0.411765\pi
0.602635 0.798017i 0.294118π-0.294118\pi
6262 0 0
6363 0 0
6464 0.273663 + 0.961826i 0.273663 + 0.961826i
6565 0 0
6666 0 0
6767 1.07524 + 0.811985i 1.07524 + 0.811985i 0.982973 0.183750i 0.0588235π-0.0588235\pi
0.0922684 + 0.995734i 0.470588π0.470588\pi
6868 0 0
6969 0 0
7070 0 0
7171 0 0 −0.850217 0.526432i 0.823529π-0.823529\pi
0.850217 + 0.526432i 0.176471π0.176471\pi
7272 0 0
7373 0.193463 0.312454i 0.193463 0.312454i −0.739009 0.673696i 0.764706π-0.764706\pi
0.932472 + 0.361242i 0.117647π0.117647\pi
7474 0 0
7575 0 0
7676 0.757949 + 1.52217i 0.757949 + 1.52217i
7777 0 0
7878 0 0
7979 −1.02474 + 0.634493i −1.02474 + 0.634493i −0.932472 0.361242i 0.882353π-0.882353\pi
−0.0922684 + 0.995734i 0.529412π0.529412\pi
8080 0 0
8181 0 0
8282 0 0
8383 0 0 0.798017 0.602635i 0.205882π-0.205882\pi
−0.798017 + 0.602635i 0.794118π0.794118\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 0 0 0.0922684 0.995734i 0.470588π-0.470588\pi
−0.0922684 + 0.995734i 0.529412π0.529412\pi
9090 0 0
9191 0.0941813 0.331013i 0.0941813 0.331013i
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 −0.397365 0.798017i −0.397365 0.798017i 0.602635 0.798017i 0.294118π-0.294118\pi
−1.00000 π\pi
9898 0 0
9999 0 0
100100 −0.932472 0.361242i −0.932472 0.361242i
101101 0 0 −0.739009 0.673696i 0.764706π-0.764706\pi
0.739009 + 0.673696i 0.235294π0.235294\pi
102102 0 0
103103 0.273663 0.961826i 0.273663 0.961826i
104104 0 0
105105 0 0
106106 0 0
107107 0 0 0.995734 0.0922684i 0.0294118π-0.0294118\pi
−0.995734 + 0.0922684i 0.970588π0.970588\pi
108108 0 0
109109 −0.328972 + 0.163808i −0.328972 + 0.163808i −0.602635 0.798017i 0.705882π-0.705882\pi
0.273663 + 0.961826i 0.411765π0.411765\pi
110110 0 0
111111 0 0
112112 1.37821 + 1.25640i 1.37821 + 1.25640i
113113 0 0 −0.982973 0.183750i 0.941176π-0.941176\pi
0.982973 + 0.183750i 0.0588235π0.0588235\pi
114114 0 0
115115 0 0
116116 0 0
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 0.0922684 + 0.995734i 0.0922684 + 0.995734i
122122 0 0
123123 0 0
124124 −1.85022 + 0.526432i −1.85022 + 0.526432i
125125 0 0
126126 0 0
127127 0.709310 + 1.14558i 0.709310 + 1.14558i 0.982973 + 0.183750i 0.0588235π0.0588235\pi
−0.273663 + 0.961826i 0.588235π0.588235\pi
128128 0 0
129129 0 0
130130 0 0
131131 0 0 −0.673696 0.739009i 0.735294π-0.735294\pi
0.673696 + 0.739009i 0.264706π0.264706\pi
132132 0 0
133133 2.69622 + 1.66943i 2.69622 + 1.66943i
134134 0 0
135135 0 0
136136 0 0
137137 0 0 −0.361242 0.932472i 0.617647π-0.617647\pi
0.361242 + 0.932472i 0.382353π0.382353\pi
138138 0 0
139139 −0.329838 + 0.436776i −0.329838 + 0.436776i −0.932472 0.361242i 0.882353π-0.882353\pi
0.602635 + 0.798017i 0.294118π0.294118\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 0 0
145145 0 0
146146 0 0
147147 0 0
148148 0.293271 1.56886i 0.293271 1.56886i
149149 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
150150 0 0
151151 −0.193463 + 1.03494i −0.193463 + 1.03494i 0.739009 + 0.673696i 0.235294π0.235294\pi
−0.932472 + 0.361242i 0.882353π0.882353\pi
152152 0 0
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 1.01267 + 0.288130i 1.01267 + 0.288130i 0.739009 0.673696i 0.235294π-0.235294\pi
0.273663 + 0.961826i 0.411765π0.411765\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 0 0
163163 0.404479 + 1.42160i 0.404479 + 1.42160i 0.850217 + 0.526432i 0.176471π0.176471\pi
−0.445738 + 0.895163i 0.647059π0.647059\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 0.961826 0.273663i 0.0882353π-0.0882353\pi
−0.961826 + 0.273663i 0.911765π0.911765\pi
168168 0 0
169169 0.264344 0.929072i 0.264344 0.929072i
170170 0 0
171171 0 0
172172 −0.646741 1.66943i −0.646741 1.66943i
173173 0 0 −0.445738 0.895163i 0.647059π-0.647059\pi
0.445738 + 0.895163i 0.352941π0.352941\pi
174174 0 0
175175 −1.83319 + 0.342683i −1.83319 + 0.342683i
176176 0 0
177177 0 0
178178 0 0
179179 0 0 0.895163 0.445738i 0.147059π-0.147059\pi
−0.895163 + 0.445738i 0.852941π0.852941\pi
180180 0 0
181181 −0.328972 0.163808i −0.328972 0.163808i 0.273663 0.961826i 0.411765π-0.411765\pi
−0.602635 + 0.798017i 0.705882π0.705882\pi
182182 0 0
183183 0 0
184184 0 0
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 0 0 0.982973 0.183750i 0.0588235π-0.0588235\pi
−0.982973 + 0.183750i 0.941176π0.941176\pi
192192 0 0
193193 −1.42871 + 1.07891i −1.42871 + 1.07891i −0.445738 + 0.895163i 0.647059π0.647059\pi
−0.982973 + 0.183750i 0.941176π0.941176\pi
194194 0 0
195195 0 0
196196 2.43582 + 0.455335i 2.43582 + 0.455335i
197197 0 0 −0.739009 0.673696i 0.764706π-0.764706\pi
0.739009 + 0.673696i 0.235294π0.235294\pi
198198 0 0
199199 1.42871 1.07891i 1.42871 1.07891i 0.445738 0.895163i 0.352941π-0.352941\pi
0.982973 0.183750i 0.0588235π-0.0588235\pi
200200 0 0
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 −0.136374 0.124322i −0.136374 0.124322i
209209 0 0
210210 0 0
211211 −1.04837 1.69318i −1.04837 1.69318i −0.602635 0.798017i 0.705882π-0.705882\pi
−0.445738 0.895163i 0.647059π-0.647059\pi
212212 0 0
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 −2.41689 + 2.65120i −2.41689 + 2.65120i
218218 0 0
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0.658809 1.32307i 0.658809 1.32307i −0.273663 0.961826i 0.588235π-0.588235\pi
0.932472 0.361242i 0.117647π-0.117647\pi
224224 0 0
225225 0 0
226226 0 0
227227 0 0 −0.273663 0.961826i 0.588235π-0.588235\pi
0.273663 + 0.961826i 0.411765π0.411765\pi
228228 0 0
229229 −0.404479 + 0.368731i −0.404479 + 0.368731i −0.850217 0.526432i 0.823529π-0.823529\pi
0.445738 + 0.895163i 0.352941π0.352941\pi
230230 0 0
231231 0 0
232232 0 0
233233 0 0 −0.445738 0.895163i 0.647059π-0.647059\pi
0.445738 + 0.895163i 0.352941π0.352941\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 0 0 0.895163 0.445738i 0.147059π-0.147059\pi
−0.895163 + 0.445738i 0.852941π0.852941\pi
240240 0 0
241241 −0.486734 + 1.25640i −0.486734 + 1.25640i 0.445738 + 0.895163i 0.352941π0.352941\pi
−0.932472 + 0.361242i 0.882353π0.882353\pi
242242 0 0
243243 0 0
244244 −1.83319 0.710182i −1.83319 0.710182i
245245 0 0
246246 0 0
247247 −0.266792 0.165190i −0.266792 0.165190i
248248 0 0
249249 0 0
250250 0 0
251251 0 0 −0.982973 0.183750i 0.941176π-0.941176\pi
0.982973 + 0.183750i 0.0588235π0.0588235\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 0.932472 0.361242i 0.932472 0.361242i
257257 0 0 0.739009 0.673696i 0.235294π-0.235294\pi
−0.739009 + 0.673696i 0.764706π0.764706\pi
258258 0 0
259259 −1.07524 2.77552i −1.07524 2.77552i
260260 0 0
261261 0 0
262262 0 0
263263 0 0 1.00000 00
−1.00000 π\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0.709310 1.14558i 0.709310 1.14558i
269269 0 0 −0.995734 0.0922684i 0.970588π-0.970588\pi
0.995734 + 0.0922684i 0.0294118π0.0294118\pi
270270 0 0
271271 0.576554 1.48826i 0.576554 1.48826i −0.273663 0.961826i 0.588235π-0.588235\pi
0.850217 0.526432i 0.176471π-0.176471\pi
272272 0 0
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 0.554262 0.895163i 0.554262 0.895163i −0.445738 0.895163i 0.647059π-0.647059\pi
1.00000 00
278278 0 0
279279 0 0
280280 0 0
281281 0 0 0.739009 0.673696i 0.235294π-0.235294\pi
−0.739009 + 0.673696i 0.764706π0.764706\pi
282282 0 0
283283 1.98297 + 0.183750i 1.98297 + 0.183750i 1.00000 00
0.982973 + 0.183750i 0.0588235π0.0588235\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 0.602635 + 0.798017i 0.602635 + 0.798017i
290290 0 0
291291 0 0
292292 −0.328972 0.163808i −0.328972 0.163808i
293293 0 0 0.982973 0.183750i 0.0588235π-0.0588235\pi
−0.982973 + 0.183750i 0.941176π0.941176\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 −2.66447 2.01211i −2.66447 2.01211i
302302 0 0
303303 0 0
304304 1.44574 0.895163i 1.44574 0.895163i
305305 0 0
306306 0 0
307307 −1.29596 + 1.42160i −1.29596 + 1.42160i −0.445738 + 0.895163i 0.647059π0.647059\pi
−0.850217 + 0.526432i 0.823529π0.823529\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 0.673696 0.739009i 0.264706π-0.264706\pi
−0.673696 + 0.739009i 0.735294π0.735294\pi
312312 0 0
313313 0.111208 + 1.20013i 0.111208 + 1.20013i 0.850217 + 0.526432i 0.176471π0.176471\pi
−0.739009 + 0.673696i 0.764706π0.764706\pi
314314 0 0
315315 0 0
316316 0.726337 + 0.961826i 0.726337 + 0.961826i
317317 0 0 −0.798017 0.602635i 0.794118π-0.794118\pi
0.798017 + 0.602635i 0.205882π0.205882\pi
318318 0 0
319319 0 0
320320 0 0
321321 0 0
322322 0 0
323323 0 0
324324 0 0
325325 0.181395 0.0339085i 0.181395 0.0339085i
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 −1.58923 + 0.147263i −1.58923 + 0.147263i −0.850217 0.526432i 0.823529π-0.823529\pi
−0.739009 + 0.673696i 0.764706π0.764706\pi
332332 0 0
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 1.09227 0.995734i 1.09227 0.995734i 0.0922684 0.995734i 0.470588π-0.470588\pi
1.00000 00
338338 0 0
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 2.57029 0.995734i 2.57029 0.995734i
344344 0 0
345345 0 0
346346 0 0
347347 0 0 0.361242 0.932472i 0.382353π-0.382353\pi
−0.361242 + 0.932472i 0.617647π0.617647\pi
348348 0 0
349349 −1.91545 0.177492i −1.91545 0.177492i −0.932472 0.361242i 0.882353π-0.882353\pi
−0.982973 + 0.183750i 0.941176π0.941176\pi
350350 0 0
351351 0 0
352352 0 0
353353 0 0 0.602635 0.798017i 0.294118π-0.294118\pi
−0.602635 + 0.798017i 0.705882π0.705882\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0 0 −0.361242 0.932472i 0.617647π-0.617647\pi
0.361242 + 0.932472i 0.382353π0.382353\pi
360360 0 0
361361 1.39782 1.27428i 1.39782 1.27428i
362362 0 0
363363 0 0
364364 −0.338291 0.0632375i −0.338291 0.0632375i
365365 0 0
366366 0 0
367367 −0.538007 0.100571i −0.538007 0.100571i −0.0922684 0.995734i 0.529412π-0.529412\pi
−0.445738 + 0.895163i 0.647059π0.647059\pi
368368 0 0
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 −0.149783 0.526432i −0.149783 0.526432i 0.850217 0.526432i 0.176471π-0.176471\pi
−1.00000 π\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 0.646741 0.322039i 0.646741 0.322039i −0.0922684 0.995734i 0.529412π-0.529412\pi
0.739009 + 0.673696i 0.235294π0.235294\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 0.850217 0.526432i 0.176471π-0.176471\pi
−0.850217 + 0.526432i 0.823529π0.823529\pi
384384 0 0
385385 0 0
386386 0 0
387387 0 0
388388 −0.757949 + 0.469302i −0.757949 + 0.469302i
389389 0 0 0.739009 0.673696i 0.235294π-0.235294\pi
−0.739009 + 0.673696i 0.764706π0.764706\pi
390390 0 0
391391 0 0
392392 0 0
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 −0.132756 0.710182i −0.132756 0.710182i −0.982973 0.183750i 0.941176π-0.941176\pi
0.850217 0.526432i 0.176471π-0.176471\pi
398398 0 0
399399 0 0
400400 −0.273663 + 0.961826i −0.273663 + 0.961826i
401401 0 0 0.673696 0.739009i 0.264706π-0.264706\pi
−0.673696 + 0.739009i 0.735294π0.735294\pi
402402 0 0
403403 0.239151 0.262337i 0.239151 0.262337i
404404 0 0
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 −1.12388 0.435393i −1.12388 0.435393i −0.273663 0.961826i 0.588235π-0.588235\pi
−0.850217 + 0.526432i 0.823529π0.823529\pi
410410 0 0
411411 0 0
412412 −0.982973 0.183750i −0.982973 0.183750i
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 0 0 0.798017 0.602635i 0.205882π-0.205882\pi
−0.798017 + 0.602635i 0.794118π0.794118\pi
420420 0 0
421421 1.25664 + 1.14558i 1.25664 + 1.14558i 0.982973 + 0.183750i 0.0588235π0.0588235\pi
0.273663 + 0.961826i 0.411765π0.411765\pi
422422 0 0
423423 0 0
424424 0 0
425425 0 0
426426 0 0
427427 −3.60395 + 0.673696i −3.60395 + 0.673696i
428428 0 0
429429 0 0
430430 0 0
431431 0 0 −0.361242 0.932472i 0.617647π-0.617647\pi
0.361242 + 0.932472i 0.382353π0.382353\pi
432432 0 0
433433 −1.91545 + 0.544991i −1.91545 + 0.544991i −0.932472 + 0.361242i 0.882353π0.882353\pi
−0.982973 + 0.183750i 0.941176π0.941176\pi
434434 0 0
435435 0 0
436436 0.193463 + 0.312454i 0.193463 + 0.312454i
437437 0 0
438438 0 0
439439 −1.60263 + 0.798017i −1.60263 + 0.798017i −0.602635 + 0.798017i 0.705882π0.705882\pi
−1.00000 1.00000π1.00000\pi
440440 0 0
441441 0 0
442442 0 0
443443 0 0 0.982973 0.183750i 0.0588235π-0.0588235\pi
−0.982973 + 0.183750i 0.941176π0.941176\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 1.12388 1.48826i 1.12388 1.48826i
449449 0 0 0.273663 0.961826i 0.411765π-0.411765\pi
−0.273663 + 0.961826i 0.588235π0.588235\pi
450450 0 0
451451 0 0
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 −0.132756 + 0.710182i −0.132756 + 0.710182i 0.850217 + 0.526432i 0.176471π0.176471\pi
−0.982973 + 0.183750i 0.941176π0.941176\pi
458458 0 0
459459 0 0
460460 0 0
461461 0 0 −0.961826 0.273663i 0.911765π-0.911765\pi
0.961826 + 0.273663i 0.0882353π0.0882353\pi
462462 0 0
463463 −1.34164 1.47171i −1.34164 1.47171i −0.739009 0.673696i 0.764706π-0.764706\pi
−0.602635 0.798017i 0.705882π-0.705882\pi
464464 0 0
465465 0 0
466466 0 0
467467 0 0 0.183750 0.982973i 0.441176π-0.441176\pi
−0.183750 + 0.982973i 0.558824π0.558824\pi
468468 0 0
469469 2.51281i 2.51281i
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 −0.156896 + 1.69318i −0.156896 + 1.69318i
476476 0 0
477477 0 0
478478 0 0
479479 0 0 0.602635 0.798017i 0.294118π-0.294118\pi
−0.602635 + 0.798017i 0.705882π0.705882\pi
480480 0 0
481481 0.106395 + 0.274638i 0.106395 + 0.274638i
482482 0 0
483483 0 0
484484 0.982973 0.183750i 0.982973 0.183750i
485485 0 0
486486 0 0
487487 1.29596 + 1.42160i 1.29596 + 1.42160i 0.850217 + 0.526432i 0.176471π0.176471\pi
0.445738 + 0.895163i 0.352941π0.352941\pi
488488 0 0
489489 0 0
490490 0 0
491491 0 0 −0.526432 0.850217i 0.676471π-0.676471\pi
0.526432 + 0.850217i 0.323529π0.323529\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0.694903 + 1.79375i 0.694903 + 1.79375i
497497 0 0
498498 0 0
499499 −0.293271 1.56886i −0.293271 1.56886i −0.739009 0.673696i 0.764706π-0.764706\pi
0.445738 0.895163i 0.352941π-0.352941\pi
500500 0 0
501501 0 0
502502 0 0
503503 0 0 −0.961826 0.273663i 0.911765π-0.911765\pi
0.961826 + 0.273663i 0.0882353π0.0882353\pi
504504 0 0
505505 0 0
506506 0 0
507507 0 0
508508 1.07524 0.811985i 1.07524 0.811985i
509509 0 0 0.895163 0.445738i 0.147059π-0.147059\pi
−0.895163 + 0.445738i 0.852941π0.852941\pi
510510 0 0
511511 −0.682442 + 0.0632375i −0.682442 + 0.0632375i
512512 0 0
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 0 0 −0.445738 0.895163i 0.647059π-0.647059\pi
0.445738 + 0.895163i 0.352941π0.352941\pi
522522 0 0
523523 −1.02474 + 1.35698i −1.02474 + 1.35698i −0.0922684 + 0.995734i 0.529412π0.529412\pi
−0.932472 + 0.361242i 0.882353π0.882353\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 −0.0922684 + 0.995734i −0.0922684 + 0.995734i
530530 0 0
531531 0 0
532532 1.41353 2.83876i 1.41353 2.83876i
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 −0.111208 + 1.20013i −0.111208 + 1.20013i 0.739009 + 0.673696i 0.235294π0.235294\pi
−0.850217 + 0.526432i 0.823529π0.823529\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 0.465346 + 0.288130i 0.465346 + 0.288130i 0.739009 0.673696i 0.235294π-0.235294\pi
−0.273663 + 0.961826i 0.588235π0.588235\pi
548548 0 0
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 2.09597 + 0.811985i 2.09597 + 0.811985i
554554 0 0
555555 0 0
556556 0.465346 + 0.288130i 0.465346 + 0.288130i
557557 0 0 0.445738 0.895163i 0.352941π-0.352941\pi
−0.445738 + 0.895163i 0.647059π0.647059\pi
558558 0 0
559559 0.263650 + 0.199099i 0.263650 + 0.199099i
560560 0 0
561561 0 0
562562 0 0
563563 0 0 −0.982973 0.183750i 0.941176π-0.941176\pi
0.982973 + 0.183750i 0.0588235π0.0588235\pi
564564 0 0
565565 0 0
566566 0 0
567567 0 0
568568 0 0
569569 0 0 0.273663 0.961826i 0.411765π-0.411765\pi
−0.273663 + 0.961826i 0.588235π0.588235\pi
570570 0 0
571571 1.47802 1.47802 0.739009 0.673696i 0.235294π-0.235294\pi
0.739009 + 0.673696i 0.235294π0.235294\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 0.380338 0.614268i 0.380338 0.614268i −0.602635 0.798017i 0.705882π-0.705882\pi
0.982973 + 0.183750i 0.0588235π0.0588235\pi
578578 0 0
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 0 0 −0.183750 0.982973i 0.558824π-0.558824\pi
0.183750 + 0.982973i 0.441176π0.441176\pi
588588 0 0
589589 1.72198 + 2.78110i 1.72198 + 2.78110i
590590 0 0
591591 0 0
592592 −1.58923 0.147263i −1.58923 0.147263i
593593 0 0 0.445738 0.895163i 0.352941π-0.352941\pi
−0.445738 + 0.895163i 0.647059π0.647059\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 0 0 0.932472 0.361242i 0.117647π-0.117647\pi
−0.932472 + 0.361242i 0.882353π0.882353\pi
600600 0 0
601601 1.42871 + 0.711414i 1.42871 + 0.711414i 0.982973 0.183750i 0.0588235π-0.0588235\pi
0.445738 + 0.895163i 0.352941π0.352941\pi
602602 0 0
603603 0 0
604604 1.04837 + 0.0971461i 1.04837 + 0.0971461i
605605 0 0
606606 0 0
607607 1.45285 + 1.32445i 1.45285 + 1.32445i 0.850217 + 0.526432i 0.176471π0.176471\pi
0.602635 + 0.798017i 0.294118π0.294118\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 −0.156896 + 0.0971461i −0.156896 + 0.0971461i −0.602635 0.798017i 0.705882π-0.705882\pi
0.445738 + 0.895163i 0.352941π0.352941\pi
614614 0 0
615615 0 0
616616 0 0
617617 0 0 1.00000 00
−1.00000 π\pi
618618 0 0
619619 0.184537 0.184537 0.0922684 0.995734i 0.470588π-0.470588\pi
0.0922684 + 0.995734i 0.470588π0.470588\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 −0.602635 0.798017i −0.602635 0.798017i
626626 0 0
627627 0 0
628628 0.193463 1.03494i 0.193463 1.03494i
629629 0 0
630630 0 0
631631 1.02474 + 1.35698i 1.02474 + 1.35698i 0.932472 + 0.361242i 0.117647π0.117647\pi
0.0922684 + 0.995734i 0.470588π0.470588\pi
632632 0 0
633633 0 0
634634 0 0
635635 0 0
636636 0 0
637637 −0.426406 + 0.165190i −0.426406 + 0.165190i
638638 0 0
639639 0 0
640640 0 0
641641 0 0 −0.673696 0.739009i 0.735294π-0.735294\pi
0.673696 + 0.739009i 0.264706π0.264706\pi
642642 0 0
643643 0.876298 1.75984i 0.876298 1.75984i 0.273663 0.961826i 0.411765π-0.411765\pi
0.602635 0.798017i 0.294118π-0.294118\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 −0.526432 0.850217i 0.676471π-0.676471\pi
0.526432 + 0.850217i 0.323529π0.323529\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 1.37821 0.533922i 1.37821 0.533922i
653653 0 0 −0.932472 0.361242i 0.882353π-0.882353\pi
0.932472 + 0.361242i 0.117647π0.117647\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 0 0 0.526432 0.850217i 0.323529π-0.323529\pi
−0.526432 + 0.850217i 0.676471π0.676471\pi
660660 0 0
661661 1.91545 0.544991i 1.91545 0.544991i 0.932472 0.361242i 0.117647π-0.117647\pi
0.982973 0.183750i 0.0588235π-0.0588235\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 −1.67148 0.312454i −1.67148 0.312454i −0.739009 0.673696i 0.764706π-0.764706\pi
−0.932472 + 0.361242i 0.882353π0.882353\pi
674674 0 0
675675 0 0
676676 −0.949499 0.177492i −0.949499 0.177492i
677677 0 0 −0.798017 0.602635i 0.794118π-0.794118\pi
0.798017 + 0.602635i 0.205882π0.205882\pi
678678 0 0
679679 −0.741064 + 1.48826i −0.741064 + 1.48826i
680680 0 0
681681 0 0
682682 0 0
683683 0 0 −0.932472 0.361242i 0.882353π-0.882353\pi
0.932472 + 0.361242i 0.117647π0.117647\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 −1.60263 + 0.798017i −1.60263 + 0.798017i
689689 0 0
690690 0 0
691691 −0.942485 + 1.52217i −0.942485 + 1.52217i −0.0922684 + 0.995734i 0.529412π0.529412\pi
−0.850217 + 0.526432i 0.823529π0.823529\pi
692692 0 0
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 0.510366 + 1.79375i 0.510366 + 1.79375i
701701 0 0 0.798017 0.602635i 0.205882π-0.205882\pi
−0.798017 + 0.602635i 0.794118π0.794118\pi
702702 0 0
703703 −2.70237 + 0.250412i −2.70237 + 0.250412i
704704 0 0
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 −0.0505009 + 0.177492i −0.0505009 + 0.177492i −0.982973 0.183750i 0.941176π-0.941176\pi
0.932472 + 0.361242i 0.117647π0.117647\pi
710710 0 0
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 −0.739009 0.673696i 0.764706π-0.764706\pi
0.739009 + 0.673696i 0.235294π0.235294\pi
720720 0 0
721721 −1.73901 + 0.673696i −1.73901 + 0.673696i
722722 0 0
723723 0 0
724724 −0.132756 + 0.342683i −0.132756 + 0.342683i
725725 0 0
726726 0 0
727727 −0.646741 + 0.322039i −0.646741 + 0.322039i −0.739009 0.673696i 0.764706π-0.764706\pi
0.0922684 + 0.995734i 0.470588π0.470588\pi
728728 0 0
729729 0 0
730730 0 0
731731 0 0
732732 0 0
733733 1.72198 + 0.489946i 1.72198 + 0.489946i 0.982973 0.183750i 0.0588235π-0.0588235\pi
0.739009 + 0.673696i 0.235294π0.235294\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 −0.0822551 0.887674i −0.0822551 0.887674i −0.932472 0.361242i 0.882353π-0.882353\pi
0.850217 0.526432i 0.176471π-0.176471\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 −0.0922684 0.995734i 0.529412π-0.529412\pi
0.0922684 + 0.995734i 0.470588π0.470588\pi
744744 0 0
745745 0 0
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 0.156896 + 0.0971461i 0.156896 + 0.0971461i 0.602635 0.798017i 0.294118π-0.294118\pi
−0.445738 + 0.895163i 0.647059π0.647059\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 1.18475 1.56886i 1.18475 1.56886i 0.445738 0.895163i 0.352941π-0.352941\pi
0.739009 0.673696i 0.235294π-0.235294\pi
758758 0 0
759759 0 0
760760 0 0
761761 0 0 0.0922684 0.995734i 0.470588π-0.470588\pi
−0.0922684 + 0.995734i 0.529412π0.529412\pi
762762 0 0
763763 0.613514 + 0.305494i 0.613514 + 0.305494i
764764 0 0
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 −0.0675278 + 0.361242i −0.0675278 + 0.361242i 0.932472 + 0.361242i 0.117647π0.117647\pi
−1.00000 π\pi
770770 0 0
771771 0 0
772772 1.20614 + 1.32307i 1.20614 + 1.32307i
773773 0 0 −0.673696 0.739009i 0.735294π-0.735294\pi
0.673696 + 0.739009i 0.264706π0.264706\pi
774774 0 0
775775 −1.85022 0.526432i −1.85022 0.526432i
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 0.228643 2.46745i 0.228643 2.46745i
785785 0 0
786786 0 0
787787 −0.243964 + 0.857445i −0.243964 + 0.857445i 0.739009 + 0.673696i 0.235294π0.235294\pi
−0.982973 + 0.183750i 0.941176π0.941176\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0.356612 0.0666624i 0.356612 0.0666624i
794794 0 0
795795 0 0
796796 −1.20614 1.32307i −1.20614 1.32307i
797797 0 0 0.895163 0.445738i 0.147059π-0.147059\pi
−0.895163 + 0.445738i 0.852941π0.852941\pi
798798 0 0
799799 0 0
800800 0 0
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 0 0 0.982973 0.183750i 0.0588235π-0.0588235\pi
−0.982973 + 0.183750i 0.941176π0.941176\pi
810810 0 0
811811 0.840204 0.634493i 0.840204 0.634493i −0.0922684 0.995734i 0.529412π-0.529412\pi
0.932472 + 0.361242i 0.117647π0.117647\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 −2.42943 + 1.83462i −2.42943 + 1.83462i
818818 0 0
819819 0 0
820820 0 0
821821 0 0 0.361242 0.932472i 0.382353π-0.382353\pi
−0.361242 + 0.932472i 0.617647π0.617647\pi
822822 0 0
823823 1.92365i 1.92365i 0.273663 + 0.961826i 0.411765π0.411765\pi
−0.273663 + 0.961826i 0.588235π0.588235\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 −0.932472 0.361242i 0.882353π-0.882353\pi
0.932472 + 0.361242i 0.117647π0.117647\pi
828828 0 0
829829 0.709310 + 1.14558i 0.709310 + 1.14558i 0.982973 + 0.183750i 0.0588235π0.0588235\pi
−0.273663 + 0.961826i 0.588235π0.588235\pi
830830 0 0
831831 0 0
832832 −0.111208 + 0.147263i −0.111208 + 0.147263i
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 −0.183750 0.982973i 0.558824π-0.558824\pi
0.183750 + 0.982973i 0.441176π0.441176\pi
840840 0 0
841841 −0.445738 + 0.895163i −0.445738 + 0.895163i
842842 0 0
843843 0 0
844844 −1.58923 + 1.20013i −1.58923 + 1.20013i
845845 0 0
846846 0 0
847847 1.37821 1.25640i 1.37821 1.25640i
848848 0 0
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 0.757949 0.469302i 0.757949 0.469302i −0.0922684 0.995734i 0.529412π-0.529412\pi
0.850217 + 0.526432i 0.176471π0.176471\pi
854854 0 0
855855 0 0
856856 0 0
857857 0 0 0.895163 0.445738i 0.147059π-0.147059\pi
−0.895163 + 0.445738i 0.852941π0.852941\pi
858858 0 0
859859 −0.380338 + 0.981767i −0.380338 + 0.981767i 0.602635 + 0.798017i 0.294118π0.294118\pi
−0.982973 + 0.183750i 0.941176π0.941176\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 −0.273663 0.961826i 0.588235π-0.588235\pi
0.273663 + 0.961826i 0.411765π0.411765\pi
864864 0 0
865865 0 0
866866 0 0
867867 0 0
868868 2.86289 + 2.16195i 2.86289 + 2.16195i
869869 0 0
870870 0 0
871871 0.248643i 0.248643i
872872 0 0
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 −0.576554 1.48826i −0.576554 1.48826i −0.850217 0.526432i 0.823529π-0.823529\pi
0.273663 0.961826i 0.411765π-0.411765\pi
878878 0 0
879879 0 0
880880 0 0
881881 0 0 1.00000 00
−1.00000 π\pi
882882 0 0
883883 0.537235 0.711414i 0.537235 0.711414i −0.445738 0.895163i 0.647059π-0.647059\pi
0.982973 + 0.183750i 0.0588235π0.0588235\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 −0.995734 0.0922684i 0.970588π-0.970588\pi
0.995734 + 0.0922684i 0.0294118π0.0294118\pi
888888 0 0
889889 0.907732 2.34313i 0.907732 2.34313i
890890 0 0
891891 0 0
892892 −1.37821 0.533922i −1.37821 0.533922i
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 0.726337 + 0.961826i 0.726337 + 0.961826i 1.00000 00
−0.273663 + 0.961826i 0.588235π0.588235\pi
908908 0 0
909909 0 0
910910 0 0
911911 0 0 0.982973 0.183750i 0.0588235π-0.0588235\pi
−0.982973 + 0.183750i 0.941176π0.941176\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 0.404479 + 0.368731i 0.404479 + 0.368731i
917917 0 0
918918 0 0
919919 −0.576554 0.435393i −0.576554 0.435393i 0.273663 0.961826i 0.411765π-0.411765\pi
−0.850217 + 0.526432i 0.823529π0.823529\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 1.07524 1.17948i 1.07524 1.17948i
926926 0 0
927927 0 0
928928 0 0
929929 0 0 0.673696 0.739009i 0.264706π-0.264706\pi
−0.673696 + 0.739009i 0.735294π0.735294\pi
930930 0 0
931931 −0.388792 4.19573i −0.388792 4.19573i
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 0.328972 1.75984i 0.328972 1.75984i −0.273663 0.961826i 0.588235π-0.588235\pi
0.602635 0.798017i 0.294118π-0.294118\pi
938938 0 0
939939 0 0
940940 0 0
941941 0 0 −0.995734 0.0922684i 0.970588π-0.970588\pi
0.995734 + 0.0922684i 0.0294118π0.0294118\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 0 0 −0.602635 0.798017i 0.705882π-0.705882\pi
0.602635 + 0.798017i 0.294118π0.294118\pi
948948 0 0
949949 0.0675278 0.00625737i 0.0675278 0.00625737i
950950 0 0
951951 0 0
952952 0 0
953953 0 0 −0.995734 0.0922684i 0.970588π-0.970588\pi
0.995734 + 0.0922684i 0.0294118π0.0294118\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 −2.51808 + 0.975509i −2.51808 + 0.975509i
962962 0 0
963963 0 0
964964 1.29596 + 0.368731i 1.29596 + 0.368731i
965965 0 0
966966 0 0
967967 1.98297 + 0.183750i 1.98297 + 0.183750i 1.00000 00
0.982973 + 0.183750i 0.0588235π0.0588235\pi
968968 0 0
969969 0 0
970970 0 0
971971 0 0 0.602635 0.798017i 0.294118π-0.294118\pi
−0.602635 + 0.798017i 0.705882π0.705882\pi
972972 0 0
973973 1.02073 1.02073
974974 0 0
975975 0 0
976976 −0.538007 + 1.89090i −0.538007 + 1.89090i
977977 0 0 −0.361242 0.932472i 0.617647π-0.617647\pi
0.361242 + 0.932472i 0.382353π0.382353\pi
978978 0 0
979979 0 0
980980 0 0
981981 0 0
982982 0 0
983983 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 −0.139869 + 0.280896i −0.139869 + 0.280896i
989989 0 0
990990 0 0
991991 −0.404479 1.42160i −0.404479 1.42160i −0.850217 0.526432i 0.823529π-0.823529\pi
0.445738 0.895163i 0.352941π-0.352941\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 1.78269 0.887674i 1.78269 0.887674i 0.850217 0.526432i 0.176471π-0.176471\pi
0.932472 0.361242i 0.117647π-0.117647\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 927.1.v.a.73.1 16
3.2 odd 2 CM 927.1.v.a.73.1 16
103.24 odd 34 inner 927.1.v.a.127.1 yes 16
309.230 even 34 inner 927.1.v.a.127.1 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
927.1.v.a.73.1 16 1.1 even 1 trivial
927.1.v.a.73.1 16 3.2 odd 2 CM
927.1.v.a.127.1 yes 16 103.24 odd 34 inner
927.1.v.a.127.1 yes 16 309.230 even 34 inner