Properties

Label 9280.2.a.cb.1.1
Level $9280$
Weight $2$
Character 9280.1
Self dual yes
Analytic conductor $74.101$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9280,2,Mod(1,9280)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9280, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9280.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9280 = 2^{6} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9280.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(74.1011730757\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{24})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 4640)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.93185\) of defining polynomial
Character \(\chi\) \(=\) 9280.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421 q^{3} -1.00000 q^{5} -1.41421 q^{7} -1.00000 q^{9} +O(q^{10})\) \(q-1.41421 q^{3} -1.00000 q^{5} -1.41421 q^{7} -1.00000 q^{9} -1.41421 q^{11} -1.46410 q^{13} +1.41421 q^{15} -6.19615 q^{17} +2.44949 q^{19} +2.00000 q^{21} -0.378937 q^{23} +1.00000 q^{25} +5.65685 q^{27} -1.00000 q^{29} -3.20736 q^{31} +2.00000 q^{33} +1.41421 q^{35} -0.732051 q^{37} +2.07055 q^{39} -4.00000 q^{41} -4.24264 q^{43} +1.00000 q^{45} -11.2122 q^{47} -5.00000 q^{49} +8.76268 q^{51} +2.53590 q^{53} +1.41421 q^{55} -3.46410 q^{57} -8.76268 q^{59} +12.3923 q^{61} +1.41421 q^{63} +1.46410 q^{65} -15.0759 q^{67} +0.535898 q^{69} -7.45001 q^{71} -8.19615 q^{73} -1.41421 q^{75} +2.00000 q^{77} -8.38375 q^{79} -5.00000 q^{81} -9.89949 q^{83} +6.19615 q^{85} +1.41421 q^{87} +11.8564 q^{89} +2.07055 q^{91} +4.53590 q^{93} -2.44949 q^{95} -12.1962 q^{97} +1.41421 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{5} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{5} - 4 q^{9} + 8 q^{13} - 4 q^{17} + 8 q^{21} + 4 q^{25} - 4 q^{29} + 8 q^{33} + 4 q^{37} - 16 q^{41} + 4 q^{45} - 20 q^{49} + 24 q^{53} + 8 q^{61} - 8 q^{65} + 16 q^{69} - 12 q^{73} + 8 q^{77} - 20 q^{81} + 4 q^{85} - 8 q^{89} + 32 q^{93} - 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.41421 −0.816497 −0.408248 0.912871i \(-0.633860\pi\)
−0.408248 + 0.912871i \(0.633860\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −1.41421 −0.534522 −0.267261 0.963624i \(-0.586119\pi\)
−0.267261 + 0.963624i \(0.586119\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −1.41421 −0.426401 −0.213201 0.977008i \(-0.568389\pi\)
−0.213201 + 0.977008i \(0.568389\pi\)
\(12\) 0 0
\(13\) −1.46410 −0.406069 −0.203034 0.979172i \(-0.565080\pi\)
−0.203034 + 0.979172i \(0.565080\pi\)
\(14\) 0 0
\(15\) 1.41421 0.365148
\(16\) 0 0
\(17\) −6.19615 −1.50279 −0.751394 0.659854i \(-0.770618\pi\)
−0.751394 + 0.659854i \(0.770618\pi\)
\(18\) 0 0
\(19\) 2.44949 0.561951 0.280976 0.959715i \(-0.409342\pi\)
0.280976 + 0.959715i \(0.409342\pi\)
\(20\) 0 0
\(21\) 2.00000 0.436436
\(22\) 0 0
\(23\) −0.378937 −0.0790139 −0.0395070 0.999219i \(-0.512579\pi\)
−0.0395070 + 0.999219i \(0.512579\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 5.65685 1.08866
\(28\) 0 0
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) −3.20736 −0.576060 −0.288030 0.957621i \(-0.593000\pi\)
−0.288030 + 0.957621i \(0.593000\pi\)
\(32\) 0 0
\(33\) 2.00000 0.348155
\(34\) 0 0
\(35\) 1.41421 0.239046
\(36\) 0 0
\(37\) −0.732051 −0.120348 −0.0601742 0.998188i \(-0.519166\pi\)
−0.0601742 + 0.998188i \(0.519166\pi\)
\(38\) 0 0
\(39\) 2.07055 0.331554
\(40\) 0 0
\(41\) −4.00000 −0.624695 −0.312348 0.949968i \(-0.601115\pi\)
−0.312348 + 0.949968i \(0.601115\pi\)
\(42\) 0 0
\(43\) −4.24264 −0.646997 −0.323498 0.946229i \(-0.604859\pi\)
−0.323498 + 0.946229i \(0.604859\pi\)
\(44\) 0 0
\(45\) 1.00000 0.149071
\(46\) 0 0
\(47\) −11.2122 −1.63546 −0.817732 0.575600i \(-0.804769\pi\)
−0.817732 + 0.575600i \(0.804769\pi\)
\(48\) 0 0
\(49\) −5.00000 −0.714286
\(50\) 0 0
\(51\) 8.76268 1.22702
\(52\) 0 0
\(53\) 2.53590 0.348332 0.174166 0.984716i \(-0.444277\pi\)
0.174166 + 0.984716i \(0.444277\pi\)
\(54\) 0 0
\(55\) 1.41421 0.190693
\(56\) 0 0
\(57\) −3.46410 −0.458831
\(58\) 0 0
\(59\) −8.76268 −1.14080 −0.570402 0.821366i \(-0.693213\pi\)
−0.570402 + 0.821366i \(0.693213\pi\)
\(60\) 0 0
\(61\) 12.3923 1.58667 0.793336 0.608784i \(-0.208342\pi\)
0.793336 + 0.608784i \(0.208342\pi\)
\(62\) 0 0
\(63\) 1.41421 0.178174
\(64\) 0 0
\(65\) 1.46410 0.181599
\(66\) 0 0
\(67\) −15.0759 −1.84181 −0.920906 0.389785i \(-0.872549\pi\)
−0.920906 + 0.389785i \(0.872549\pi\)
\(68\) 0 0
\(69\) 0.535898 0.0645146
\(70\) 0 0
\(71\) −7.45001 −0.884153 −0.442076 0.896977i \(-0.645758\pi\)
−0.442076 + 0.896977i \(0.645758\pi\)
\(72\) 0 0
\(73\) −8.19615 −0.959287 −0.479644 0.877463i \(-0.659234\pi\)
−0.479644 + 0.877463i \(0.659234\pi\)
\(74\) 0 0
\(75\) −1.41421 −0.163299
\(76\) 0 0
\(77\) 2.00000 0.227921
\(78\) 0 0
\(79\) −8.38375 −0.943245 −0.471623 0.881801i \(-0.656331\pi\)
−0.471623 + 0.881801i \(0.656331\pi\)
\(80\) 0 0
\(81\) −5.00000 −0.555556
\(82\) 0 0
\(83\) −9.89949 −1.08661 −0.543305 0.839535i \(-0.682827\pi\)
−0.543305 + 0.839535i \(0.682827\pi\)
\(84\) 0 0
\(85\) 6.19615 0.672067
\(86\) 0 0
\(87\) 1.41421 0.151620
\(88\) 0 0
\(89\) 11.8564 1.25678 0.628388 0.777900i \(-0.283715\pi\)
0.628388 + 0.777900i \(0.283715\pi\)
\(90\) 0 0
\(91\) 2.07055 0.217053
\(92\) 0 0
\(93\) 4.53590 0.470351
\(94\) 0 0
\(95\) −2.44949 −0.251312
\(96\) 0 0
\(97\) −12.1962 −1.23833 −0.619166 0.785260i \(-0.712529\pi\)
−0.619166 + 0.785260i \(0.712529\pi\)
\(98\) 0 0
\(99\) 1.41421 0.142134
\(100\) 0 0
\(101\) −2.39230 −0.238043 −0.119022 0.992892i \(-0.537976\pi\)
−0.119022 + 0.992892i \(0.537976\pi\)
\(102\) 0 0
\(103\) −17.9043 −1.76416 −0.882082 0.471096i \(-0.843858\pi\)
−0.882082 + 0.471096i \(0.843858\pi\)
\(104\) 0 0
\(105\) −2.00000 −0.195180
\(106\) 0 0
\(107\) 13.2827 1.28409 0.642045 0.766667i \(-0.278086\pi\)
0.642045 + 0.766667i \(0.278086\pi\)
\(108\) 0 0
\(109\) 6.92820 0.663602 0.331801 0.943349i \(-0.392344\pi\)
0.331801 + 0.943349i \(0.392344\pi\)
\(110\) 0 0
\(111\) 1.03528 0.0982641
\(112\) 0 0
\(113\) 20.5885 1.93680 0.968400 0.249404i \(-0.0802347\pi\)
0.968400 + 0.249404i \(0.0802347\pi\)
\(114\) 0 0
\(115\) 0.378937 0.0353361
\(116\) 0 0
\(117\) 1.46410 0.135356
\(118\) 0 0
\(119\) 8.76268 0.803274
\(120\) 0 0
\(121\) −9.00000 −0.818182
\(122\) 0 0
\(123\) 5.65685 0.510061
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 18.1817 1.61337 0.806683 0.590985i \(-0.201261\pi\)
0.806683 + 0.590985i \(0.201261\pi\)
\(128\) 0 0
\(129\) 6.00000 0.528271
\(130\) 0 0
\(131\) −1.69161 −0.147797 −0.0738985 0.997266i \(-0.523544\pi\)
−0.0738985 + 0.997266i \(0.523544\pi\)
\(132\) 0 0
\(133\) −3.46410 −0.300376
\(134\) 0 0
\(135\) −5.65685 −0.486864
\(136\) 0 0
\(137\) 4.73205 0.404286 0.202143 0.979356i \(-0.435209\pi\)
0.202143 + 0.979356i \(0.435209\pi\)
\(138\) 0 0
\(139\) −15.4548 −1.31086 −0.655430 0.755256i \(-0.727513\pi\)
−0.655430 + 0.755256i \(0.727513\pi\)
\(140\) 0 0
\(141\) 15.8564 1.33535
\(142\) 0 0
\(143\) 2.07055 0.173148
\(144\) 0 0
\(145\) 1.00000 0.0830455
\(146\) 0 0
\(147\) 7.07107 0.583212
\(148\) 0 0
\(149\) 12.5359 1.02698 0.513490 0.858095i \(-0.328352\pi\)
0.513490 + 0.858095i \(0.328352\pi\)
\(150\) 0 0
\(151\) −6.69213 −0.544598 −0.272299 0.962213i \(-0.587784\pi\)
−0.272299 + 0.962213i \(0.587784\pi\)
\(152\) 0 0
\(153\) 6.19615 0.500929
\(154\) 0 0
\(155\) 3.20736 0.257622
\(156\) 0 0
\(157\) −20.1962 −1.61183 −0.805914 0.592032i \(-0.798326\pi\)
−0.805914 + 0.592032i \(0.798326\pi\)
\(158\) 0 0
\(159\) −3.58630 −0.284412
\(160\) 0 0
\(161\) 0.535898 0.0422347
\(162\) 0 0
\(163\) −7.07107 −0.553849 −0.276924 0.960892i \(-0.589315\pi\)
−0.276924 + 0.960892i \(0.589315\pi\)
\(164\) 0 0
\(165\) −2.00000 −0.155700
\(166\) 0 0
\(167\) −17.3495 −1.34254 −0.671272 0.741211i \(-0.734252\pi\)
−0.671272 + 0.741211i \(0.734252\pi\)
\(168\) 0 0
\(169\) −10.8564 −0.835108
\(170\) 0 0
\(171\) −2.44949 −0.187317
\(172\) 0 0
\(173\) 21.8564 1.66171 0.830856 0.556488i \(-0.187851\pi\)
0.830856 + 0.556488i \(0.187851\pi\)
\(174\) 0 0
\(175\) −1.41421 −0.106904
\(176\) 0 0
\(177\) 12.3923 0.931463
\(178\) 0 0
\(179\) 9.04008 0.675688 0.337844 0.941202i \(-0.390302\pi\)
0.337844 + 0.941202i \(0.390302\pi\)
\(180\) 0 0
\(181\) 18.5359 1.37776 0.688881 0.724874i \(-0.258102\pi\)
0.688881 + 0.724874i \(0.258102\pi\)
\(182\) 0 0
\(183\) −17.5254 −1.29551
\(184\) 0 0
\(185\) 0.732051 0.0538214
\(186\) 0 0
\(187\) 8.76268 0.640791
\(188\) 0 0
\(189\) −8.00000 −0.581914
\(190\) 0 0
\(191\) −0.656339 −0.0474910 −0.0237455 0.999718i \(-0.507559\pi\)
−0.0237455 + 0.999718i \(0.507559\pi\)
\(192\) 0 0
\(193\) −21.1244 −1.52056 −0.760282 0.649593i \(-0.774939\pi\)
−0.760282 + 0.649593i \(0.774939\pi\)
\(194\) 0 0
\(195\) −2.07055 −0.148275
\(196\) 0 0
\(197\) 12.9282 0.921096 0.460548 0.887635i \(-0.347653\pi\)
0.460548 + 0.887635i \(0.347653\pi\)
\(198\) 0 0
\(199\) 11.0363 0.782343 0.391172 0.920318i \(-0.372070\pi\)
0.391172 + 0.920318i \(0.372070\pi\)
\(200\) 0 0
\(201\) 21.3205 1.50383
\(202\) 0 0
\(203\) 1.41421 0.0992583
\(204\) 0 0
\(205\) 4.00000 0.279372
\(206\) 0 0
\(207\) 0.378937 0.0263380
\(208\) 0 0
\(209\) −3.46410 −0.239617
\(210\) 0 0
\(211\) −14.0406 −0.966595 −0.483297 0.875456i \(-0.660561\pi\)
−0.483297 + 0.875456i \(0.660561\pi\)
\(212\) 0 0
\(213\) 10.5359 0.721908
\(214\) 0 0
\(215\) 4.24264 0.289346
\(216\) 0 0
\(217\) 4.53590 0.307917
\(218\) 0 0
\(219\) 11.5911 0.783255
\(220\) 0 0
\(221\) 9.07180 0.610235
\(222\) 0 0
\(223\) 29.2180 1.95658 0.978291 0.207234i \(-0.0664462\pi\)
0.978291 + 0.207234i \(0.0664462\pi\)
\(224\) 0 0
\(225\) −1.00000 −0.0666667
\(226\) 0 0
\(227\) 19.9749 1.32578 0.662889 0.748718i \(-0.269330\pi\)
0.662889 + 0.748718i \(0.269330\pi\)
\(228\) 0 0
\(229\) 4.92820 0.325665 0.162832 0.986654i \(-0.447937\pi\)
0.162832 + 0.986654i \(0.447937\pi\)
\(230\) 0 0
\(231\) −2.82843 −0.186097
\(232\) 0 0
\(233\) −20.2487 −1.32654 −0.663269 0.748381i \(-0.730831\pi\)
−0.663269 + 0.748381i \(0.730831\pi\)
\(234\) 0 0
\(235\) 11.2122 0.731401
\(236\) 0 0
\(237\) 11.8564 0.770156
\(238\) 0 0
\(239\) 8.20788 0.530924 0.265462 0.964121i \(-0.414476\pi\)
0.265462 + 0.964121i \(0.414476\pi\)
\(240\) 0 0
\(241\) 3.85641 0.248413 0.124206 0.992256i \(-0.460361\pi\)
0.124206 + 0.992256i \(0.460361\pi\)
\(242\) 0 0
\(243\) −9.89949 −0.635053
\(244\) 0 0
\(245\) 5.00000 0.319438
\(246\) 0 0
\(247\) −3.58630 −0.228191
\(248\) 0 0
\(249\) 14.0000 0.887214
\(250\) 0 0
\(251\) −16.1112 −1.01693 −0.508463 0.861084i \(-0.669786\pi\)
−0.508463 + 0.861084i \(0.669786\pi\)
\(252\) 0 0
\(253\) 0.535898 0.0336916
\(254\) 0 0
\(255\) −8.76268 −0.548740
\(256\) 0 0
\(257\) −2.92820 −0.182656 −0.0913281 0.995821i \(-0.529111\pi\)
−0.0913281 + 0.995821i \(0.529111\pi\)
\(258\) 0 0
\(259\) 1.03528 0.0643289
\(260\) 0 0
\(261\) 1.00000 0.0618984
\(262\) 0 0
\(263\) 4.79744 0.295823 0.147912 0.989001i \(-0.452745\pi\)
0.147912 + 0.989001i \(0.452745\pi\)
\(264\) 0 0
\(265\) −2.53590 −0.155779
\(266\) 0 0
\(267\) −16.7675 −1.02615
\(268\) 0 0
\(269\) −1.85641 −0.113187 −0.0565935 0.998397i \(-0.518024\pi\)
−0.0565935 + 0.998397i \(0.518024\pi\)
\(270\) 0 0
\(271\) 16.3142 0.991019 0.495509 0.868603i \(-0.334981\pi\)
0.495509 + 0.868603i \(0.334981\pi\)
\(272\) 0 0
\(273\) −2.92820 −0.177223
\(274\) 0 0
\(275\) −1.41421 −0.0852803
\(276\) 0 0
\(277\) −0.392305 −0.0235713 −0.0117857 0.999931i \(-0.503752\pi\)
−0.0117857 + 0.999931i \(0.503752\pi\)
\(278\) 0 0
\(279\) 3.20736 0.192020
\(280\) 0 0
\(281\) −13.8564 −0.826604 −0.413302 0.910594i \(-0.635625\pi\)
−0.413302 + 0.910594i \(0.635625\pi\)
\(282\) 0 0
\(283\) −29.2180 −1.73683 −0.868415 0.495838i \(-0.834861\pi\)
−0.868415 + 0.495838i \(0.834861\pi\)
\(284\) 0 0
\(285\) 3.46410 0.205196
\(286\) 0 0
\(287\) 5.65685 0.333914
\(288\) 0 0
\(289\) 21.3923 1.25837
\(290\) 0 0
\(291\) 17.2480 1.01109
\(292\) 0 0
\(293\) −1.66025 −0.0969931 −0.0484965 0.998823i \(-0.515443\pi\)
−0.0484965 + 0.998823i \(0.515443\pi\)
\(294\) 0 0
\(295\) 8.76268 0.510183
\(296\) 0 0
\(297\) −8.00000 −0.464207
\(298\) 0 0
\(299\) 0.554803 0.0320851
\(300\) 0 0
\(301\) 6.00000 0.345834
\(302\) 0 0
\(303\) 3.38323 0.194361
\(304\) 0 0
\(305\) −12.3923 −0.709581
\(306\) 0 0
\(307\) 1.41421 0.0807134 0.0403567 0.999185i \(-0.487151\pi\)
0.0403567 + 0.999185i \(0.487151\pi\)
\(308\) 0 0
\(309\) 25.3205 1.44043
\(310\) 0 0
\(311\) 13.7632 0.780439 0.390220 0.920722i \(-0.372399\pi\)
0.390220 + 0.920722i \(0.372399\pi\)
\(312\) 0 0
\(313\) 2.53590 0.143337 0.0716687 0.997428i \(-0.477168\pi\)
0.0716687 + 0.997428i \(0.477168\pi\)
\(314\) 0 0
\(315\) −1.41421 −0.0796819
\(316\) 0 0
\(317\) −25.5167 −1.43316 −0.716579 0.697506i \(-0.754293\pi\)
−0.716579 + 0.697506i \(0.754293\pi\)
\(318\) 0 0
\(319\) 1.41421 0.0791808
\(320\) 0 0
\(321\) −18.7846 −1.04845
\(322\) 0 0
\(323\) −15.1774 −0.844494
\(324\) 0 0
\(325\) −1.46410 −0.0812137
\(326\) 0 0
\(327\) −9.79796 −0.541828
\(328\) 0 0
\(329\) 15.8564 0.874192
\(330\) 0 0
\(331\) 22.8033 1.25338 0.626691 0.779268i \(-0.284409\pi\)
0.626691 + 0.779268i \(0.284409\pi\)
\(332\) 0 0
\(333\) 0.732051 0.0401161
\(334\) 0 0
\(335\) 15.0759 0.823683
\(336\) 0 0
\(337\) 12.5885 0.685737 0.342868 0.939383i \(-0.388601\pi\)
0.342868 + 0.939383i \(0.388601\pi\)
\(338\) 0 0
\(339\) −29.1165 −1.58139
\(340\) 0 0
\(341\) 4.53590 0.245633
\(342\) 0 0
\(343\) 16.9706 0.916324
\(344\) 0 0
\(345\) −0.535898 −0.0288518
\(346\) 0 0
\(347\) −14.0406 −0.753739 −0.376869 0.926266i \(-0.622999\pi\)
−0.376869 + 0.926266i \(0.622999\pi\)
\(348\) 0 0
\(349\) −7.85641 −0.420544 −0.210272 0.977643i \(-0.567435\pi\)
−0.210272 + 0.977643i \(0.567435\pi\)
\(350\) 0 0
\(351\) −8.28221 −0.442072
\(352\) 0 0
\(353\) 26.5359 1.41236 0.706182 0.708031i \(-0.250416\pi\)
0.706182 + 0.708031i \(0.250416\pi\)
\(354\) 0 0
\(355\) 7.45001 0.395405
\(356\) 0 0
\(357\) −12.3923 −0.655870
\(358\) 0 0
\(359\) −9.41902 −0.497117 −0.248558 0.968617i \(-0.579957\pi\)
−0.248558 + 0.968617i \(0.579957\pi\)
\(360\) 0 0
\(361\) −13.0000 −0.684211
\(362\) 0 0
\(363\) 12.7279 0.668043
\(364\) 0 0
\(365\) 8.19615 0.429006
\(366\) 0 0
\(367\) −35.9101 −1.87449 −0.937247 0.348666i \(-0.886635\pi\)
−0.937247 + 0.348666i \(0.886635\pi\)
\(368\) 0 0
\(369\) 4.00000 0.208232
\(370\) 0 0
\(371\) −3.58630 −0.186192
\(372\) 0 0
\(373\) 18.3923 0.952317 0.476159 0.879359i \(-0.342029\pi\)
0.476159 + 0.879359i \(0.342029\pi\)
\(374\) 0 0
\(375\) 1.41421 0.0730297
\(376\) 0 0
\(377\) 1.46410 0.0754051
\(378\) 0 0
\(379\) 9.69642 0.498072 0.249036 0.968494i \(-0.419886\pi\)
0.249036 + 0.968494i \(0.419886\pi\)
\(380\) 0 0
\(381\) −25.7128 −1.31731
\(382\) 0 0
\(383\) −13.2827 −0.678716 −0.339358 0.940657i \(-0.610210\pi\)
−0.339358 + 0.940657i \(0.610210\pi\)
\(384\) 0 0
\(385\) −2.00000 −0.101929
\(386\) 0 0
\(387\) 4.24264 0.215666
\(388\) 0 0
\(389\) 32.7846 1.66225 0.831123 0.556089i \(-0.187699\pi\)
0.831123 + 0.556089i \(0.187699\pi\)
\(390\) 0 0
\(391\) 2.34795 0.118741
\(392\) 0 0
\(393\) 2.39230 0.120676
\(394\) 0 0
\(395\) 8.38375 0.421832
\(396\) 0 0
\(397\) −15.8564 −0.795810 −0.397905 0.917427i \(-0.630263\pi\)
−0.397905 + 0.917427i \(0.630263\pi\)
\(398\) 0 0
\(399\) 4.89898 0.245256
\(400\) 0 0
\(401\) 0.392305 0.0195908 0.00979538 0.999952i \(-0.496882\pi\)
0.00979538 + 0.999952i \(0.496882\pi\)
\(402\) 0 0
\(403\) 4.69591 0.233920
\(404\) 0 0
\(405\) 5.00000 0.248452
\(406\) 0 0
\(407\) 1.03528 0.0513167
\(408\) 0 0
\(409\) −15.3205 −0.757550 −0.378775 0.925489i \(-0.623655\pi\)
−0.378775 + 0.925489i \(0.623655\pi\)
\(410\) 0 0
\(411\) −6.69213 −0.330098
\(412\) 0 0
\(413\) 12.3923 0.609785
\(414\) 0 0
\(415\) 9.89949 0.485947
\(416\) 0 0
\(417\) 21.8564 1.07031
\(418\) 0 0
\(419\) −12.1459 −0.593367 −0.296683 0.954976i \(-0.595881\pi\)
−0.296683 + 0.954976i \(0.595881\pi\)
\(420\) 0 0
\(421\) 34.9282 1.70230 0.851148 0.524925i \(-0.175907\pi\)
0.851148 + 0.524925i \(0.175907\pi\)
\(422\) 0 0
\(423\) 11.2122 0.545154
\(424\) 0 0
\(425\) −6.19615 −0.300558
\(426\) 0 0
\(427\) −17.5254 −0.848112
\(428\) 0 0
\(429\) −2.92820 −0.141375
\(430\) 0 0
\(431\) 15.4548 0.744432 0.372216 0.928146i \(-0.378598\pi\)
0.372216 + 0.928146i \(0.378598\pi\)
\(432\) 0 0
\(433\) 6.19615 0.297768 0.148884 0.988855i \(-0.452432\pi\)
0.148884 + 0.988855i \(0.452432\pi\)
\(434\) 0 0
\(435\) −1.41421 −0.0678064
\(436\) 0 0
\(437\) −0.928203 −0.0444020
\(438\) 0 0
\(439\) 38.9144 1.85728 0.928642 0.370976i \(-0.120977\pi\)
0.928642 + 0.370976i \(0.120977\pi\)
\(440\) 0 0
\(441\) 5.00000 0.238095
\(442\) 0 0
\(443\) 10.6574 0.506347 0.253173 0.967421i \(-0.418526\pi\)
0.253173 + 0.967421i \(0.418526\pi\)
\(444\) 0 0
\(445\) −11.8564 −0.562048
\(446\) 0 0
\(447\) −17.7284 −0.838526
\(448\) 0 0
\(449\) 22.5359 1.06353 0.531767 0.846890i \(-0.321528\pi\)
0.531767 + 0.846890i \(0.321528\pi\)
\(450\) 0 0
\(451\) 5.65685 0.266371
\(452\) 0 0
\(453\) 9.46410 0.444662
\(454\) 0 0
\(455\) −2.07055 −0.0970690
\(456\) 0 0
\(457\) −1.46410 −0.0684878 −0.0342439 0.999414i \(-0.510902\pi\)
−0.0342439 + 0.999414i \(0.510902\pi\)
\(458\) 0 0
\(459\) −35.0507 −1.63603
\(460\) 0 0
\(461\) −3.46410 −0.161339 −0.0806696 0.996741i \(-0.525706\pi\)
−0.0806696 + 0.996741i \(0.525706\pi\)
\(462\) 0 0
\(463\) −0.175865 −0.00817316 −0.00408658 0.999992i \(-0.501301\pi\)
−0.00408658 + 0.999992i \(0.501301\pi\)
\(464\) 0 0
\(465\) −4.53590 −0.210347
\(466\) 0 0
\(467\) −30.8081 −1.42563 −0.712814 0.701353i \(-0.752580\pi\)
−0.712814 + 0.701353i \(0.752580\pi\)
\(468\) 0 0
\(469\) 21.3205 0.984490
\(470\) 0 0
\(471\) 28.5617 1.31605
\(472\) 0 0
\(473\) 6.00000 0.275880
\(474\) 0 0
\(475\) 2.44949 0.112390
\(476\) 0 0
\(477\) −2.53590 −0.116111
\(478\) 0 0
\(479\) 29.6985 1.35696 0.678479 0.734620i \(-0.262639\pi\)
0.678479 + 0.734620i \(0.262639\pi\)
\(480\) 0 0
\(481\) 1.07180 0.0488697
\(482\) 0 0
\(483\) −0.757875 −0.0344845
\(484\) 0 0
\(485\) 12.1962 0.553799
\(486\) 0 0
\(487\) −39.2934 −1.78055 −0.890276 0.455421i \(-0.849489\pi\)
−0.890276 + 0.455421i \(0.849489\pi\)
\(488\) 0 0
\(489\) 10.0000 0.452216
\(490\) 0 0
\(491\) −18.6622 −0.842212 −0.421106 0.907011i \(-0.638358\pi\)
−0.421106 + 0.907011i \(0.638358\pi\)
\(492\) 0 0
\(493\) 6.19615 0.279061
\(494\) 0 0
\(495\) −1.41421 −0.0635642
\(496\) 0 0
\(497\) 10.5359 0.472600
\(498\) 0 0
\(499\) 43.7391 1.95803 0.979015 0.203787i \(-0.0653251\pi\)
0.979015 + 0.203787i \(0.0653251\pi\)
\(500\) 0 0
\(501\) 24.5359 1.09618
\(502\) 0 0
\(503\) −1.96902 −0.0877941 −0.0438971 0.999036i \(-0.513977\pi\)
−0.0438971 + 0.999036i \(0.513977\pi\)
\(504\) 0 0
\(505\) 2.39230 0.106456
\(506\) 0 0
\(507\) 15.3533 0.681863
\(508\) 0 0
\(509\) 16.7846 0.743965 0.371982 0.928240i \(-0.378678\pi\)
0.371982 + 0.928240i \(0.378678\pi\)
\(510\) 0 0
\(511\) 11.5911 0.512761
\(512\) 0 0
\(513\) 13.8564 0.611775
\(514\) 0 0
\(515\) 17.9043 0.788958
\(516\) 0 0
\(517\) 15.8564 0.697364
\(518\) 0 0
\(519\) −30.9096 −1.35678
\(520\) 0 0
\(521\) −1.07180 −0.0469563 −0.0234781 0.999724i \(-0.507474\pi\)
−0.0234781 + 0.999724i \(0.507474\pi\)
\(522\) 0 0
\(523\) −1.13681 −0.0497093 −0.0248547 0.999691i \(-0.507912\pi\)
−0.0248547 + 0.999691i \(0.507912\pi\)
\(524\) 0 0
\(525\) 2.00000 0.0872872
\(526\) 0 0
\(527\) 19.8733 0.865695
\(528\) 0 0
\(529\) −22.8564 −0.993757
\(530\) 0 0
\(531\) 8.76268 0.380268
\(532\) 0 0
\(533\) 5.85641 0.253669
\(534\) 0 0
\(535\) −13.2827 −0.574262
\(536\) 0 0
\(537\) −12.7846 −0.551697
\(538\) 0 0
\(539\) 7.07107 0.304572
\(540\) 0 0
\(541\) −0.143594 −0.00617357 −0.00308678 0.999995i \(-0.500983\pi\)
−0.00308678 + 0.999995i \(0.500983\pi\)
\(542\) 0 0
\(543\) −26.2137 −1.12494
\(544\) 0 0
\(545\) −6.92820 −0.296772
\(546\) 0 0
\(547\) 23.8386 1.01926 0.509632 0.860393i \(-0.329782\pi\)
0.509632 + 0.860393i \(0.329782\pi\)
\(548\) 0 0
\(549\) −12.3923 −0.528891
\(550\) 0 0
\(551\) −2.44949 −0.104352
\(552\) 0 0
\(553\) 11.8564 0.504186
\(554\) 0 0
\(555\) −1.03528 −0.0439450
\(556\) 0 0
\(557\) 28.2487 1.19694 0.598468 0.801147i \(-0.295776\pi\)
0.598468 + 0.801147i \(0.295776\pi\)
\(558\) 0 0
\(559\) 6.21166 0.262725
\(560\) 0 0
\(561\) −12.3923 −0.523204
\(562\) 0 0
\(563\) 35.3553 1.49005 0.745025 0.667037i \(-0.232438\pi\)
0.745025 + 0.667037i \(0.232438\pi\)
\(564\) 0 0
\(565\) −20.5885 −0.866163
\(566\) 0 0
\(567\) 7.07107 0.296957
\(568\) 0 0
\(569\) 17.8564 0.748580 0.374290 0.927312i \(-0.377887\pi\)
0.374290 + 0.927312i \(0.377887\pi\)
\(570\) 0 0
\(571\) −22.6274 −0.946928 −0.473464 0.880813i \(-0.656997\pi\)
−0.473464 + 0.880813i \(0.656997\pi\)
\(572\) 0 0
\(573\) 0.928203 0.0387762
\(574\) 0 0
\(575\) −0.378937 −0.0158028
\(576\) 0 0
\(577\) 41.5167 1.72836 0.864181 0.503182i \(-0.167837\pi\)
0.864181 + 0.503182i \(0.167837\pi\)
\(578\) 0 0
\(579\) 29.8744 1.24154
\(580\) 0 0
\(581\) 14.0000 0.580818
\(582\) 0 0
\(583\) −3.58630 −0.148529
\(584\) 0 0
\(585\) −1.46410 −0.0605332
\(586\) 0 0
\(587\) 7.34847 0.303304 0.151652 0.988434i \(-0.451541\pi\)
0.151652 + 0.988434i \(0.451541\pi\)
\(588\) 0 0
\(589\) −7.85641 −0.323718
\(590\) 0 0
\(591\) −18.2832 −0.752072
\(592\) 0 0
\(593\) 10.1436 0.416547 0.208274 0.978071i \(-0.433216\pi\)
0.208274 + 0.978071i \(0.433216\pi\)
\(594\) 0 0
\(595\) −8.76268 −0.359235
\(596\) 0 0
\(597\) −15.6077 −0.638780
\(598\) 0 0
\(599\) −24.0416 −0.982314 −0.491157 0.871071i \(-0.663426\pi\)
−0.491157 + 0.871071i \(0.663426\pi\)
\(600\) 0 0
\(601\) −34.9282 −1.42475 −0.712376 0.701798i \(-0.752381\pi\)
−0.712376 + 0.701798i \(0.752381\pi\)
\(602\) 0 0
\(603\) 15.0759 0.613937
\(604\) 0 0
\(605\) 9.00000 0.365902
\(606\) 0 0
\(607\) 32.5269 1.32023 0.660113 0.751166i \(-0.270508\pi\)
0.660113 + 0.751166i \(0.270508\pi\)
\(608\) 0 0
\(609\) −2.00000 −0.0810441
\(610\) 0 0
\(611\) 16.4158 0.664111
\(612\) 0 0
\(613\) −11.8564 −0.478876 −0.239438 0.970912i \(-0.576963\pi\)
−0.239438 + 0.970912i \(0.576963\pi\)
\(614\) 0 0
\(615\) −5.65685 −0.228106
\(616\) 0 0
\(617\) −11.1244 −0.447850 −0.223925 0.974606i \(-0.571887\pi\)
−0.223925 + 0.974606i \(0.571887\pi\)
\(618\) 0 0
\(619\) −13.2827 −0.533878 −0.266939 0.963713i \(-0.586012\pi\)
−0.266939 + 0.963713i \(0.586012\pi\)
\(620\) 0 0
\(621\) −2.14359 −0.0860194
\(622\) 0 0
\(623\) −16.7675 −0.671775
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 4.89898 0.195646
\(628\) 0 0
\(629\) 4.53590 0.180858
\(630\) 0 0
\(631\) −26.7685 −1.06564 −0.532819 0.846229i \(-0.678867\pi\)
−0.532819 + 0.846229i \(0.678867\pi\)
\(632\) 0 0
\(633\) 19.8564 0.789221
\(634\) 0 0
\(635\) −18.1817 −0.721519
\(636\) 0 0
\(637\) 7.32051 0.290049
\(638\) 0 0
\(639\) 7.45001 0.294718
\(640\) 0 0
\(641\) −2.92820 −0.115657 −0.0578285 0.998327i \(-0.518418\pi\)
−0.0578285 + 0.998327i \(0.518418\pi\)
\(642\) 0 0
\(643\) −34.8749 −1.37533 −0.687665 0.726028i \(-0.741364\pi\)
−0.687665 + 0.726028i \(0.741364\pi\)
\(644\) 0 0
\(645\) −6.00000 −0.236250
\(646\) 0 0
\(647\) 7.62587 0.299804 0.149902 0.988701i \(-0.452104\pi\)
0.149902 + 0.988701i \(0.452104\pi\)
\(648\) 0 0
\(649\) 12.3923 0.486441
\(650\) 0 0
\(651\) −6.41473 −0.251413
\(652\) 0 0
\(653\) −8.58846 −0.336092 −0.168046 0.985779i \(-0.553746\pi\)
−0.168046 + 0.985779i \(0.553746\pi\)
\(654\) 0 0
\(655\) 1.69161 0.0660969
\(656\) 0 0
\(657\) 8.19615 0.319762
\(658\) 0 0
\(659\) 8.66115 0.337390 0.168695 0.985668i \(-0.446045\pi\)
0.168695 + 0.985668i \(0.446045\pi\)
\(660\) 0 0
\(661\) 21.8564 0.850116 0.425058 0.905166i \(-0.360254\pi\)
0.425058 + 0.905166i \(0.360254\pi\)
\(662\) 0 0
\(663\) −12.8295 −0.498255
\(664\) 0 0
\(665\) 3.46410 0.134332
\(666\) 0 0
\(667\) 0.378937 0.0146725
\(668\) 0 0
\(669\) −41.3205 −1.59754
\(670\) 0 0
\(671\) −17.5254 −0.676559
\(672\) 0 0
\(673\) 27.8564 1.07379 0.536893 0.843650i \(-0.319598\pi\)
0.536893 + 0.843650i \(0.319598\pi\)
\(674\) 0 0
\(675\) 5.65685 0.217732
\(676\) 0 0
\(677\) −9.94744 −0.382311 −0.191156 0.981560i \(-0.561224\pi\)
−0.191156 + 0.981560i \(0.561224\pi\)
\(678\) 0 0
\(679\) 17.2480 0.661916
\(680\) 0 0
\(681\) −28.2487 −1.08249
\(682\) 0 0
\(683\) −34.6718 −1.32668 −0.663340 0.748318i \(-0.730862\pi\)
−0.663340 + 0.748318i \(0.730862\pi\)
\(684\) 0 0
\(685\) −4.73205 −0.180802
\(686\) 0 0
\(687\) −6.96953 −0.265904
\(688\) 0 0
\(689\) −3.71281 −0.141447
\(690\) 0 0
\(691\) −3.66063 −0.139257 −0.0696285 0.997573i \(-0.522181\pi\)
−0.0696285 + 0.997573i \(0.522181\pi\)
\(692\) 0 0
\(693\) −2.00000 −0.0759737
\(694\) 0 0
\(695\) 15.4548 0.586234
\(696\) 0 0
\(697\) 24.7846 0.938784
\(698\) 0 0
\(699\) 28.6360 1.08311
\(700\) 0 0
\(701\) 2.92820 0.110597 0.0552984 0.998470i \(-0.482389\pi\)
0.0552984 + 0.998470i \(0.482389\pi\)
\(702\) 0 0
\(703\) −1.79315 −0.0676300
\(704\) 0 0
\(705\) −15.8564 −0.597187
\(706\) 0 0
\(707\) 3.38323 0.127239
\(708\) 0 0
\(709\) 16.0000 0.600893 0.300446 0.953799i \(-0.402864\pi\)
0.300446 + 0.953799i \(0.402864\pi\)
\(710\) 0 0
\(711\) 8.38375 0.314415
\(712\) 0 0
\(713\) 1.21539 0.0455167
\(714\) 0 0
\(715\) −2.07055 −0.0774343
\(716\) 0 0
\(717\) −11.6077 −0.433497
\(718\) 0 0
\(719\) 39.8754 1.48710 0.743550 0.668680i \(-0.233140\pi\)
0.743550 + 0.668680i \(0.233140\pi\)
\(720\) 0 0
\(721\) 25.3205 0.942985
\(722\) 0 0
\(723\) −5.45378 −0.202828
\(724\) 0 0
\(725\) −1.00000 −0.0371391
\(726\) 0 0
\(727\) −40.8091 −1.51353 −0.756763 0.653689i \(-0.773220\pi\)
−0.756763 + 0.653689i \(0.773220\pi\)
\(728\) 0 0
\(729\) 29.0000 1.07407
\(730\) 0 0
\(731\) 26.2880 0.972299
\(732\) 0 0
\(733\) 13.4115 0.495367 0.247683 0.968841i \(-0.420331\pi\)
0.247683 + 0.968841i \(0.420331\pi\)
\(734\) 0 0
\(735\) −7.07107 −0.260820
\(736\) 0 0
\(737\) 21.3205 0.785351
\(738\) 0 0
\(739\) 28.6632 1.05439 0.527197 0.849743i \(-0.323243\pi\)
0.527197 + 0.849743i \(0.323243\pi\)
\(740\) 0 0
\(741\) 5.07180 0.186317
\(742\) 0 0
\(743\) 6.11012 0.224159 0.112079 0.993699i \(-0.464249\pi\)
0.112079 + 0.993699i \(0.464249\pi\)
\(744\) 0 0
\(745\) −12.5359 −0.459280
\(746\) 0 0
\(747\) 9.89949 0.362204
\(748\) 0 0
\(749\) −18.7846 −0.686375
\(750\) 0 0
\(751\) 1.48854 0.0543177 0.0271589 0.999631i \(-0.491354\pi\)
0.0271589 + 0.999631i \(0.491354\pi\)
\(752\) 0 0
\(753\) 22.7846 0.830317
\(754\) 0 0
\(755\) 6.69213 0.243552
\(756\) 0 0
\(757\) −14.3397 −0.521187 −0.260593 0.965449i \(-0.583918\pi\)
−0.260593 + 0.965449i \(0.583918\pi\)
\(758\) 0 0
\(759\) −0.757875 −0.0275091
\(760\) 0 0
\(761\) 5.71281 0.207089 0.103545 0.994625i \(-0.466982\pi\)
0.103545 + 0.994625i \(0.466982\pi\)
\(762\) 0 0
\(763\) −9.79796 −0.354710
\(764\) 0 0
\(765\) −6.19615 −0.224022
\(766\) 0 0
\(767\) 12.8295 0.463245
\(768\) 0 0
\(769\) −3.46410 −0.124919 −0.0624593 0.998048i \(-0.519894\pi\)
−0.0624593 + 0.998048i \(0.519894\pi\)
\(770\) 0 0
\(771\) 4.14110 0.149138
\(772\) 0 0
\(773\) −41.9090 −1.50736 −0.753680 0.657241i \(-0.771723\pi\)
−0.753680 + 0.657241i \(0.771723\pi\)
\(774\) 0 0
\(775\) −3.20736 −0.115212
\(776\) 0 0
\(777\) −1.46410 −0.0525244
\(778\) 0 0
\(779\) −9.79796 −0.351048
\(780\) 0 0
\(781\) 10.5359 0.377004
\(782\) 0 0
\(783\) −5.65685 −0.202159
\(784\) 0 0
\(785\) 20.1962 0.720832
\(786\) 0 0
\(787\) 34.5975 1.23327 0.616633 0.787251i \(-0.288496\pi\)
0.616633 + 0.787251i \(0.288496\pi\)
\(788\) 0 0
\(789\) −6.78461 −0.241539
\(790\) 0 0
\(791\) −29.1165 −1.03526
\(792\) 0 0
\(793\) −18.1436 −0.644298
\(794\) 0 0
\(795\) 3.58630 0.127193
\(796\) 0 0
\(797\) −39.1244 −1.38586 −0.692928 0.721007i \(-0.743680\pi\)
−0.692928 + 0.721007i \(0.743680\pi\)
\(798\) 0 0
\(799\) 69.4723 2.45775
\(800\) 0 0
\(801\) −11.8564 −0.418926
\(802\) 0 0
\(803\) 11.5911 0.409041
\(804\) 0 0
\(805\) −0.535898 −0.0188879
\(806\) 0 0
\(807\) 2.62536 0.0924169
\(808\) 0 0
\(809\) 36.9282 1.29833 0.649163 0.760649i \(-0.275119\pi\)
0.649163 + 0.760649i \(0.275119\pi\)
\(810\) 0 0
\(811\) −34.6990 −1.21845 −0.609223 0.792999i \(-0.708519\pi\)
−0.609223 + 0.792999i \(0.708519\pi\)
\(812\) 0 0
\(813\) −23.0718 −0.809163
\(814\) 0 0
\(815\) 7.07107 0.247689
\(816\) 0 0
\(817\) −10.3923 −0.363581
\(818\) 0 0
\(819\) −2.07055 −0.0723510
\(820\) 0 0
\(821\) 12.5359 0.437506 0.218753 0.975780i \(-0.429801\pi\)
0.218753 + 0.975780i \(0.429801\pi\)
\(822\) 0 0
\(823\) −17.6269 −0.614435 −0.307218 0.951639i \(-0.599398\pi\)
−0.307218 + 0.951639i \(0.599398\pi\)
\(824\) 0 0
\(825\) 2.00000 0.0696311
\(826\) 0 0
\(827\) 33.0817 1.15036 0.575182 0.818025i \(-0.304931\pi\)
0.575182 + 0.818025i \(0.304931\pi\)
\(828\) 0 0
\(829\) −17.8564 −0.620179 −0.310089 0.950707i \(-0.600359\pi\)
−0.310089 + 0.950707i \(0.600359\pi\)
\(830\) 0 0
\(831\) 0.554803 0.0192459
\(832\) 0 0
\(833\) 30.9808 1.07342
\(834\) 0 0
\(835\) 17.3495 0.600404
\(836\) 0 0
\(837\) −18.1436 −0.627134
\(838\) 0 0
\(839\) −9.69642 −0.334758 −0.167379 0.985893i \(-0.553530\pi\)
−0.167379 + 0.985893i \(0.553530\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 0 0
\(843\) 19.5959 0.674919
\(844\) 0 0
\(845\) 10.8564 0.373472
\(846\) 0 0
\(847\) 12.7279 0.437337
\(848\) 0 0
\(849\) 41.3205 1.41812
\(850\) 0 0
\(851\) 0.277401 0.00950920
\(852\) 0 0
\(853\) 0.0525589 0.00179958 0.000899791 1.00000i \(-0.499714\pi\)
0.000899791 1.00000i \(0.499714\pi\)
\(854\) 0 0
\(855\) 2.44949 0.0837708
\(856\) 0 0
\(857\) 44.7846 1.52981 0.764907 0.644141i \(-0.222785\pi\)
0.764907 + 0.644141i \(0.222785\pi\)
\(858\) 0 0
\(859\) 1.61729 0.0551811 0.0275905 0.999619i \(-0.491217\pi\)
0.0275905 + 0.999619i \(0.491217\pi\)
\(860\) 0 0
\(861\) −8.00000 −0.272639
\(862\) 0 0
\(863\) −18.9396 −0.644711 −0.322355 0.946619i \(-0.604475\pi\)
−0.322355 + 0.946619i \(0.604475\pi\)
\(864\) 0 0
\(865\) −21.8564 −0.743140
\(866\) 0 0
\(867\) −30.2533 −1.02746
\(868\) 0 0
\(869\) 11.8564 0.402201
\(870\) 0 0
\(871\) 22.0726 0.747902
\(872\) 0 0
\(873\) 12.1962 0.412777
\(874\) 0 0
\(875\) 1.41421 0.0478091
\(876\) 0 0
\(877\) −43.0333 −1.45313 −0.726566 0.687097i \(-0.758885\pi\)
−0.726566 + 0.687097i \(0.758885\pi\)
\(878\) 0 0
\(879\) 2.34795 0.0791945
\(880\) 0 0
\(881\) 2.53590 0.0854366 0.0427183 0.999087i \(-0.486398\pi\)
0.0427183 + 0.999087i \(0.486398\pi\)
\(882\) 0 0
\(883\) 30.2533 1.01810 0.509052 0.860736i \(-0.329996\pi\)
0.509052 + 0.860736i \(0.329996\pi\)
\(884\) 0 0
\(885\) −12.3923 −0.416563
\(886\) 0 0
\(887\) 31.2142 1.04807 0.524036 0.851696i \(-0.324426\pi\)
0.524036 + 0.851696i \(0.324426\pi\)
\(888\) 0 0
\(889\) −25.7128 −0.862380
\(890\) 0 0
\(891\) 7.07107 0.236890
\(892\) 0 0
\(893\) −27.4641 −0.919051
\(894\) 0 0
\(895\) −9.04008 −0.302177
\(896\) 0 0
\(897\) −0.784610 −0.0261974
\(898\) 0 0
\(899\) 3.20736 0.106972
\(900\) 0 0
\(901\) −15.7128 −0.523470
\(902\) 0 0
\(903\) −8.48528 −0.282372
\(904\) 0 0
\(905\) −18.5359 −0.616154
\(906\) 0 0
\(907\) −5.55532 −0.184461 −0.0922307 0.995738i \(-0.529400\pi\)
−0.0922307 + 0.995738i \(0.529400\pi\)
\(908\) 0 0
\(909\) 2.39230 0.0793477
\(910\) 0 0
\(911\) −20.1779 −0.668525 −0.334262 0.942480i \(-0.608487\pi\)
−0.334262 + 0.942480i \(0.608487\pi\)
\(912\) 0 0
\(913\) 14.0000 0.463332
\(914\) 0 0
\(915\) 17.5254 0.579371
\(916\) 0 0
\(917\) 2.39230 0.0790009
\(918\) 0 0
\(919\) −45.8840 −1.51357 −0.756786 0.653662i \(-0.773232\pi\)
−0.756786 + 0.653662i \(0.773232\pi\)
\(920\) 0 0
\(921\) −2.00000 −0.0659022
\(922\) 0 0
\(923\) 10.9076 0.359027
\(924\) 0 0
\(925\) −0.732051 −0.0240697
\(926\) 0 0
\(927\) 17.9043 0.588054
\(928\) 0 0
\(929\) −16.2487 −0.533103 −0.266551 0.963821i \(-0.585884\pi\)
−0.266551 + 0.963821i \(0.585884\pi\)
\(930\) 0 0
\(931\) −12.2474 −0.401394
\(932\) 0 0
\(933\) −19.4641 −0.637226
\(934\) 0 0
\(935\) −8.76268 −0.286570
\(936\) 0 0
\(937\) −40.7846 −1.33238 −0.666188 0.745784i \(-0.732075\pi\)
−0.666188 + 0.745784i \(0.732075\pi\)
\(938\) 0 0
\(939\) −3.58630 −0.117035
\(940\) 0 0
\(941\) 10.0000 0.325991 0.162995 0.986627i \(-0.447884\pi\)
0.162995 + 0.986627i \(0.447884\pi\)
\(942\) 0 0
\(943\) 1.51575 0.0493596
\(944\) 0 0
\(945\) 8.00000 0.260240
\(946\) 0 0
\(947\) −5.55532 −0.180524 −0.0902618 0.995918i \(-0.528770\pi\)
−0.0902618 + 0.995918i \(0.528770\pi\)
\(948\) 0 0
\(949\) 12.0000 0.389536
\(950\) 0 0
\(951\) 36.0860 1.17017
\(952\) 0 0
\(953\) −16.6410 −0.539055 −0.269528 0.962993i \(-0.586868\pi\)
−0.269528 + 0.962993i \(0.586868\pi\)
\(954\) 0 0
\(955\) 0.656339 0.0212386
\(956\) 0 0
\(957\) −2.00000 −0.0646508
\(958\) 0 0
\(959\) −6.69213 −0.216100
\(960\) 0 0
\(961\) −20.7128 −0.668155
\(962\) 0 0
\(963\) −13.2827 −0.428030
\(964\) 0 0
\(965\) 21.1244 0.680017
\(966\) 0 0
\(967\) 10.4543 0.336188 0.168094 0.985771i \(-0.446239\pi\)
0.168094 + 0.985771i \(0.446239\pi\)
\(968\) 0 0
\(969\) 21.4641 0.689526
\(970\) 0 0
\(971\) −43.3601 −1.39149 −0.695747 0.718287i \(-0.744926\pi\)
−0.695747 + 0.718287i \(0.744926\pi\)
\(972\) 0 0
\(973\) 21.8564 0.700684
\(974\) 0 0
\(975\) 2.07055 0.0663107
\(976\) 0 0
\(977\) −15.7128 −0.502697 −0.251349 0.967897i \(-0.580874\pi\)
−0.251349 + 0.967897i \(0.580874\pi\)
\(978\) 0 0
\(979\) −16.7675 −0.535891
\(980\) 0 0
\(981\) −6.92820 −0.221201
\(982\) 0 0
\(983\) 7.62587 0.243227 0.121614 0.992578i \(-0.461193\pi\)
0.121614 + 0.992578i \(0.461193\pi\)
\(984\) 0 0
\(985\) −12.9282 −0.411927
\(986\) 0 0
\(987\) −22.4243 −0.713775
\(988\) 0 0
\(989\) 1.60770 0.0511217
\(990\) 0 0
\(991\) −32.4997 −1.03239 −0.516194 0.856472i \(-0.672651\pi\)
−0.516194 + 0.856472i \(0.672651\pi\)
\(992\) 0 0
\(993\) −32.2487 −1.02338
\(994\) 0 0
\(995\) −11.0363 −0.349874
\(996\) 0 0
\(997\) −25.6603 −0.812668 −0.406334 0.913725i \(-0.633193\pi\)
−0.406334 + 0.913725i \(0.633193\pi\)
\(998\) 0 0
\(999\) −4.14110 −0.131019
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9280.2.a.cb.1.1 4
4.3 odd 2 inner 9280.2.a.cb.1.3 4
8.3 odd 2 4640.2.a.p.1.2 4
8.5 even 2 4640.2.a.p.1.4 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4640.2.a.p.1.2 4 8.3 odd 2
4640.2.a.p.1.4 yes 4 8.5 even 2
9280.2.a.cb.1.1 4 1.1 even 1 trivial
9280.2.a.cb.1.3 4 4.3 odd 2 inner