Properties

Label 9280.2.a.cl.1.3
Level $9280$
Weight $2$
Character 9280.1
Self dual yes
Analytic conductor $74.101$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9280,2,Mod(1,9280)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9280, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9280.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9280 = 2^{6} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9280.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(74.1011730757\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.580484.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 7x^{3} - 3x^{2} + 8x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 1160)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.60873\) of defining polynomial
Character \(\chi\) \(=\) 9280.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.857770 q^{3} -1.00000 q^{5} -2.23769 q^{7} -2.26423 q^{9} -3.21746 q^{11} -3.25127 q^{13} -0.857770 q^{15} +0.870730 q^{17} +5.02654 q^{19} -1.91943 q^{21} -8.46873 q^{23} +1.00000 q^{25} -4.51550 q^{27} -1.00000 q^{29} -0.0467661 q^{31} -2.75985 q^{33} +2.23769 q^{35} -11.1129 q^{37} -2.78884 q^{39} -2.47539 q^{41} +2.87073 q^{43} +2.26423 q^{45} -2.20257 q^{47} -1.99273 q^{49} +0.746886 q^{51} +11.7668 q^{53} +3.21746 q^{55} +4.31161 q^{57} -7.68620 q^{59} +4.99273 q^{61} +5.06665 q^{63} +3.25127 q^{65} +11.6928 q^{67} -7.26423 q^{69} +3.43108 q^{71} -10.1331 q^{73} +0.857770 q^{75} +7.19970 q^{77} -6.44158 q^{79} +2.91943 q^{81} +15.4615 q^{83} -0.870730 q^{85} -0.857770 q^{87} +16.7725 q^{89} +7.27535 q^{91} -0.0401146 q^{93} -5.02654 q^{95} -7.16939 q^{97} +7.28508 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 3 q^{3} - 5 q^{5} - 7 q^{7} + 8 q^{9} + 10 q^{11} - q^{13} - 3 q^{15} - q^{17} + 10 q^{19} + 8 q^{21} - q^{23} + 5 q^{25} + 12 q^{27} - 5 q^{29} - 7 q^{31} - 8 q^{33} + 7 q^{35} + 8 q^{37} - 3 q^{39}+ \cdots + 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.857770 0.495234 0.247617 0.968858i \(-0.420353\pi\)
0.247617 + 0.968858i \(0.420353\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −2.23769 −0.845768 −0.422884 0.906184i \(-0.638982\pi\)
−0.422884 + 0.906184i \(0.638982\pi\)
\(8\) 0 0
\(9\) −2.26423 −0.754743
\(10\) 0 0
\(11\) −3.21746 −0.970102 −0.485051 0.874486i \(-0.661199\pi\)
−0.485051 + 0.874486i \(0.661199\pi\)
\(12\) 0 0
\(13\) −3.25127 −0.901740 −0.450870 0.892590i \(-0.648886\pi\)
−0.450870 + 0.892590i \(0.648886\pi\)
\(14\) 0 0
\(15\) −0.857770 −0.221475
\(16\) 0 0
\(17\) 0.870730 0.211183 0.105591 0.994410i \(-0.466326\pi\)
0.105591 + 0.994410i \(0.466326\pi\)
\(18\) 0 0
\(19\) 5.02654 1.15317 0.576583 0.817038i \(-0.304386\pi\)
0.576583 + 0.817038i \(0.304386\pi\)
\(20\) 0 0
\(21\) −1.91943 −0.418853
\(22\) 0 0
\(23\) −8.46873 −1.76585 −0.882927 0.469511i \(-0.844430\pi\)
−0.882927 + 0.469511i \(0.844430\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −4.51550 −0.869009
\(28\) 0 0
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) −0.0467661 −0.00839945 −0.00419972 0.999991i \(-0.501337\pi\)
−0.00419972 + 0.999991i \(0.501337\pi\)
\(32\) 0 0
\(33\) −2.75985 −0.480427
\(34\) 0 0
\(35\) 2.23769 0.378239
\(36\) 0 0
\(37\) −11.1129 −1.82695 −0.913474 0.406898i \(-0.866611\pi\)
−0.913474 + 0.406898i \(0.866611\pi\)
\(38\) 0 0
\(39\) −2.78884 −0.446572
\(40\) 0 0
\(41\) −2.47539 −0.386590 −0.193295 0.981141i \(-0.561917\pi\)
−0.193295 + 0.981141i \(0.561917\pi\)
\(42\) 0 0
\(43\) 2.87073 0.437782 0.218891 0.975749i \(-0.429756\pi\)
0.218891 + 0.975749i \(0.429756\pi\)
\(44\) 0 0
\(45\) 2.26423 0.337531
\(46\) 0 0
\(47\) −2.20257 −0.321278 −0.160639 0.987013i \(-0.551356\pi\)
−0.160639 + 0.987013i \(0.551356\pi\)
\(48\) 0 0
\(49\) −1.99273 −0.284676
\(50\) 0 0
\(51\) 0.746886 0.104585
\(52\) 0 0
\(53\) 11.7668 1.61629 0.808145 0.588983i \(-0.200472\pi\)
0.808145 + 0.588983i \(0.200472\pi\)
\(54\) 0 0
\(55\) 3.21746 0.433843
\(56\) 0 0
\(57\) 4.31161 0.571087
\(58\) 0 0
\(59\) −7.68620 −1.00066 −0.500329 0.865835i \(-0.666788\pi\)
−0.500329 + 0.865835i \(0.666788\pi\)
\(60\) 0 0
\(61\) 4.99273 0.639254 0.319627 0.947544i \(-0.396442\pi\)
0.319627 + 0.947544i \(0.396442\pi\)
\(62\) 0 0
\(63\) 5.06665 0.638338
\(64\) 0 0
\(65\) 3.25127 0.403271
\(66\) 0 0
\(67\) 11.6928 1.42851 0.714254 0.699886i \(-0.246766\pi\)
0.714254 + 0.699886i \(0.246766\pi\)
\(68\) 0 0
\(69\) −7.26423 −0.874511
\(70\) 0 0
\(71\) 3.43108 0.407194 0.203597 0.979055i \(-0.434737\pi\)
0.203597 + 0.979055i \(0.434737\pi\)
\(72\) 0 0
\(73\) −10.1331 −1.18599 −0.592996 0.805206i \(-0.702055\pi\)
−0.592996 + 0.805206i \(0.702055\pi\)
\(74\) 0 0
\(75\) 0.857770 0.0990468
\(76\) 0 0
\(77\) 7.19970 0.820482
\(78\) 0 0
\(79\) −6.44158 −0.724734 −0.362367 0.932035i \(-0.618031\pi\)
−0.362367 + 0.932035i \(0.618031\pi\)
\(80\) 0 0
\(81\) 2.91943 0.324381
\(82\) 0 0
\(83\) 15.4615 1.69712 0.848558 0.529102i \(-0.177471\pi\)
0.848558 + 0.529102i \(0.177471\pi\)
\(84\) 0 0
\(85\) −0.870730 −0.0944439
\(86\) 0 0
\(87\) −0.857770 −0.0919626
\(88\) 0 0
\(89\) 16.7725 1.77788 0.888939 0.458026i \(-0.151443\pi\)
0.888939 + 0.458026i \(0.151443\pi\)
\(90\) 0 0
\(91\) 7.27535 0.762663
\(92\) 0 0
\(93\) −0.0401146 −0.00415969
\(94\) 0 0
\(95\) −5.02654 −0.515712
\(96\) 0 0
\(97\) −7.16939 −0.727941 −0.363970 0.931411i \(-0.618579\pi\)
−0.363970 + 0.931411i \(0.618579\pi\)
\(98\) 0 0
\(99\) 7.28508 0.732178
\(100\) 0 0
\(101\) 8.87328 0.882924 0.441462 0.897280i \(-0.354460\pi\)
0.441462 + 0.897280i \(0.354460\pi\)
\(102\) 0 0
\(103\) −6.74208 −0.664317 −0.332158 0.943224i \(-0.607777\pi\)
−0.332158 + 0.943224i \(0.607777\pi\)
\(104\) 0 0
\(105\) 1.91943 0.187317
\(106\) 0 0
\(107\) −12.0304 −1.16302 −0.581511 0.813539i \(-0.697538\pi\)
−0.581511 + 0.813539i \(0.697538\pi\)
\(108\) 0 0
\(109\) 1.74270 0.166920 0.0834600 0.996511i \(-0.473403\pi\)
0.0834600 + 0.996511i \(0.473403\pi\)
\(110\) 0 0
\(111\) −9.53231 −0.904766
\(112\) 0 0
\(113\) −19.4393 −1.82870 −0.914348 0.404929i \(-0.867296\pi\)
−0.914348 + 0.404929i \(0.867296\pi\)
\(114\) 0 0
\(115\) 8.46873 0.789714
\(116\) 0 0
\(117\) 7.36162 0.680582
\(118\) 0 0
\(119\) −1.94843 −0.178612
\(120\) 0 0
\(121\) −0.647927 −0.0589024
\(122\) 0 0
\(123\) −2.12331 −0.191453
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −0.149500 −0.0132660 −0.00663298 0.999978i \(-0.502111\pi\)
−0.00663298 + 0.999978i \(0.502111\pi\)
\(128\) 0 0
\(129\) 2.46243 0.216805
\(130\) 0 0
\(131\) −10.2889 −0.898947 −0.449474 0.893294i \(-0.648388\pi\)
−0.449474 + 0.893294i \(0.648388\pi\)
\(132\) 0 0
\(133\) −11.2478 −0.975312
\(134\) 0 0
\(135\) 4.51550 0.388632
\(136\) 0 0
\(137\) −0.898229 −0.0767409 −0.0383704 0.999264i \(-0.512217\pi\)
−0.0383704 + 0.999264i \(0.512217\pi\)
\(138\) 0 0
\(139\) 19.8642 1.68486 0.842428 0.538808i \(-0.181125\pi\)
0.842428 + 0.538808i \(0.181125\pi\)
\(140\) 0 0
\(141\) −1.88930 −0.159108
\(142\) 0 0
\(143\) 10.4608 0.874780
\(144\) 0 0
\(145\) 1.00000 0.0830455
\(146\) 0 0
\(147\) −1.70930 −0.140981
\(148\) 0 0
\(149\) −9.45331 −0.774446 −0.387223 0.921986i \(-0.626566\pi\)
−0.387223 + 0.921986i \(0.626566\pi\)
\(150\) 0 0
\(151\) 10.5025 0.854685 0.427342 0.904090i \(-0.359450\pi\)
0.427342 + 0.904090i \(0.359450\pi\)
\(152\) 0 0
\(153\) −1.97153 −0.159389
\(154\) 0 0
\(155\) 0.0467661 0.00375635
\(156\) 0 0
\(157\) 14.2324 1.13587 0.567933 0.823075i \(-0.307743\pi\)
0.567933 + 0.823075i \(0.307743\pi\)
\(158\) 0 0
\(159\) 10.0932 0.800442
\(160\) 0 0
\(161\) 18.9504 1.49350
\(162\) 0 0
\(163\) −13.4245 −1.05149 −0.525744 0.850643i \(-0.676213\pi\)
−0.525744 + 0.850643i \(0.676213\pi\)
\(164\) 0 0
\(165\) 2.75985 0.214854
\(166\) 0 0
\(167\) 2.49500 0.193069 0.0965343 0.995330i \(-0.469224\pi\)
0.0965343 + 0.995330i \(0.469224\pi\)
\(168\) 0 0
\(169\) −2.42924 −0.186864
\(170\) 0 0
\(171\) −11.3812 −0.870345
\(172\) 0 0
\(173\) −3.27350 −0.248880 −0.124440 0.992227i \(-0.539713\pi\)
−0.124440 + 0.992227i \(0.539713\pi\)
\(174\) 0 0
\(175\) −2.23769 −0.169154
\(176\) 0 0
\(177\) −6.59299 −0.495560
\(178\) 0 0
\(179\) 23.6862 1.77039 0.885195 0.465221i \(-0.154025\pi\)
0.885195 + 0.465221i \(0.154025\pi\)
\(180\) 0 0
\(181\) 19.1815 1.42575 0.712874 0.701292i \(-0.247393\pi\)
0.712874 + 0.701292i \(0.247393\pi\)
\(182\) 0 0
\(183\) 4.28262 0.316580
\(184\) 0 0
\(185\) 11.1129 0.817036
\(186\) 0 0
\(187\) −2.80154 −0.204869
\(188\) 0 0
\(189\) 10.1043 0.734980
\(190\) 0 0
\(191\) 8.04677 0.582244 0.291122 0.956686i \(-0.405972\pi\)
0.291122 + 0.956686i \(0.405972\pi\)
\(192\) 0 0
\(193\) −12.0525 −0.867561 −0.433781 0.901019i \(-0.642821\pi\)
−0.433781 + 0.901019i \(0.642821\pi\)
\(194\) 0 0
\(195\) 2.78884 0.199713
\(196\) 0 0
\(197\) 17.2509 1.22908 0.614539 0.788887i \(-0.289342\pi\)
0.614539 + 0.788887i \(0.289342\pi\)
\(198\) 0 0
\(199\) 3.09738 0.219567 0.109784 0.993956i \(-0.464984\pi\)
0.109784 + 0.993956i \(0.464984\pi\)
\(200\) 0 0
\(201\) 10.0298 0.707446
\(202\) 0 0
\(203\) 2.23769 0.157055
\(204\) 0 0
\(205\) 2.47539 0.172888
\(206\) 0 0
\(207\) 19.1752 1.33277
\(208\) 0 0
\(209\) −16.1727 −1.11869
\(210\) 0 0
\(211\) −9.65239 −0.664498 −0.332249 0.943192i \(-0.607807\pi\)
−0.332249 + 0.943192i \(0.607807\pi\)
\(212\) 0 0
\(213\) 2.94308 0.201657
\(214\) 0 0
\(215\) −2.87073 −0.195782
\(216\) 0 0
\(217\) 0.104648 0.00710399
\(218\) 0 0
\(219\) −8.69189 −0.587343
\(220\) 0 0
\(221\) −2.83098 −0.190432
\(222\) 0 0
\(223\) −3.89982 −0.261151 −0.130576 0.991438i \(-0.541682\pi\)
−0.130576 + 0.991438i \(0.541682\pi\)
\(224\) 0 0
\(225\) −2.26423 −0.150949
\(226\) 0 0
\(227\) 27.9458 1.85483 0.927413 0.374038i \(-0.122027\pi\)
0.927413 + 0.374038i \(0.122027\pi\)
\(228\) 0 0
\(229\) −19.5354 −1.29093 −0.645467 0.763788i \(-0.723337\pi\)
−0.645467 + 0.763788i \(0.723337\pi\)
\(230\) 0 0
\(231\) 6.17569 0.406330
\(232\) 0 0
\(233\) −9.61815 −0.630106 −0.315053 0.949074i \(-0.602022\pi\)
−0.315053 + 0.949074i \(0.602022\pi\)
\(234\) 0 0
\(235\) 2.20257 0.143680
\(236\) 0 0
\(237\) −5.52540 −0.358913
\(238\) 0 0
\(239\) 15.8932 1.02804 0.514022 0.857777i \(-0.328155\pi\)
0.514022 + 0.857777i \(0.328155\pi\)
\(240\) 0 0
\(241\) 16.1085 1.03764 0.518820 0.854883i \(-0.326371\pi\)
0.518820 + 0.854883i \(0.326371\pi\)
\(242\) 0 0
\(243\) 16.0507 1.02965
\(244\) 0 0
\(245\) 1.99273 0.127311
\(246\) 0 0
\(247\) −16.3426 −1.03986
\(248\) 0 0
\(249\) 13.2624 0.840470
\(250\) 0 0
\(251\) 13.6783 0.863367 0.431684 0.902025i \(-0.357920\pi\)
0.431684 + 0.902025i \(0.357920\pi\)
\(252\) 0 0
\(253\) 27.2478 1.71306
\(254\) 0 0
\(255\) −0.746886 −0.0467718
\(256\) 0 0
\(257\) −10.4754 −0.653437 −0.326718 0.945122i \(-0.605943\pi\)
−0.326718 + 0.945122i \(0.605943\pi\)
\(258\) 0 0
\(259\) 24.8672 1.54517
\(260\) 0 0
\(261\) 2.26423 0.140152
\(262\) 0 0
\(263\) 11.0414 0.680843 0.340421 0.940273i \(-0.389430\pi\)
0.340421 + 0.940273i \(0.389430\pi\)
\(264\) 0 0
\(265\) −11.7668 −0.722827
\(266\) 0 0
\(267\) 14.3869 0.880465
\(268\) 0 0
\(269\) 11.5228 0.702556 0.351278 0.936271i \(-0.385747\pi\)
0.351278 + 0.936271i \(0.385747\pi\)
\(270\) 0 0
\(271\) 23.7757 1.44427 0.722136 0.691752i \(-0.243161\pi\)
0.722136 + 0.691752i \(0.243161\pi\)
\(272\) 0 0
\(273\) 6.24058 0.377697
\(274\) 0 0
\(275\) −3.21746 −0.194020
\(276\) 0 0
\(277\) −10.6972 −0.642730 −0.321365 0.946955i \(-0.604142\pi\)
−0.321365 + 0.946955i \(0.604142\pi\)
\(278\) 0 0
\(279\) 0.105889 0.00633943
\(280\) 0 0
\(281\) −12.7435 −0.760211 −0.380106 0.924943i \(-0.624112\pi\)
−0.380106 + 0.924943i \(0.624112\pi\)
\(282\) 0 0
\(283\) −0.187700 −0.0111576 −0.00557879 0.999984i \(-0.501776\pi\)
−0.00557879 + 0.999984i \(0.501776\pi\)
\(284\) 0 0
\(285\) −4.31161 −0.255398
\(286\) 0 0
\(287\) 5.53915 0.326966
\(288\) 0 0
\(289\) −16.2418 −0.955402
\(290\) 0 0
\(291\) −6.14969 −0.360501
\(292\) 0 0
\(293\) 21.8468 1.27630 0.638152 0.769910i \(-0.279699\pi\)
0.638152 + 0.769910i \(0.279699\pi\)
\(294\) 0 0
\(295\) 7.68620 0.447508
\(296\) 0 0
\(297\) 14.5285 0.843027
\(298\) 0 0
\(299\) 27.5341 1.59234
\(300\) 0 0
\(301\) −6.42381 −0.370262
\(302\) 0 0
\(303\) 7.61124 0.437254
\(304\) 0 0
\(305\) −4.99273 −0.285883
\(306\) 0 0
\(307\) −17.8064 −1.01626 −0.508131 0.861280i \(-0.669663\pi\)
−0.508131 + 0.861280i \(0.669663\pi\)
\(308\) 0 0
\(309\) −5.78315 −0.328992
\(310\) 0 0
\(311\) −1.73112 −0.0981629 −0.0490814 0.998795i \(-0.515629\pi\)
−0.0490814 + 0.998795i \(0.515629\pi\)
\(312\) 0 0
\(313\) 26.0089 1.47011 0.735056 0.678007i \(-0.237156\pi\)
0.735056 + 0.678007i \(0.237156\pi\)
\(314\) 0 0
\(315\) −5.06665 −0.285473
\(316\) 0 0
\(317\) 27.5517 1.54746 0.773728 0.633518i \(-0.218390\pi\)
0.773728 + 0.633518i \(0.218390\pi\)
\(318\) 0 0
\(319\) 3.21746 0.180143
\(320\) 0 0
\(321\) −10.3193 −0.575968
\(322\) 0 0
\(323\) 4.37675 0.243529
\(324\) 0 0
\(325\) −3.25127 −0.180348
\(326\) 0 0
\(327\) 1.49483 0.0826645
\(328\) 0 0
\(329\) 4.92868 0.271727
\(330\) 0 0
\(331\) −24.2744 −1.33424 −0.667120 0.744950i \(-0.732473\pi\)
−0.667120 + 0.744950i \(0.732473\pi\)
\(332\) 0 0
\(333\) 25.1621 1.37888
\(334\) 0 0
\(335\) −11.6928 −0.638849
\(336\) 0 0
\(337\) 9.56420 0.520995 0.260498 0.965475i \(-0.416113\pi\)
0.260498 + 0.965475i \(0.416113\pi\)
\(338\) 0 0
\(339\) −16.6745 −0.905632
\(340\) 0 0
\(341\) 0.150468 0.00814832
\(342\) 0 0
\(343\) 20.1230 1.08654
\(344\) 0 0
\(345\) 7.26423 0.391093
\(346\) 0 0
\(347\) −26.6291 −1.42952 −0.714762 0.699368i \(-0.753465\pi\)
−0.714762 + 0.699368i \(0.753465\pi\)
\(348\) 0 0
\(349\) −17.3242 −0.927346 −0.463673 0.886006i \(-0.653469\pi\)
−0.463673 + 0.886006i \(0.653469\pi\)
\(350\) 0 0
\(351\) 14.6811 0.783620
\(352\) 0 0
\(353\) 5.24785 0.279315 0.139657 0.990200i \(-0.455400\pi\)
0.139657 + 0.990200i \(0.455400\pi\)
\(354\) 0 0
\(355\) −3.43108 −0.182103
\(356\) 0 0
\(357\) −1.67130 −0.0884547
\(358\) 0 0
\(359\) 11.6337 0.614005 0.307002 0.951709i \(-0.400674\pi\)
0.307002 + 0.951709i \(0.400674\pi\)
\(360\) 0 0
\(361\) 6.26607 0.329793
\(362\) 0 0
\(363\) −0.555772 −0.0291705
\(364\) 0 0
\(365\) 10.1331 0.530392
\(366\) 0 0
\(367\) −15.1090 −0.788685 −0.394342 0.918964i \(-0.629028\pi\)
−0.394342 + 0.918964i \(0.629028\pi\)
\(368\) 0 0
\(369\) 5.60484 0.291776
\(370\) 0 0
\(371\) −26.3304 −1.36701
\(372\) 0 0
\(373\) 0.762926 0.0395028 0.0197514 0.999805i \(-0.493713\pi\)
0.0197514 + 0.999805i \(0.493713\pi\)
\(374\) 0 0
\(375\) −0.857770 −0.0442951
\(376\) 0 0
\(377\) 3.25127 0.167449
\(378\) 0 0
\(379\) 23.3003 1.19686 0.598428 0.801176i \(-0.295792\pi\)
0.598428 + 0.801176i \(0.295792\pi\)
\(380\) 0 0
\(381\) −0.128236 −0.00656975
\(382\) 0 0
\(383\) 13.4115 0.685294 0.342647 0.939464i \(-0.388676\pi\)
0.342647 + 0.939464i \(0.388676\pi\)
\(384\) 0 0
\(385\) −7.19970 −0.366930
\(386\) 0 0
\(387\) −6.49999 −0.330413
\(388\) 0 0
\(389\) −24.3540 −1.23480 −0.617399 0.786650i \(-0.711813\pi\)
−0.617399 + 0.786650i \(0.711813\pi\)
\(390\) 0 0
\(391\) −7.37398 −0.372918
\(392\) 0 0
\(393\) −8.82553 −0.445189
\(394\) 0 0
\(395\) 6.44158 0.324111
\(396\) 0 0
\(397\) −22.0665 −1.10748 −0.553742 0.832688i \(-0.686801\pi\)
−0.553742 + 0.832688i \(0.686801\pi\)
\(398\) 0 0
\(399\) −9.64807 −0.483008
\(400\) 0 0
\(401\) 1.50981 0.0753964 0.0376982 0.999289i \(-0.487997\pi\)
0.0376982 + 0.999289i \(0.487997\pi\)
\(402\) 0 0
\(403\) 0.152049 0.00757412
\(404\) 0 0
\(405\) −2.91943 −0.145067
\(406\) 0 0
\(407\) 35.7553 1.77232
\(408\) 0 0
\(409\) −5.81676 −0.287621 −0.143810 0.989605i \(-0.545935\pi\)
−0.143810 + 0.989605i \(0.545935\pi\)
\(410\) 0 0
\(411\) −0.770474 −0.0380047
\(412\) 0 0
\(413\) 17.1994 0.846325
\(414\) 0 0
\(415\) −15.4615 −0.758973
\(416\) 0 0
\(417\) 17.0389 0.834398
\(418\) 0 0
\(419\) −33.1082 −1.61744 −0.808719 0.588195i \(-0.799839\pi\)
−0.808719 + 0.588195i \(0.799839\pi\)
\(420\) 0 0
\(421\) −37.7099 −1.83787 −0.918935 0.394410i \(-0.870949\pi\)
−0.918935 + 0.394410i \(0.870949\pi\)
\(422\) 0 0
\(423\) 4.98713 0.242483
\(424\) 0 0
\(425\) 0.870730 0.0422366
\(426\) 0 0
\(427\) −11.1722 −0.540661
\(428\) 0 0
\(429\) 8.97300 0.433221
\(430\) 0 0
\(431\) −9.55177 −0.460093 −0.230046 0.973180i \(-0.573888\pi\)
−0.230046 + 0.973180i \(0.573888\pi\)
\(432\) 0 0
\(433\) 8.42066 0.404671 0.202335 0.979316i \(-0.435147\pi\)
0.202335 + 0.979316i \(0.435147\pi\)
\(434\) 0 0
\(435\) 0.857770 0.0411269
\(436\) 0 0
\(437\) −42.5684 −2.03632
\(438\) 0 0
\(439\) −2.59607 −0.123904 −0.0619519 0.998079i \(-0.519733\pi\)
−0.0619519 + 0.998079i \(0.519733\pi\)
\(440\) 0 0
\(441\) 4.51200 0.214857
\(442\) 0 0
\(443\) 18.3331 0.871034 0.435517 0.900181i \(-0.356566\pi\)
0.435517 + 0.900181i \(0.356566\pi\)
\(444\) 0 0
\(445\) −16.7725 −0.795091
\(446\) 0 0
\(447\) −8.10877 −0.383532
\(448\) 0 0
\(449\) −20.6567 −0.974850 −0.487425 0.873165i \(-0.662064\pi\)
−0.487425 + 0.873165i \(0.662064\pi\)
\(450\) 0 0
\(451\) 7.96446 0.375032
\(452\) 0 0
\(453\) 9.00877 0.423269
\(454\) 0 0
\(455\) −7.27535 −0.341073
\(456\) 0 0
\(457\) 21.6038 1.01058 0.505291 0.862949i \(-0.331385\pi\)
0.505291 + 0.862949i \(0.331385\pi\)
\(458\) 0 0
\(459\) −3.93178 −0.183520
\(460\) 0 0
\(461\) 10.7447 0.500431 0.250215 0.968190i \(-0.419499\pi\)
0.250215 + 0.968190i \(0.419499\pi\)
\(462\) 0 0
\(463\) 23.9652 1.11376 0.556880 0.830593i \(-0.311998\pi\)
0.556880 + 0.830593i \(0.311998\pi\)
\(464\) 0 0
\(465\) 0.0401146 0.00186027
\(466\) 0 0
\(467\) 6.17357 0.285679 0.142839 0.989746i \(-0.454377\pi\)
0.142839 + 0.989746i \(0.454377\pi\)
\(468\) 0 0
\(469\) −26.1650 −1.20819
\(470\) 0 0
\(471\) 12.2081 0.562519
\(472\) 0 0
\(473\) −9.23647 −0.424693
\(474\) 0 0
\(475\) 5.02654 0.230633
\(476\) 0 0
\(477\) −26.6427 −1.21988
\(478\) 0 0
\(479\) 22.2182 1.01518 0.507588 0.861600i \(-0.330537\pi\)
0.507588 + 0.861600i \(0.330537\pi\)
\(480\) 0 0
\(481\) 36.1310 1.64743
\(482\) 0 0
\(483\) 16.2551 0.739633
\(484\) 0 0
\(485\) 7.16939 0.325545
\(486\) 0 0
\(487\) −1.58434 −0.0717933 −0.0358966 0.999356i \(-0.511429\pi\)
−0.0358966 + 0.999356i \(0.511429\pi\)
\(488\) 0 0
\(489\) −11.5151 −0.520733
\(490\) 0 0
\(491\) 19.6119 0.885074 0.442537 0.896750i \(-0.354079\pi\)
0.442537 + 0.896750i \(0.354079\pi\)
\(492\) 0 0
\(493\) −0.870730 −0.0392157
\(494\) 0 0
\(495\) −7.28508 −0.327440
\(496\) 0 0
\(497\) −7.67771 −0.344392
\(498\) 0 0
\(499\) 16.1490 0.722927 0.361464 0.932386i \(-0.382277\pi\)
0.361464 + 0.932386i \(0.382277\pi\)
\(500\) 0 0
\(501\) 2.14013 0.0956142
\(502\) 0 0
\(503\) 38.1824 1.70247 0.851235 0.524785i \(-0.175854\pi\)
0.851235 + 0.524785i \(0.175854\pi\)
\(504\) 0 0
\(505\) −8.87328 −0.394856
\(506\) 0 0
\(507\) −2.08373 −0.0925416
\(508\) 0 0
\(509\) −42.4255 −1.88048 −0.940238 0.340517i \(-0.889398\pi\)
−0.940238 + 0.340517i \(0.889398\pi\)
\(510\) 0 0
\(511\) 22.6748 1.00307
\(512\) 0 0
\(513\) −22.6973 −1.00211
\(514\) 0 0
\(515\) 6.74208 0.297091
\(516\) 0 0
\(517\) 7.08670 0.311673
\(518\) 0 0
\(519\) −2.80791 −0.123254
\(520\) 0 0
\(521\) −8.30977 −0.364058 −0.182029 0.983293i \(-0.558266\pi\)
−0.182029 + 0.983293i \(0.558266\pi\)
\(522\) 0 0
\(523\) −15.7890 −0.690405 −0.345203 0.938528i \(-0.612190\pi\)
−0.345203 + 0.938528i \(0.612190\pi\)
\(524\) 0 0
\(525\) −1.91943 −0.0837707
\(526\) 0 0
\(527\) −0.0407207 −0.00177382
\(528\) 0 0
\(529\) 48.7195 2.11824
\(530\) 0 0
\(531\) 17.4033 0.755240
\(532\) 0 0
\(533\) 8.04815 0.348604
\(534\) 0 0
\(535\) 12.0304 0.520119
\(536\) 0 0
\(537\) 20.3173 0.876757
\(538\) 0 0
\(539\) 6.41154 0.276164
\(540\) 0 0
\(541\) −37.6007 −1.61658 −0.808290 0.588784i \(-0.799607\pi\)
−0.808290 + 0.588784i \(0.799607\pi\)
\(542\) 0 0
\(543\) 16.4533 0.706079
\(544\) 0 0
\(545\) −1.74270 −0.0746489
\(546\) 0 0
\(547\) −7.46146 −0.319029 −0.159515 0.987196i \(-0.550993\pi\)
−0.159515 + 0.987196i \(0.550993\pi\)
\(548\) 0 0
\(549\) −11.3047 −0.482472
\(550\) 0 0
\(551\) −5.02654 −0.214138
\(552\) 0 0
\(553\) 14.4143 0.612957
\(554\) 0 0
\(555\) 9.53231 0.404624
\(556\) 0 0
\(557\) −36.7286 −1.55624 −0.778120 0.628116i \(-0.783826\pi\)
−0.778120 + 0.628116i \(0.783826\pi\)
\(558\) 0 0
\(559\) −9.33352 −0.394766
\(560\) 0 0
\(561\) −2.40308 −0.101458
\(562\) 0 0
\(563\) 27.6746 1.16634 0.583172 0.812349i \(-0.301811\pi\)
0.583172 + 0.812349i \(0.301811\pi\)
\(564\) 0 0
\(565\) 19.4393 0.817818
\(566\) 0 0
\(567\) −6.53278 −0.274351
\(568\) 0 0
\(569\) −42.4477 −1.77950 −0.889750 0.456447i \(-0.849122\pi\)
−0.889750 + 0.456447i \(0.849122\pi\)
\(570\) 0 0
\(571\) 39.9871 1.67341 0.836705 0.547654i \(-0.184479\pi\)
0.836705 + 0.547654i \(0.184479\pi\)
\(572\) 0 0
\(573\) 6.90228 0.288347
\(574\) 0 0
\(575\) −8.46873 −0.353171
\(576\) 0 0
\(577\) −38.4120 −1.59911 −0.799555 0.600592i \(-0.794932\pi\)
−0.799555 + 0.600592i \(0.794932\pi\)
\(578\) 0 0
\(579\) −10.3383 −0.429646
\(580\) 0 0
\(581\) −34.5980 −1.43537
\(582\) 0 0
\(583\) −37.8592 −1.56797
\(584\) 0 0
\(585\) −7.36162 −0.304366
\(586\) 0 0
\(587\) −12.2591 −0.505989 −0.252994 0.967468i \(-0.581415\pi\)
−0.252994 + 0.967468i \(0.581415\pi\)
\(588\) 0 0
\(589\) −0.235072 −0.00968596
\(590\) 0 0
\(591\) 14.7973 0.608681
\(592\) 0 0
\(593\) 1.19970 0.0492656 0.0246328 0.999697i \(-0.492158\pi\)
0.0246328 + 0.999697i \(0.492158\pi\)
\(594\) 0 0
\(595\) 1.94843 0.0798777
\(596\) 0 0
\(597\) 2.65684 0.108737
\(598\) 0 0
\(599\) −3.58978 −0.146675 −0.0733373 0.997307i \(-0.523365\pi\)
−0.0733373 + 0.997307i \(0.523365\pi\)
\(600\) 0 0
\(601\) −20.0462 −0.817703 −0.408851 0.912601i \(-0.634071\pi\)
−0.408851 + 0.912601i \(0.634071\pi\)
\(602\) 0 0
\(603\) −26.4753 −1.07816
\(604\) 0 0
\(605\) 0.647927 0.0263420
\(606\) 0 0
\(607\) 10.3397 0.419677 0.209839 0.977736i \(-0.432706\pi\)
0.209839 + 0.977736i \(0.432706\pi\)
\(608\) 0 0
\(609\) 1.91943 0.0777791
\(610\) 0 0
\(611\) 7.16116 0.289710
\(612\) 0 0
\(613\) −14.8344 −0.599156 −0.299578 0.954072i \(-0.596846\pi\)
−0.299578 + 0.954072i \(0.596846\pi\)
\(614\) 0 0
\(615\) 2.12331 0.0856202
\(616\) 0 0
\(617\) −28.2046 −1.13547 −0.567737 0.823210i \(-0.692181\pi\)
−0.567737 + 0.823210i \(0.692181\pi\)
\(618\) 0 0
\(619\) −1.45009 −0.0582839 −0.0291419 0.999575i \(-0.509277\pi\)
−0.0291419 + 0.999575i \(0.509277\pi\)
\(620\) 0 0
\(621\) 38.2406 1.53454
\(622\) 0 0
\(623\) −37.5316 −1.50367
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −13.8725 −0.554013
\(628\) 0 0
\(629\) −9.67632 −0.385820
\(630\) 0 0
\(631\) 20.9338 0.833361 0.416680 0.909053i \(-0.363193\pi\)
0.416680 + 0.909053i \(0.363193\pi\)
\(632\) 0 0
\(633\) −8.27954 −0.329082
\(634\) 0 0
\(635\) 0.149500 0.00593271
\(636\) 0 0
\(637\) 6.47890 0.256704
\(638\) 0 0
\(639\) −7.76876 −0.307327
\(640\) 0 0
\(641\) 16.4929 0.651431 0.325716 0.945468i \(-0.394395\pi\)
0.325716 + 0.945468i \(0.394395\pi\)
\(642\) 0 0
\(643\) 31.8407 1.25567 0.627837 0.778345i \(-0.283940\pi\)
0.627837 + 0.778345i \(0.283940\pi\)
\(644\) 0 0
\(645\) −2.46243 −0.0969580
\(646\) 0 0
\(647\) −20.8262 −0.818761 −0.409381 0.912364i \(-0.634255\pi\)
−0.409381 + 0.912364i \(0.634255\pi\)
\(648\) 0 0
\(649\) 24.7301 0.970740
\(650\) 0 0
\(651\) 0.0897642 0.00351814
\(652\) 0 0
\(653\) 6.56096 0.256750 0.128375 0.991726i \(-0.459024\pi\)
0.128375 + 0.991726i \(0.459024\pi\)
\(654\) 0 0
\(655\) 10.2889 0.402022
\(656\) 0 0
\(657\) 22.9437 0.895119
\(658\) 0 0
\(659\) 29.3559 1.14354 0.571771 0.820413i \(-0.306257\pi\)
0.571771 + 0.820413i \(0.306257\pi\)
\(660\) 0 0
\(661\) −22.8255 −0.887810 −0.443905 0.896074i \(-0.646407\pi\)
−0.443905 + 0.896074i \(0.646407\pi\)
\(662\) 0 0
\(663\) −2.42833 −0.0943085
\(664\) 0 0
\(665\) 11.2478 0.436173
\(666\) 0 0
\(667\) 8.46873 0.327911
\(668\) 0 0
\(669\) −3.34515 −0.129331
\(670\) 0 0
\(671\) −16.0639 −0.620141
\(672\) 0 0
\(673\) 24.3647 0.939190 0.469595 0.882882i \(-0.344400\pi\)
0.469595 + 0.882882i \(0.344400\pi\)
\(674\) 0 0
\(675\) −4.51550 −0.173802
\(676\) 0 0
\(677\) −4.46866 −0.171745 −0.0858723 0.996306i \(-0.527368\pi\)
−0.0858723 + 0.996306i \(0.527368\pi\)
\(678\) 0 0
\(679\) 16.0429 0.615669
\(680\) 0 0
\(681\) 23.9711 0.918573
\(682\) 0 0
\(683\) 46.9824 1.79773 0.898866 0.438224i \(-0.144392\pi\)
0.898866 + 0.438224i \(0.144392\pi\)
\(684\) 0 0
\(685\) 0.898229 0.0343196
\(686\) 0 0
\(687\) −16.7569 −0.639315
\(688\) 0 0
\(689\) −38.2570 −1.45747
\(690\) 0 0
\(691\) −27.4786 −1.04534 −0.522668 0.852536i \(-0.675063\pi\)
−0.522668 + 0.852536i \(0.675063\pi\)
\(692\) 0 0
\(693\) −16.3018 −0.619253
\(694\) 0 0
\(695\) −19.8642 −0.753491
\(696\) 0 0
\(697\) −2.15539 −0.0816413
\(698\) 0 0
\(699\) −8.25016 −0.312050
\(700\) 0 0
\(701\) 39.9711 1.50969 0.754844 0.655905i \(-0.227713\pi\)
0.754844 + 0.655905i \(0.227713\pi\)
\(702\) 0 0
\(703\) −55.8593 −2.10677
\(704\) 0 0
\(705\) 1.88930 0.0711552
\(706\) 0 0
\(707\) −19.8557 −0.746750
\(708\) 0 0
\(709\) −5.66247 −0.212658 −0.106329 0.994331i \(-0.533910\pi\)
−0.106329 + 0.994331i \(0.533910\pi\)
\(710\) 0 0
\(711\) 14.5852 0.546988
\(712\) 0 0
\(713\) 0.396050 0.0148322
\(714\) 0 0
\(715\) −10.4608 −0.391213
\(716\) 0 0
\(717\) 13.6327 0.509122
\(718\) 0 0
\(719\) 17.5518 0.654571 0.327285 0.944926i \(-0.393866\pi\)
0.327285 + 0.944926i \(0.393866\pi\)
\(720\) 0 0
\(721\) 15.0867 0.561858
\(722\) 0 0
\(723\) 13.8174 0.513875
\(724\) 0 0
\(725\) −1.00000 −0.0371391
\(726\) 0 0
\(727\) −20.7531 −0.769691 −0.384845 0.922981i \(-0.625745\pi\)
−0.384845 + 0.922981i \(0.625745\pi\)
\(728\) 0 0
\(729\) 5.00953 0.185538
\(730\) 0 0
\(731\) 2.49963 0.0924521
\(732\) 0 0
\(733\) 30.6723 1.13291 0.566455 0.824093i \(-0.308315\pi\)
0.566455 + 0.824093i \(0.308315\pi\)
\(734\) 0 0
\(735\) 1.70930 0.0630487
\(736\) 0 0
\(737\) −37.6213 −1.38580
\(738\) 0 0
\(739\) 12.8691 0.473397 0.236698 0.971583i \(-0.423935\pi\)
0.236698 + 0.971583i \(0.423935\pi\)
\(740\) 0 0
\(741\) −14.0182 −0.514972
\(742\) 0 0
\(743\) −17.4763 −0.641145 −0.320572 0.947224i \(-0.603875\pi\)
−0.320572 + 0.947224i \(0.603875\pi\)
\(744\) 0 0
\(745\) 9.45331 0.346343
\(746\) 0 0
\(747\) −35.0083 −1.28089
\(748\) 0 0
\(749\) 26.9203 0.983646
\(750\) 0 0
\(751\) 46.9691 1.71393 0.856963 0.515378i \(-0.172348\pi\)
0.856963 + 0.515378i \(0.172348\pi\)
\(752\) 0 0
\(753\) 11.7328 0.427569
\(754\) 0 0
\(755\) −10.5025 −0.382227
\(756\) 0 0
\(757\) −21.5788 −0.784296 −0.392148 0.919902i \(-0.628268\pi\)
−0.392148 + 0.919902i \(0.628268\pi\)
\(758\) 0 0
\(759\) 23.3724 0.848364
\(760\) 0 0
\(761\) 27.5835 0.999902 0.499951 0.866054i \(-0.333351\pi\)
0.499951 + 0.866054i \(0.333351\pi\)
\(762\) 0 0
\(763\) −3.89962 −0.141176
\(764\) 0 0
\(765\) 1.97153 0.0712809
\(766\) 0 0
\(767\) 24.9899 0.902333
\(768\) 0 0
\(769\) 27.3491 0.986233 0.493116 0.869963i \(-0.335858\pi\)
0.493116 + 0.869963i \(0.335858\pi\)
\(770\) 0 0
\(771\) −8.98548 −0.323604
\(772\) 0 0
\(773\) −29.7475 −1.06994 −0.534972 0.844870i \(-0.679678\pi\)
−0.534972 + 0.844870i \(0.679678\pi\)
\(774\) 0 0
\(775\) −0.0467661 −0.00167989
\(776\) 0 0
\(777\) 21.3304 0.765223
\(778\) 0 0
\(779\) −12.4426 −0.445803
\(780\) 0 0
\(781\) −11.0394 −0.395020
\(782\) 0 0
\(783\) 4.51550 0.161371
\(784\) 0 0
\(785\) −14.2324 −0.507975
\(786\) 0 0
\(787\) 9.90091 0.352929 0.176465 0.984307i \(-0.443534\pi\)
0.176465 + 0.984307i \(0.443534\pi\)
\(788\) 0 0
\(789\) 9.47100 0.337176
\(790\) 0 0
\(791\) 43.4992 1.54665
\(792\) 0 0
\(793\) −16.2327 −0.576441
\(794\) 0 0
\(795\) −10.0932 −0.357969
\(796\) 0 0
\(797\) 0.167726 0.00594117 0.00297058 0.999996i \(-0.499054\pi\)
0.00297058 + 0.999996i \(0.499054\pi\)
\(798\) 0 0
\(799\) −1.91785 −0.0678485
\(800\) 0 0
\(801\) −37.9767 −1.34184
\(802\) 0 0
\(803\) 32.6029 1.15053
\(804\) 0 0
\(805\) −18.9504 −0.667915
\(806\) 0 0
\(807\) 9.88389 0.347929
\(808\) 0 0
\(809\) 2.24400 0.0788949 0.0394474 0.999222i \(-0.487440\pi\)
0.0394474 + 0.999222i \(0.487440\pi\)
\(810\) 0 0
\(811\) 11.9666 0.420205 0.210103 0.977679i \(-0.432620\pi\)
0.210103 + 0.977679i \(0.432620\pi\)
\(812\) 0 0
\(813\) 20.3941 0.715252
\(814\) 0 0
\(815\) 13.4245 0.470240
\(816\) 0 0
\(817\) 14.4298 0.504836
\(818\) 0 0
\(819\) −16.4731 −0.575615
\(820\) 0 0
\(821\) 8.42162 0.293917 0.146958 0.989143i \(-0.453052\pi\)
0.146958 + 0.989143i \(0.453052\pi\)
\(822\) 0 0
\(823\) −12.6027 −0.439301 −0.219650 0.975579i \(-0.570492\pi\)
−0.219650 + 0.975579i \(0.570492\pi\)
\(824\) 0 0
\(825\) −2.75985 −0.0960855
\(826\) 0 0
\(827\) 22.4328 0.780065 0.390033 0.920801i \(-0.372464\pi\)
0.390033 + 0.920801i \(0.372464\pi\)
\(828\) 0 0
\(829\) 50.5065 1.75416 0.877081 0.480342i \(-0.159488\pi\)
0.877081 + 0.480342i \(0.159488\pi\)
\(830\) 0 0
\(831\) −9.17570 −0.318302
\(832\) 0 0
\(833\) −1.73513 −0.0601187
\(834\) 0 0
\(835\) −2.49500 −0.0863429
\(836\) 0 0
\(837\) 0.211173 0.00729919
\(838\) 0 0
\(839\) −4.18085 −0.144339 −0.0721695 0.997392i \(-0.522992\pi\)
−0.0721695 + 0.997392i \(0.522992\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 0 0
\(843\) −10.9310 −0.376482
\(844\) 0 0
\(845\) 2.42924 0.0835683
\(846\) 0 0
\(847\) 1.44986 0.0498178
\(848\) 0 0
\(849\) −0.161003 −0.00552561
\(850\) 0 0
\(851\) 94.1121 3.22612
\(852\) 0 0
\(853\) 28.3569 0.970921 0.485460 0.874259i \(-0.338652\pi\)
0.485460 + 0.874259i \(0.338652\pi\)
\(854\) 0 0
\(855\) 11.3812 0.389230
\(856\) 0 0
\(857\) −39.8616 −1.36165 −0.680824 0.732447i \(-0.738378\pi\)
−0.680824 + 0.732447i \(0.738378\pi\)
\(858\) 0 0
\(859\) 20.8839 0.712551 0.356275 0.934381i \(-0.384047\pi\)
0.356275 + 0.934381i \(0.384047\pi\)
\(860\) 0 0
\(861\) 4.75132 0.161925
\(862\) 0 0
\(863\) 2.01051 0.0684387 0.0342193 0.999414i \(-0.489106\pi\)
0.0342193 + 0.999414i \(0.489106\pi\)
\(864\) 0 0
\(865\) 3.27350 0.111302
\(866\) 0 0
\(867\) −13.9318 −0.473147
\(868\) 0 0
\(869\) 20.7255 0.703066
\(870\) 0 0
\(871\) −38.0166 −1.28814
\(872\) 0 0
\(873\) 16.2331 0.549408
\(874\) 0 0
\(875\) 2.23769 0.0756478
\(876\) 0 0
\(877\) −33.7480 −1.13959 −0.569795 0.821787i \(-0.692977\pi\)
−0.569795 + 0.821787i \(0.692977\pi\)
\(878\) 0 0
\(879\) 18.7396 0.632069
\(880\) 0 0
\(881\) 33.8799 1.14144 0.570721 0.821144i \(-0.306664\pi\)
0.570721 + 0.821144i \(0.306664\pi\)
\(882\) 0 0
\(883\) −15.5808 −0.524335 −0.262167 0.965022i \(-0.584437\pi\)
−0.262167 + 0.965022i \(0.584437\pi\)
\(884\) 0 0
\(885\) 6.59299 0.221621
\(886\) 0 0
\(887\) −25.4530 −0.854630 −0.427315 0.904103i \(-0.640540\pi\)
−0.427315 + 0.904103i \(0.640540\pi\)
\(888\) 0 0
\(889\) 0.334534 0.0112199
\(890\) 0 0
\(891\) −9.39315 −0.314682
\(892\) 0 0
\(893\) −11.0713 −0.370487
\(894\) 0 0
\(895\) −23.6862 −0.791742
\(896\) 0 0
\(897\) 23.6180 0.788581
\(898\) 0 0
\(899\) 0.0467661 0.00155974
\(900\) 0 0
\(901\) 10.2457 0.341333
\(902\) 0 0
\(903\) −5.51016 −0.183366
\(904\) 0 0
\(905\) −19.1815 −0.637614
\(906\) 0 0
\(907\) −20.0086 −0.664374 −0.332187 0.943214i \(-0.607786\pi\)
−0.332187 + 0.943214i \(0.607786\pi\)
\(908\) 0 0
\(909\) −20.0911 −0.666381
\(910\) 0 0
\(911\) −36.7350 −1.21708 −0.608542 0.793522i \(-0.708245\pi\)
−0.608542 + 0.793522i \(0.708245\pi\)
\(912\) 0 0
\(913\) −49.7467 −1.64638
\(914\) 0 0
\(915\) −4.28262 −0.141579
\(916\) 0 0
\(917\) 23.0235 0.760301
\(918\) 0 0
\(919\) 21.5715 0.711579 0.355790 0.934566i \(-0.384212\pi\)
0.355790 + 0.934566i \(0.384212\pi\)
\(920\) 0 0
\(921\) −15.2738 −0.503288
\(922\) 0 0
\(923\) −11.1554 −0.367184
\(924\) 0 0
\(925\) −11.1129 −0.365389
\(926\) 0 0
\(927\) 15.2656 0.501389
\(928\) 0 0
\(929\) −11.4215 −0.374728 −0.187364 0.982291i \(-0.559994\pi\)
−0.187364 + 0.982291i \(0.559994\pi\)
\(930\) 0 0
\(931\) −10.0165 −0.328279
\(932\) 0 0
\(933\) −1.48490 −0.0486136
\(934\) 0 0
\(935\) 2.80154 0.0916202
\(936\) 0 0
\(937\) 13.7970 0.450729 0.225364 0.974275i \(-0.427643\pi\)
0.225364 + 0.974275i \(0.427643\pi\)
\(938\) 0 0
\(939\) 22.3097 0.728049
\(940\) 0 0
\(941\) 40.0879 1.30683 0.653414 0.757000i \(-0.273336\pi\)
0.653414 + 0.757000i \(0.273336\pi\)
\(942\) 0 0
\(943\) 20.9634 0.682662
\(944\) 0 0
\(945\) −10.1043 −0.328693
\(946\) 0 0
\(947\) −48.5899 −1.57896 −0.789480 0.613776i \(-0.789650\pi\)
−0.789480 + 0.613776i \(0.789650\pi\)
\(948\) 0 0
\(949\) 32.9455 1.06946
\(950\) 0 0
\(951\) 23.6330 0.766353
\(952\) 0 0
\(953\) 46.2200 1.49721 0.748607 0.663014i \(-0.230723\pi\)
0.748607 + 0.663014i \(0.230723\pi\)
\(954\) 0 0
\(955\) −8.04677 −0.260387
\(956\) 0 0
\(957\) 2.75985 0.0892131
\(958\) 0 0
\(959\) 2.00996 0.0649050
\(960\) 0 0
\(961\) −30.9978 −0.999929
\(962\) 0 0
\(963\) 27.2396 0.877782
\(964\) 0 0
\(965\) 12.0525 0.387985
\(966\) 0 0
\(967\) −36.9491 −1.18820 −0.594102 0.804390i \(-0.702492\pi\)
−0.594102 + 0.804390i \(0.702492\pi\)
\(968\) 0 0
\(969\) 3.75425 0.120604
\(970\) 0 0
\(971\) −50.6568 −1.62565 −0.812827 0.582505i \(-0.802072\pi\)
−0.812827 + 0.582505i \(0.802072\pi\)
\(972\) 0 0
\(973\) −44.4499 −1.42500
\(974\) 0 0
\(975\) −2.78884 −0.0893145
\(976\) 0 0
\(977\) −53.3369 −1.70640 −0.853199 0.521586i \(-0.825341\pi\)
−0.853199 + 0.521586i \(0.825341\pi\)
\(978\) 0 0
\(979\) −53.9648 −1.72472
\(980\) 0 0
\(981\) −3.94587 −0.125982
\(982\) 0 0
\(983\) 15.7670 0.502888 0.251444 0.967872i \(-0.419095\pi\)
0.251444 + 0.967872i \(0.419095\pi\)
\(984\) 0 0
\(985\) −17.2509 −0.549660
\(986\) 0 0
\(987\) 4.22768 0.134568
\(988\) 0 0
\(989\) −24.3114 −0.773059
\(990\) 0 0
\(991\) −7.87093 −0.250028 −0.125014 0.992155i \(-0.539898\pi\)
−0.125014 + 0.992155i \(0.539898\pi\)
\(992\) 0 0
\(993\) −20.8218 −0.660761
\(994\) 0 0
\(995\) −3.09738 −0.0981935
\(996\) 0 0
\(997\) 18.5245 0.586677 0.293338 0.956009i \(-0.405234\pi\)
0.293338 + 0.956009i \(0.405234\pi\)
\(998\) 0 0
\(999\) 50.1802 1.58763
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9280.2.a.cl.1.3 5
4.3 odd 2 9280.2.a.cg.1.3 5
8.3 odd 2 1160.2.a.j.1.3 5
8.5 even 2 2320.2.a.u.1.3 5
40.19 odd 2 5800.2.a.t.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1160.2.a.j.1.3 5 8.3 odd 2
2320.2.a.u.1.3 5 8.5 even 2
5800.2.a.t.1.3 5 40.19 odd 2
9280.2.a.cg.1.3 5 4.3 odd 2
9280.2.a.cl.1.3 5 1.1 even 1 trivial