Properties

Label 9280.2.a.cs.1.4
Level $9280$
Weight $2$
Character 9280.1
Self dual yes
Analytic conductor $74.101$
Analytic rank $1$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9280,2,Mod(1,9280)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9280, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9280.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9280 = 2^{6} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9280.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(74.1011730757\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 15x^{6} + 57x^{4} - 40x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 4640)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.346147\) of defining polynomial
Character \(\chi\) \(=\) 9280.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.346147 q^{3} -1.00000 q^{5} -1.09203 q^{7} -2.88018 q^{9} +O(q^{10})\) \(q-0.346147 q^{3} -1.00000 q^{5} -1.09203 q^{7} -2.88018 q^{9} -5.77789 q^{11} -0.497822 q^{13} +0.346147 q^{15} +4.15482 q^{17} +4.48837 q^{19} +0.378004 q^{21} +0.346147 q^{23} +1.00000 q^{25} +2.03541 q^{27} +1.00000 q^{29} +9.77145 q^{31} +2.00000 q^{33} +1.09203 q^{35} -2.27464 q^{37} +0.172320 q^{39} +0.446365 q^{41} +5.25791 q^{43} +2.88018 q^{45} -2.20924 q^{47} -5.80746 q^{49} -1.43818 q^{51} -13.1942 q^{53} +5.77789 q^{55} -1.55364 q^{57} -1.26586 q^{59} +3.81182 q^{61} +3.14525 q^{63} +0.497822 q^{65} +11.1860 q^{67} -0.119818 q^{69} +4.16588 q^{71} +13.4688 q^{73} -0.346147 q^{75} +6.30964 q^{77} -3.22251 q^{79} +7.93600 q^{81} +1.26435 q^{83} -4.15482 q^{85} -0.346147 q^{87} +13.6236 q^{89} +0.543638 q^{91} -3.38236 q^{93} -4.48837 q^{95} -7.09082 q^{97} +16.6414 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{5} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 8 q^{5} + 6 q^{9} - 6 q^{13} + 2 q^{17} - 24 q^{21} + 8 q^{25} + 8 q^{29} + 16 q^{33} - 16 q^{37} + 12 q^{41} - 6 q^{45} + 14 q^{49} - 10 q^{53} - 4 q^{57} - 34 q^{61} + 6 q^{65} - 30 q^{69} + 10 q^{73} - 12 q^{77} + 24 q^{81} - 2 q^{85} - 20 q^{89} + 4 q^{93} + 14 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.346147 −0.199848 −0.0999241 0.994995i \(-0.531860\pi\)
−0.0999241 + 0.994995i \(0.531860\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −1.09203 −0.412749 −0.206375 0.978473i \(-0.566167\pi\)
−0.206375 + 0.978473i \(0.566167\pi\)
\(8\) 0 0
\(9\) −2.88018 −0.960061
\(10\) 0 0
\(11\) −5.77789 −1.74210 −0.871050 0.491195i \(-0.836560\pi\)
−0.871050 + 0.491195i \(0.836560\pi\)
\(12\) 0 0
\(13\) −0.497822 −0.138071 −0.0690355 0.997614i \(-0.521992\pi\)
−0.0690355 + 0.997614i \(0.521992\pi\)
\(14\) 0 0
\(15\) 0.346147 0.0893748
\(16\) 0 0
\(17\) 4.15482 1.00769 0.503846 0.863793i \(-0.331918\pi\)
0.503846 + 0.863793i \(0.331918\pi\)
\(18\) 0 0
\(19\) 4.48837 1.02970 0.514851 0.857280i \(-0.327847\pi\)
0.514851 + 0.857280i \(0.327847\pi\)
\(20\) 0 0
\(21\) 0.378004 0.0824872
\(22\) 0 0
\(23\) 0.346147 0.0721767 0.0360883 0.999349i \(-0.488510\pi\)
0.0360883 + 0.999349i \(0.488510\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 2.03541 0.391715
\(28\) 0 0
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) 9.77145 1.75500 0.877502 0.479572i \(-0.159208\pi\)
0.877502 + 0.479572i \(0.159208\pi\)
\(32\) 0 0
\(33\) 2.00000 0.348155
\(34\) 0 0
\(35\) 1.09203 0.184587
\(36\) 0 0
\(37\) −2.27464 −0.373948 −0.186974 0.982365i \(-0.559868\pi\)
−0.186974 + 0.982365i \(0.559868\pi\)
\(38\) 0 0
\(39\) 0.172320 0.0275932
\(40\) 0 0
\(41\) 0.446365 0.0697105 0.0348552 0.999392i \(-0.488903\pi\)
0.0348552 + 0.999392i \(0.488903\pi\)
\(42\) 0 0
\(43\) 5.25791 0.801824 0.400912 0.916116i \(-0.368693\pi\)
0.400912 + 0.916116i \(0.368693\pi\)
\(44\) 0 0
\(45\) 2.88018 0.429352
\(46\) 0 0
\(47\) −2.20924 −0.322250 −0.161125 0.986934i \(-0.551512\pi\)
−0.161125 + 0.986934i \(0.551512\pi\)
\(48\) 0 0
\(49\) −5.80746 −0.829638
\(50\) 0 0
\(51\) −1.43818 −0.201385
\(52\) 0 0
\(53\) −13.1942 −1.81236 −0.906180 0.422892i \(-0.861015\pi\)
−0.906180 + 0.422892i \(0.861015\pi\)
\(54\) 0 0
\(55\) 5.77789 0.779090
\(56\) 0 0
\(57\) −1.55364 −0.205784
\(58\) 0 0
\(59\) −1.26586 −0.164801 −0.0824005 0.996599i \(-0.526259\pi\)
−0.0824005 + 0.996599i \(0.526259\pi\)
\(60\) 0 0
\(61\) 3.81182 0.488054 0.244027 0.969768i \(-0.421531\pi\)
0.244027 + 0.969768i \(0.421531\pi\)
\(62\) 0 0
\(63\) 3.14525 0.396265
\(64\) 0 0
\(65\) 0.497822 0.0617472
\(66\) 0 0
\(67\) 11.1860 1.36658 0.683292 0.730145i \(-0.260548\pi\)
0.683292 + 0.730145i \(0.260548\pi\)
\(68\) 0 0
\(69\) −0.119818 −0.0144244
\(70\) 0 0
\(71\) 4.16588 0.494399 0.247200 0.968965i \(-0.420490\pi\)
0.247200 + 0.968965i \(0.420490\pi\)
\(72\) 0 0
\(73\) 13.4688 1.57641 0.788203 0.615415i \(-0.211012\pi\)
0.788203 + 0.615415i \(0.211012\pi\)
\(74\) 0 0
\(75\) −0.346147 −0.0399696
\(76\) 0 0
\(77\) 6.30964 0.719051
\(78\) 0 0
\(79\) −3.22251 −0.362560 −0.181280 0.983431i \(-0.558024\pi\)
−0.181280 + 0.983431i \(0.558024\pi\)
\(80\) 0 0
\(81\) 7.93600 0.881777
\(82\) 0 0
\(83\) 1.26435 0.138781 0.0693903 0.997590i \(-0.477895\pi\)
0.0693903 + 0.997590i \(0.477895\pi\)
\(84\) 0 0
\(85\) −4.15482 −0.450654
\(86\) 0 0
\(87\) −0.346147 −0.0371109
\(88\) 0 0
\(89\) 13.6236 1.44410 0.722052 0.691839i \(-0.243199\pi\)
0.722052 + 0.691839i \(0.243199\pi\)
\(90\) 0 0
\(91\) 0.543638 0.0569887
\(92\) 0 0
\(93\) −3.38236 −0.350734
\(94\) 0 0
\(95\) −4.48837 −0.460497
\(96\) 0 0
\(97\) −7.09082 −0.719963 −0.359982 0.932959i \(-0.617217\pi\)
−0.359982 + 0.932959i \(0.617217\pi\)
\(98\) 0 0
\(99\) 16.6414 1.67252
\(100\) 0 0
\(101\) −8.50653 −0.846432 −0.423216 0.906029i \(-0.639099\pi\)
−0.423216 + 0.906029i \(0.639099\pi\)
\(102\) 0 0
\(103\) 3.59382 0.354110 0.177055 0.984201i \(-0.443343\pi\)
0.177055 + 0.984201i \(0.443343\pi\)
\(104\) 0 0
\(105\) −0.378004 −0.0368894
\(106\) 0 0
\(107\) −12.8201 −1.23937 −0.619684 0.784851i \(-0.712739\pi\)
−0.619684 + 0.784851i \(0.712739\pi\)
\(108\) 0 0
\(109\) −4.99564 −0.478496 −0.239248 0.970959i \(-0.576901\pi\)
−0.239248 + 0.970959i \(0.576901\pi\)
\(110\) 0 0
\(111\) 0.787360 0.0747329
\(112\) 0 0
\(113\) −7.09082 −0.667048 −0.333524 0.942742i \(-0.608238\pi\)
−0.333524 + 0.942742i \(0.608238\pi\)
\(114\) 0 0
\(115\) −0.346147 −0.0322784
\(116\) 0 0
\(117\) 1.43382 0.132556
\(118\) 0 0
\(119\) −4.53720 −0.415924
\(120\) 0 0
\(121\) 22.3840 2.03491
\(122\) 0 0
\(123\) −0.154508 −0.0139315
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −2.20924 −0.196038 −0.0980190 0.995185i \(-0.531251\pi\)
−0.0980190 + 0.995185i \(0.531251\pi\)
\(128\) 0 0
\(129\) −1.82001 −0.160243
\(130\) 0 0
\(131\) −6.67243 −0.582973 −0.291487 0.956575i \(-0.594150\pi\)
−0.291487 + 0.956575i \(0.594150\pi\)
\(132\) 0 0
\(133\) −4.90144 −0.425009
\(134\) 0 0
\(135\) −2.03541 −0.175180
\(136\) 0 0
\(137\) 10.8425 0.926335 0.463167 0.886271i \(-0.346713\pi\)
0.463167 + 0.886271i \(0.346713\pi\)
\(138\) 0 0
\(139\) 6.96499 0.590763 0.295381 0.955379i \(-0.404553\pi\)
0.295381 + 0.955379i \(0.404553\pi\)
\(140\) 0 0
\(141\) 0.764721 0.0644011
\(142\) 0 0
\(143\) 2.87636 0.240533
\(144\) 0 0
\(145\) −1.00000 −0.0830455
\(146\) 0 0
\(147\) 2.01024 0.165802
\(148\) 0 0
\(149\) −6.44636 −0.528107 −0.264053 0.964508i \(-0.585060\pi\)
−0.264053 + 0.964508i \(0.585060\pi\)
\(150\) 0 0
\(151\) −18.2534 −1.48544 −0.742720 0.669603i \(-0.766464\pi\)
−0.742720 + 0.669603i \(0.766464\pi\)
\(152\) 0 0
\(153\) −11.9666 −0.967446
\(154\) 0 0
\(155\) −9.77145 −0.784862
\(156\) 0 0
\(157\) −15.8983 −1.26882 −0.634411 0.772996i \(-0.718757\pi\)
−0.634411 + 0.772996i \(0.718757\pi\)
\(158\) 0 0
\(159\) 4.56713 0.362197
\(160\) 0 0
\(161\) −0.378004 −0.0297909
\(162\) 0 0
\(163\) 18.3233 1.43519 0.717595 0.696461i \(-0.245243\pi\)
0.717595 + 0.696461i \(0.245243\pi\)
\(164\) 0 0
\(165\) −2.00000 −0.155700
\(166\) 0 0
\(167\) −9.67639 −0.748781 −0.374391 0.927271i \(-0.622148\pi\)
−0.374391 + 0.927271i \(0.622148\pi\)
\(168\) 0 0
\(169\) −12.7522 −0.980936
\(170\) 0 0
\(171\) −12.9273 −0.988576
\(172\) 0 0
\(173\) −15.5722 −1.18393 −0.591966 0.805963i \(-0.701648\pi\)
−0.591966 + 0.805963i \(0.701648\pi\)
\(174\) 0 0
\(175\) −1.09203 −0.0825499
\(176\) 0 0
\(177\) 0.438174 0.0329352
\(178\) 0 0
\(179\) −20.6634 −1.54445 −0.772226 0.635348i \(-0.780857\pi\)
−0.772226 + 0.635348i \(0.780857\pi\)
\(180\) 0 0
\(181\) −21.0657 −1.56580 −0.782899 0.622149i \(-0.786260\pi\)
−0.782899 + 0.622149i \(0.786260\pi\)
\(182\) 0 0
\(183\) −1.31945 −0.0975366
\(184\) 0 0
\(185\) 2.27464 0.167235
\(186\) 0 0
\(187\) −24.0061 −1.75550
\(188\) 0 0
\(189\) −2.22273 −0.161680
\(190\) 0 0
\(191\) 7.14467 0.516970 0.258485 0.966015i \(-0.416777\pi\)
0.258485 + 0.966015i \(0.416777\pi\)
\(192\) 0 0
\(193\) −1.67390 −0.120490 −0.0602451 0.998184i \(-0.519188\pi\)
−0.0602451 + 0.998184i \(0.519188\pi\)
\(194\) 0 0
\(195\) −0.172320 −0.0123401
\(196\) 0 0
\(197\) −8.97874 −0.639709 −0.319854 0.947467i \(-0.603634\pi\)
−0.319854 + 0.947467i \(0.603634\pi\)
\(198\) 0 0
\(199\) 12.1530 0.861504 0.430752 0.902470i \(-0.358248\pi\)
0.430752 + 0.902470i \(0.358248\pi\)
\(200\) 0 0
\(201\) −3.87199 −0.273109
\(202\) 0 0
\(203\) −1.09203 −0.0766457
\(204\) 0 0
\(205\) −0.446365 −0.0311755
\(206\) 0 0
\(207\) −0.996967 −0.0692940
\(208\) 0 0
\(209\) −25.9333 −1.79384
\(210\) 0 0
\(211\) −6.42286 −0.442168 −0.221084 0.975255i \(-0.570959\pi\)
−0.221084 + 0.975255i \(0.570959\pi\)
\(212\) 0 0
\(213\) −1.44201 −0.0988048
\(214\) 0 0
\(215\) −5.25791 −0.358587
\(216\) 0 0
\(217\) −10.6707 −0.724377
\(218\) 0 0
\(219\) −4.66219 −0.315042
\(220\) 0 0
\(221\) −2.06836 −0.139133
\(222\) 0 0
\(223\) −10.0152 −0.670666 −0.335333 0.942100i \(-0.608849\pi\)
−0.335333 + 0.942100i \(0.608849\pi\)
\(224\) 0 0
\(225\) −2.88018 −0.192012
\(226\) 0 0
\(227\) −15.4973 −1.02859 −0.514295 0.857614i \(-0.671946\pi\)
−0.514295 + 0.857614i \(0.671946\pi\)
\(228\) 0 0
\(229\) −8.87583 −0.586531 −0.293266 0.956031i \(-0.594742\pi\)
−0.293266 + 0.956031i \(0.594742\pi\)
\(230\) 0 0
\(231\) −2.18407 −0.143701
\(232\) 0 0
\(233\) −1.45072 −0.0950399 −0.0475199 0.998870i \(-0.515132\pi\)
−0.0475199 + 0.998870i \(0.515132\pi\)
\(234\) 0 0
\(235\) 2.20924 0.144115
\(236\) 0 0
\(237\) 1.11546 0.0724570
\(238\) 0 0
\(239\) 29.2240 1.89035 0.945173 0.326569i \(-0.105893\pi\)
0.945173 + 0.326569i \(0.105893\pi\)
\(240\) 0 0
\(241\) 4.04274 0.260416 0.130208 0.991487i \(-0.458435\pi\)
0.130208 + 0.991487i \(0.458435\pi\)
\(242\) 0 0
\(243\) −8.85325 −0.567936
\(244\) 0 0
\(245\) 5.80746 0.371025
\(246\) 0 0
\(247\) −2.23441 −0.142172
\(248\) 0 0
\(249\) −0.437652 −0.0277351
\(250\) 0 0
\(251\) 5.67071 0.357932 0.178966 0.983855i \(-0.442725\pi\)
0.178966 + 0.983855i \(0.442725\pi\)
\(252\) 0 0
\(253\) −2.00000 −0.125739
\(254\) 0 0
\(255\) 1.43818 0.0900623
\(256\) 0 0
\(257\) 2.11163 0.131720 0.0658598 0.997829i \(-0.479021\pi\)
0.0658598 + 0.997829i \(0.479021\pi\)
\(258\) 0 0
\(259\) 2.48398 0.154347
\(260\) 0 0
\(261\) −2.88018 −0.178279
\(262\) 0 0
\(263\) 12.3804 0.763410 0.381705 0.924284i \(-0.375337\pi\)
0.381705 + 0.924284i \(0.375337\pi\)
\(264\) 0 0
\(265\) 13.1942 0.810512
\(266\) 0 0
\(267\) −4.71579 −0.288601
\(268\) 0 0
\(269\) 9.95019 0.606674 0.303337 0.952883i \(-0.401899\pi\)
0.303337 + 0.952883i \(0.401899\pi\)
\(270\) 0 0
\(271\) 6.81784 0.414154 0.207077 0.978325i \(-0.433605\pi\)
0.207077 + 0.978325i \(0.433605\pi\)
\(272\) 0 0
\(273\) −0.188179 −0.0113891
\(274\) 0 0
\(275\) −5.77789 −0.348420
\(276\) 0 0
\(277\) 1.30529 0.0784271 0.0392135 0.999231i \(-0.487515\pi\)
0.0392135 + 0.999231i \(0.487515\pi\)
\(278\) 0 0
\(279\) −28.1436 −1.68491
\(280\) 0 0
\(281\) 3.88889 0.231992 0.115996 0.993250i \(-0.462994\pi\)
0.115996 + 0.993250i \(0.462994\pi\)
\(282\) 0 0
\(283\) 15.8419 0.941703 0.470852 0.882212i \(-0.343947\pi\)
0.470852 + 0.882212i \(0.343947\pi\)
\(284\) 0 0
\(285\) 1.55364 0.0920294
\(286\) 0 0
\(287\) −0.487445 −0.0287730
\(288\) 0 0
\(289\) 0.262543 0.0154437
\(290\) 0 0
\(291\) 2.45447 0.143883
\(292\) 0 0
\(293\) −19.5886 −1.14438 −0.572190 0.820121i \(-0.693906\pi\)
−0.572190 + 0.820121i \(0.693906\pi\)
\(294\) 0 0
\(295\) 1.26586 0.0737012
\(296\) 0 0
\(297\) −11.7604 −0.682406
\(298\) 0 0
\(299\) −0.172320 −0.00996550
\(300\) 0 0
\(301\) −5.74181 −0.330953
\(302\) 0 0
\(303\) 2.94451 0.169158
\(304\) 0 0
\(305\) −3.81182 −0.218264
\(306\) 0 0
\(307\) 20.1627 1.15075 0.575373 0.817891i \(-0.304857\pi\)
0.575373 + 0.817891i \(0.304857\pi\)
\(308\) 0 0
\(309\) −1.24399 −0.0707682
\(310\) 0 0
\(311\) −25.1990 −1.42891 −0.714453 0.699683i \(-0.753325\pi\)
−0.714453 + 0.699683i \(0.753325\pi\)
\(312\) 0 0
\(313\) −27.4540 −1.55179 −0.775896 0.630860i \(-0.782702\pi\)
−0.775896 + 0.630860i \(0.782702\pi\)
\(314\) 0 0
\(315\) −3.14525 −0.177215
\(316\) 0 0
\(317\) 26.2079 1.47198 0.735992 0.676990i \(-0.236716\pi\)
0.735992 + 0.676990i \(0.236716\pi\)
\(318\) 0 0
\(319\) −5.77789 −0.323500
\(320\) 0 0
\(321\) 4.43765 0.247686
\(322\) 0 0
\(323\) 18.6484 1.03762
\(324\) 0 0
\(325\) −0.497822 −0.0276142
\(326\) 0 0
\(327\) 1.72923 0.0956265
\(328\) 0 0
\(329\) 2.41256 0.133009
\(330\) 0 0
\(331\) 27.4424 1.50837 0.754185 0.656662i \(-0.228032\pi\)
0.754185 + 0.656662i \(0.228032\pi\)
\(332\) 0 0
\(333\) 6.55138 0.359013
\(334\) 0 0
\(335\) −11.1860 −0.611155
\(336\) 0 0
\(337\) −9.81227 −0.534508 −0.267254 0.963626i \(-0.586116\pi\)
−0.267254 + 0.963626i \(0.586116\pi\)
\(338\) 0 0
\(339\) 2.45447 0.133308
\(340\) 0 0
\(341\) −56.4584 −3.05739
\(342\) 0 0
\(343\) 13.9862 0.755182
\(344\) 0 0
\(345\) 0.119818 0.00645078
\(346\) 0 0
\(347\) 13.2750 0.712638 0.356319 0.934364i \(-0.384032\pi\)
0.356319 + 0.934364i \(0.384032\pi\)
\(348\) 0 0
\(349\) −25.3840 −1.35877 −0.679387 0.733780i \(-0.737754\pi\)
−0.679387 + 0.733780i \(0.737754\pi\)
\(350\) 0 0
\(351\) −1.01327 −0.0540844
\(352\) 0 0
\(353\) −25.1860 −1.34052 −0.670258 0.742129i \(-0.733816\pi\)
−0.670258 + 0.742129i \(0.733816\pi\)
\(354\) 0 0
\(355\) −4.16588 −0.221102
\(356\) 0 0
\(357\) 1.57054 0.0831217
\(358\) 0 0
\(359\) 13.5959 0.717567 0.358783 0.933421i \(-0.383192\pi\)
0.358783 + 0.933421i \(0.383192\pi\)
\(360\) 0 0
\(361\) 1.14543 0.0602860
\(362\) 0 0
\(363\) −7.74816 −0.406673
\(364\) 0 0
\(365\) −13.4688 −0.704990
\(366\) 0 0
\(367\) −25.9627 −1.35524 −0.677622 0.735410i \(-0.736989\pi\)
−0.677622 + 0.735410i \(0.736989\pi\)
\(368\) 0 0
\(369\) −1.28561 −0.0669263
\(370\) 0 0
\(371\) 14.4085 0.748051
\(372\) 0 0
\(373\) −16.4469 −0.851588 −0.425794 0.904820i \(-0.640005\pi\)
−0.425794 + 0.904820i \(0.640005\pi\)
\(374\) 0 0
\(375\) 0.346147 0.0178750
\(376\) 0 0
\(377\) −0.497822 −0.0256391
\(378\) 0 0
\(379\) 28.8894 1.48395 0.741976 0.670427i \(-0.233889\pi\)
0.741976 + 0.670427i \(0.233889\pi\)
\(380\) 0 0
\(381\) 0.764721 0.0391778
\(382\) 0 0
\(383\) −28.3574 −1.44899 −0.724497 0.689278i \(-0.757928\pi\)
−0.724497 + 0.689278i \(0.757928\pi\)
\(384\) 0 0
\(385\) −6.30964 −0.321569
\(386\) 0 0
\(387\) −15.1438 −0.769800
\(388\) 0 0
\(389\) −20.2067 −1.02452 −0.512261 0.858830i \(-0.671192\pi\)
−0.512261 + 0.858830i \(0.671192\pi\)
\(390\) 0 0
\(391\) 1.43818 0.0727319
\(392\) 0 0
\(393\) 2.30964 0.116506
\(394\) 0 0
\(395\) 3.22251 0.162142
\(396\) 0 0
\(397\) −16.2598 −0.816058 −0.408029 0.912969i \(-0.633784\pi\)
−0.408029 + 0.912969i \(0.633784\pi\)
\(398\) 0 0
\(399\) 1.69662 0.0849373
\(400\) 0 0
\(401\) 18.8862 0.943131 0.471566 0.881831i \(-0.343689\pi\)
0.471566 + 0.881831i \(0.343689\pi\)
\(402\) 0 0
\(403\) −4.86444 −0.242315
\(404\) 0 0
\(405\) −7.93600 −0.394343
\(406\) 0 0
\(407\) 13.1426 0.651455
\(408\) 0 0
\(409\) −6.00871 −0.297112 −0.148556 0.988904i \(-0.547462\pi\)
−0.148556 + 0.988904i \(0.547462\pi\)
\(410\) 0 0
\(411\) −3.75309 −0.185126
\(412\) 0 0
\(413\) 1.38236 0.0680215
\(414\) 0 0
\(415\) −1.26435 −0.0620646
\(416\) 0 0
\(417\) −2.41091 −0.118063
\(418\) 0 0
\(419\) 8.70633 0.425332 0.212666 0.977125i \(-0.431785\pi\)
0.212666 + 0.977125i \(0.431785\pi\)
\(420\) 0 0
\(421\) 19.4540 0.948131 0.474065 0.880490i \(-0.342786\pi\)
0.474065 + 0.880490i \(0.342786\pi\)
\(422\) 0 0
\(423\) 6.36300 0.309380
\(424\) 0 0
\(425\) 4.15482 0.201538
\(426\) 0 0
\(427\) −4.16263 −0.201444
\(428\) 0 0
\(429\) −0.995644 −0.0480701
\(430\) 0 0
\(431\) 19.1952 0.924603 0.462301 0.886723i \(-0.347024\pi\)
0.462301 + 0.886723i \(0.347024\pi\)
\(432\) 0 0
\(433\) 27.2210 1.30816 0.654079 0.756426i \(-0.273056\pi\)
0.654079 + 0.756426i \(0.273056\pi\)
\(434\) 0 0
\(435\) 0.346147 0.0165965
\(436\) 0 0
\(437\) 1.55364 0.0743205
\(438\) 0 0
\(439\) 20.4374 0.975426 0.487713 0.873004i \(-0.337831\pi\)
0.487713 + 0.873004i \(0.337831\pi\)
\(440\) 0 0
\(441\) 16.7266 0.796503
\(442\) 0 0
\(443\) −19.9962 −0.950050 −0.475025 0.879972i \(-0.657561\pi\)
−0.475025 + 0.879972i \(0.657561\pi\)
\(444\) 0 0
\(445\) −13.6236 −0.645823
\(446\) 0 0
\(447\) 2.23139 0.105541
\(448\) 0 0
\(449\) 17.1357 0.808682 0.404341 0.914608i \(-0.367501\pi\)
0.404341 + 0.914608i \(0.367501\pi\)
\(450\) 0 0
\(451\) −2.57905 −0.121443
\(452\) 0 0
\(453\) 6.31836 0.296862
\(454\) 0 0
\(455\) −0.543638 −0.0254861
\(456\) 0 0
\(457\) 26.8347 1.25528 0.627638 0.778505i \(-0.284022\pi\)
0.627638 + 0.778505i \(0.284022\pi\)
\(458\) 0 0
\(459\) 8.45676 0.394728
\(460\) 0 0
\(461\) −6.81453 −0.317384 −0.158692 0.987328i \(-0.550728\pi\)
−0.158692 + 0.987328i \(0.550728\pi\)
\(462\) 0 0
\(463\) −26.5153 −1.23227 −0.616134 0.787641i \(-0.711302\pi\)
−0.616134 + 0.787641i \(0.711302\pi\)
\(464\) 0 0
\(465\) 3.38236 0.156853
\(466\) 0 0
\(467\) −19.1879 −0.887910 −0.443955 0.896049i \(-0.646425\pi\)
−0.443955 + 0.896049i \(0.646425\pi\)
\(468\) 0 0
\(469\) −12.2154 −0.564057
\(470\) 0 0
\(471\) 5.50315 0.253572
\(472\) 0 0
\(473\) −30.3797 −1.39686
\(474\) 0 0
\(475\) 4.48837 0.205940
\(476\) 0 0
\(477\) 38.0016 1.73998
\(478\) 0 0
\(479\) −7.72978 −0.353183 −0.176591 0.984284i \(-0.556507\pi\)
−0.176591 + 0.984284i \(0.556507\pi\)
\(480\) 0 0
\(481\) 1.13237 0.0516314
\(482\) 0 0
\(483\) 0.130845 0.00595365
\(484\) 0 0
\(485\) 7.09082 0.321977
\(486\) 0 0
\(487\) 18.0500 0.817925 0.408963 0.912551i \(-0.365891\pi\)
0.408963 + 0.912551i \(0.365891\pi\)
\(488\) 0 0
\(489\) −6.34255 −0.286820
\(490\) 0 0
\(491\) 38.4634 1.73583 0.867915 0.496713i \(-0.165460\pi\)
0.867915 + 0.496713i \(0.165460\pi\)
\(492\) 0 0
\(493\) 4.15482 0.187124
\(494\) 0 0
\(495\) −16.6414 −0.747974
\(496\) 0 0
\(497\) −4.54928 −0.204063
\(498\) 0 0
\(499\) −29.2356 −1.30876 −0.654382 0.756164i \(-0.727071\pi\)
−0.654382 + 0.756164i \(0.727071\pi\)
\(500\) 0 0
\(501\) 3.34945 0.149643
\(502\) 0 0
\(503\) −12.6209 −0.562738 −0.281369 0.959600i \(-0.590789\pi\)
−0.281369 + 0.959600i \(0.590789\pi\)
\(504\) 0 0
\(505\) 8.50653 0.378536
\(506\) 0 0
\(507\) 4.41413 0.196038
\(508\) 0 0
\(509\) −27.1444 −1.20315 −0.601577 0.798815i \(-0.705461\pi\)
−0.601577 + 0.798815i \(0.705461\pi\)
\(510\) 0 0
\(511\) −14.7084 −0.650661
\(512\) 0 0
\(513\) 9.13566 0.403349
\(514\) 0 0
\(515\) −3.59382 −0.158363
\(516\) 0 0
\(517\) 12.7647 0.561392
\(518\) 0 0
\(519\) 5.39027 0.236606
\(520\) 0 0
\(521\) −16.7478 −0.733735 −0.366868 0.930273i \(-0.619570\pi\)
−0.366868 + 0.930273i \(0.619570\pi\)
\(522\) 0 0
\(523\) 13.8123 0.603971 0.301986 0.953312i \(-0.402350\pi\)
0.301986 + 0.953312i \(0.402350\pi\)
\(524\) 0 0
\(525\) 0.378004 0.0164974
\(526\) 0 0
\(527\) 40.5986 1.76850
\(528\) 0 0
\(529\) −22.8802 −0.994791
\(530\) 0 0
\(531\) 3.64591 0.158219
\(532\) 0 0
\(533\) −0.222210 −0.00962499
\(534\) 0 0
\(535\) 12.8201 0.554263
\(536\) 0 0
\(537\) 7.15256 0.308656
\(538\) 0 0
\(539\) 33.5549 1.44531
\(540\) 0 0
\(541\) −32.6024 −1.40169 −0.700843 0.713316i \(-0.747193\pi\)
−0.700843 + 0.713316i \(0.747193\pi\)
\(542\) 0 0
\(543\) 7.29182 0.312922
\(544\) 0 0
\(545\) 4.99564 0.213990
\(546\) 0 0
\(547\) −9.78625 −0.418430 −0.209215 0.977870i \(-0.567091\pi\)
−0.209215 + 0.977870i \(0.567091\pi\)
\(548\) 0 0
\(549\) −10.9787 −0.468561
\(550\) 0 0
\(551\) 4.48837 0.191211
\(552\) 0 0
\(553\) 3.51908 0.149647
\(554\) 0 0
\(555\) −0.787360 −0.0334216
\(556\) 0 0
\(557\) 35.8731 1.51999 0.759996 0.649927i \(-0.225201\pi\)
0.759996 + 0.649927i \(0.225201\pi\)
\(558\) 0 0
\(559\) −2.61750 −0.110709
\(560\) 0 0
\(561\) 8.30964 0.350833
\(562\) 0 0
\(563\) 18.3469 0.773231 0.386616 0.922241i \(-0.373644\pi\)
0.386616 + 0.922241i \(0.373644\pi\)
\(564\) 0 0
\(565\) 7.09082 0.298313
\(566\) 0 0
\(567\) −8.66637 −0.363953
\(568\) 0 0
\(569\) −30.0787 −1.26097 −0.630483 0.776203i \(-0.717143\pi\)
−0.630483 + 0.776203i \(0.717143\pi\)
\(570\) 0 0
\(571\) −37.4727 −1.56818 −0.784092 0.620645i \(-0.786871\pi\)
−0.784092 + 0.620645i \(0.786871\pi\)
\(572\) 0 0
\(573\) −2.47311 −0.103315
\(574\) 0 0
\(575\) 0.346147 0.0144353
\(576\) 0 0
\(577\) 11.2447 0.468122 0.234061 0.972222i \(-0.424799\pi\)
0.234061 + 0.972222i \(0.424799\pi\)
\(578\) 0 0
\(579\) 0.579417 0.0240797
\(580\) 0 0
\(581\) −1.38071 −0.0572817
\(582\) 0 0
\(583\) 76.2345 3.15731
\(584\) 0 0
\(585\) −1.43382 −0.0592811
\(586\) 0 0
\(587\) 20.3645 0.840534 0.420267 0.907400i \(-0.361936\pi\)
0.420267 + 0.907400i \(0.361936\pi\)
\(588\) 0 0
\(589\) 43.8579 1.80713
\(590\) 0 0
\(591\) 3.10797 0.127845
\(592\) 0 0
\(593\) −28.8589 −1.18509 −0.592547 0.805536i \(-0.701878\pi\)
−0.592547 + 0.805536i \(0.701878\pi\)
\(594\) 0 0
\(595\) 4.53720 0.186007
\(596\) 0 0
\(597\) −4.20673 −0.172170
\(598\) 0 0
\(599\) −20.9201 −0.854773 −0.427387 0.904069i \(-0.640566\pi\)
−0.427387 + 0.904069i \(0.640566\pi\)
\(600\) 0 0
\(601\) 5.69907 0.232470 0.116235 0.993222i \(-0.462917\pi\)
0.116235 + 0.993222i \(0.462917\pi\)
\(602\) 0 0
\(603\) −32.2176 −1.31200
\(604\) 0 0
\(605\) −22.3840 −0.910039
\(606\) 0 0
\(607\) 34.1074 1.38438 0.692188 0.721717i \(-0.256647\pi\)
0.692188 + 0.721717i \(0.256647\pi\)
\(608\) 0 0
\(609\) 0.378004 0.0153175
\(610\) 0 0
\(611\) 1.09981 0.0444934
\(612\) 0 0
\(613\) −12.9787 −0.524206 −0.262103 0.965040i \(-0.584416\pi\)
−0.262103 + 0.965040i \(0.584416\pi\)
\(614\) 0 0
\(615\) 0.154508 0.00623036
\(616\) 0 0
\(617\) 9.22919 0.371553 0.185777 0.982592i \(-0.440520\pi\)
0.185777 + 0.982592i \(0.440520\pi\)
\(618\) 0 0
\(619\) −43.7166 −1.75712 −0.878559 0.477635i \(-0.841494\pi\)
−0.878559 + 0.477635i \(0.841494\pi\)
\(620\) 0 0
\(621\) 0.704551 0.0282726
\(622\) 0 0
\(623\) −14.8775 −0.596053
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 8.97673 0.358496
\(628\) 0 0
\(629\) −9.45072 −0.376825
\(630\) 0 0
\(631\) −37.6835 −1.50016 −0.750078 0.661349i \(-0.769984\pi\)
−0.750078 + 0.661349i \(0.769984\pi\)
\(632\) 0 0
\(633\) 2.22325 0.0883664
\(634\) 0 0
\(635\) 2.20924 0.0876709
\(636\) 0 0
\(637\) 2.89108 0.114549
\(638\) 0 0
\(639\) −11.9985 −0.474653
\(640\) 0 0
\(641\) −28.5864 −1.12909 −0.564547 0.825401i \(-0.690949\pi\)
−0.564547 + 0.825401i \(0.690949\pi\)
\(642\) 0 0
\(643\) −12.7251 −0.501828 −0.250914 0.968009i \(-0.580731\pi\)
−0.250914 + 0.968009i \(0.580731\pi\)
\(644\) 0 0
\(645\) 1.82001 0.0716629
\(646\) 0 0
\(647\) 33.4503 1.31507 0.657534 0.753425i \(-0.271600\pi\)
0.657534 + 0.753425i \(0.271600\pi\)
\(648\) 0 0
\(649\) 7.31400 0.287100
\(650\) 0 0
\(651\) 3.69365 0.144765
\(652\) 0 0
\(653\) 11.7954 0.461588 0.230794 0.973003i \(-0.425868\pi\)
0.230794 + 0.973003i \(0.425868\pi\)
\(654\) 0 0
\(655\) 6.67243 0.260713
\(656\) 0 0
\(657\) −38.7927 −1.51345
\(658\) 0 0
\(659\) −11.2780 −0.439329 −0.219665 0.975575i \(-0.570496\pi\)
−0.219665 + 0.975575i \(0.570496\pi\)
\(660\) 0 0
\(661\) −16.6531 −0.647730 −0.323865 0.946103i \(-0.604982\pi\)
−0.323865 + 0.946103i \(0.604982\pi\)
\(662\) 0 0
\(663\) 0.715957 0.0278055
\(664\) 0 0
\(665\) 4.90144 0.190070
\(666\) 0 0
\(667\) 0.346147 0.0134029
\(668\) 0 0
\(669\) 3.46672 0.134031
\(670\) 0 0
\(671\) −22.0243 −0.850238
\(672\) 0 0
\(673\) −10.6531 −0.410647 −0.205323 0.978694i \(-0.565825\pi\)
−0.205323 + 0.978694i \(0.565825\pi\)
\(674\) 0 0
\(675\) 2.03541 0.0783429
\(676\) 0 0
\(677\) 39.5557 1.52025 0.760125 0.649777i \(-0.225138\pi\)
0.760125 + 0.649777i \(0.225138\pi\)
\(678\) 0 0
\(679\) 7.74340 0.297165
\(680\) 0 0
\(681\) 5.36433 0.205562
\(682\) 0 0
\(683\) −39.1678 −1.49871 −0.749357 0.662166i \(-0.769638\pi\)
−0.749357 + 0.662166i \(0.769638\pi\)
\(684\) 0 0
\(685\) −10.8425 −0.414269
\(686\) 0 0
\(687\) 3.07234 0.117217
\(688\) 0 0
\(689\) 6.56835 0.250234
\(690\) 0 0
\(691\) −16.0841 −0.611868 −0.305934 0.952053i \(-0.598969\pi\)
−0.305934 + 0.952053i \(0.598969\pi\)
\(692\) 0 0
\(693\) −18.1729 −0.690332
\(694\) 0 0
\(695\) −6.96499 −0.264197
\(696\) 0 0
\(697\) 1.85457 0.0702467
\(698\) 0 0
\(699\) 0.502163 0.0189935
\(700\) 0 0
\(701\) −8.85892 −0.334597 −0.167298 0.985906i \(-0.553504\pi\)
−0.167298 + 0.985906i \(0.553504\pi\)
\(702\) 0 0
\(703\) −10.2094 −0.385055
\(704\) 0 0
\(705\) −0.764721 −0.0288010
\(706\) 0 0
\(707\) 9.28941 0.349364
\(708\) 0 0
\(709\) 6.66181 0.250189 0.125095 0.992145i \(-0.460077\pi\)
0.125095 + 0.992145i \(0.460077\pi\)
\(710\) 0 0
\(711\) 9.28141 0.348080
\(712\) 0 0
\(713\) 3.38236 0.126670
\(714\) 0 0
\(715\) −2.87636 −0.107570
\(716\) 0 0
\(717\) −10.1158 −0.377782
\(718\) 0 0
\(719\) −33.2736 −1.24090 −0.620449 0.784247i \(-0.713050\pi\)
−0.620449 + 0.784247i \(0.713050\pi\)
\(720\) 0 0
\(721\) −3.92457 −0.146159
\(722\) 0 0
\(723\) −1.39938 −0.0520437
\(724\) 0 0
\(725\) 1.00000 0.0371391
\(726\) 0 0
\(727\) 10.1964 0.378162 0.189081 0.981961i \(-0.439449\pi\)
0.189081 + 0.981961i \(0.439449\pi\)
\(728\) 0 0
\(729\) −20.7435 −0.768276
\(730\) 0 0
\(731\) 21.8457 0.807992
\(732\) 0 0
\(733\) 48.8697 1.80504 0.902522 0.430643i \(-0.141713\pi\)
0.902522 + 0.430643i \(0.141713\pi\)
\(734\) 0 0
\(735\) −2.01024 −0.0741487
\(736\) 0 0
\(737\) −64.6313 −2.38072
\(738\) 0 0
\(739\) −45.6511 −1.67930 −0.839651 0.543127i \(-0.817240\pi\)
−0.839651 + 0.543127i \(0.817240\pi\)
\(740\) 0 0
\(741\) 0.773434 0.0284128
\(742\) 0 0
\(743\) −3.35335 −0.123023 −0.0615113 0.998106i \(-0.519592\pi\)
−0.0615113 + 0.998106i \(0.519592\pi\)
\(744\) 0 0
\(745\) 6.44636 0.236177
\(746\) 0 0
\(747\) −3.64156 −0.133238
\(748\) 0 0
\(749\) 14.0000 0.511549
\(750\) 0 0
\(751\) −17.9812 −0.656145 −0.328072 0.944653i \(-0.606399\pi\)
−0.328072 + 0.944653i \(0.606399\pi\)
\(752\) 0 0
\(753\) −1.96290 −0.0715320
\(754\) 0 0
\(755\) 18.2534 0.664309
\(756\) 0 0
\(757\) 25.1181 0.912932 0.456466 0.889741i \(-0.349115\pi\)
0.456466 + 0.889741i \(0.349115\pi\)
\(758\) 0 0
\(759\) 0.692294 0.0251287
\(760\) 0 0
\(761\) −42.1656 −1.52850 −0.764251 0.644918i \(-0.776891\pi\)
−0.764251 + 0.644918i \(0.776891\pi\)
\(762\) 0 0
\(763\) 5.45541 0.197499
\(764\) 0 0
\(765\) 11.9666 0.432655
\(766\) 0 0
\(767\) 0.630173 0.0227542
\(768\) 0 0
\(769\) 0.181635 0.00654991 0.00327495 0.999995i \(-0.498958\pi\)
0.00327495 + 0.999995i \(0.498958\pi\)
\(770\) 0 0
\(771\) −0.730934 −0.0263239
\(772\) 0 0
\(773\) 17.5557 0.631436 0.315718 0.948853i \(-0.397755\pi\)
0.315718 + 0.948853i \(0.397755\pi\)
\(774\) 0 0
\(775\) 9.77145 0.351001
\(776\) 0 0
\(777\) −0.859823 −0.0308460
\(778\) 0 0
\(779\) 2.00345 0.0717810
\(780\) 0 0
\(781\) −24.0700 −0.861293
\(782\) 0 0
\(783\) 2.03541 0.0727396
\(784\) 0 0
\(785\) 15.8983 0.567434
\(786\) 0 0
\(787\) 12.3210 0.439196 0.219598 0.975590i \(-0.429525\pi\)
0.219598 + 0.975590i \(0.429525\pi\)
\(788\) 0 0
\(789\) −4.28545 −0.152566
\(790\) 0 0
\(791\) 7.74340 0.275324
\(792\) 0 0
\(793\) −1.89761 −0.0673860
\(794\) 0 0
\(795\) −4.56713 −0.161979
\(796\) 0 0
\(797\) −2.66300 −0.0943284 −0.0471642 0.998887i \(-0.515018\pi\)
−0.0471642 + 0.998887i \(0.515018\pi\)
\(798\) 0 0
\(799\) −9.17898 −0.324729
\(800\) 0 0
\(801\) −39.2386 −1.38643
\(802\) 0 0
\(803\) −77.8214 −2.74626
\(804\) 0 0
\(805\) 0.378004 0.0133229
\(806\) 0 0
\(807\) −3.44423 −0.121243
\(808\) 0 0
\(809\) −26.4826 −0.931077 −0.465539 0.885028i \(-0.654139\pi\)
−0.465539 + 0.885028i \(0.654139\pi\)
\(810\) 0 0
\(811\) 20.9695 0.736340 0.368170 0.929758i \(-0.379984\pi\)
0.368170 + 0.929758i \(0.379984\pi\)
\(812\) 0 0
\(813\) −2.35998 −0.0827680
\(814\) 0 0
\(815\) −18.3233 −0.641836
\(816\) 0 0
\(817\) 23.5994 0.825640
\(818\) 0 0
\(819\) −1.56578 −0.0547126
\(820\) 0 0
\(821\) −6.44636 −0.224980 −0.112490 0.993653i \(-0.535883\pi\)
−0.112490 + 0.993653i \(0.535883\pi\)
\(822\) 0 0
\(823\) −26.3577 −0.918773 −0.459386 0.888237i \(-0.651931\pi\)
−0.459386 + 0.888237i \(0.651931\pi\)
\(824\) 0 0
\(825\) 2.00000 0.0696311
\(826\) 0 0
\(827\) 35.7116 1.24182 0.620908 0.783884i \(-0.286764\pi\)
0.620908 + 0.783884i \(0.286764\pi\)
\(828\) 0 0
\(829\) 5.31348 0.184545 0.0922724 0.995734i \(-0.470587\pi\)
0.0922724 + 0.995734i \(0.470587\pi\)
\(830\) 0 0
\(831\) −0.451821 −0.0156735
\(832\) 0 0
\(833\) −24.1290 −0.836020
\(834\) 0 0
\(835\) 9.67639 0.334865
\(836\) 0 0
\(837\) 19.8889 0.687461
\(838\) 0 0
\(839\) −23.9865 −0.828108 −0.414054 0.910252i \(-0.635887\pi\)
−0.414054 + 0.910252i \(0.635887\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 0 0
\(843\) −1.34613 −0.0463632
\(844\) 0 0
\(845\) 12.7522 0.438688
\(846\) 0 0
\(847\) −24.4441 −0.839908
\(848\) 0 0
\(849\) −5.48363 −0.188198
\(850\) 0 0
\(851\) −0.787360 −0.0269904
\(852\) 0 0
\(853\) −16.6968 −0.571688 −0.285844 0.958276i \(-0.592274\pi\)
−0.285844 + 0.958276i \(0.592274\pi\)
\(854\) 0 0
\(855\) 12.9273 0.442105
\(856\) 0 0
\(857\) −28.8589 −0.985802 −0.492901 0.870085i \(-0.664064\pi\)
−0.492901 + 0.870085i \(0.664064\pi\)
\(858\) 0 0
\(859\) −2.39635 −0.0817625 −0.0408812 0.999164i \(-0.513017\pi\)
−0.0408812 + 0.999164i \(0.513017\pi\)
\(860\) 0 0
\(861\) 0.168728 0.00575022
\(862\) 0 0
\(863\) −11.6493 −0.396548 −0.198274 0.980147i \(-0.563534\pi\)
−0.198274 + 0.980147i \(0.563534\pi\)
\(864\) 0 0
\(865\) 15.5722 0.529470
\(866\) 0 0
\(867\) −0.0908783 −0.00308639
\(868\) 0 0
\(869\) 18.6193 0.631616
\(870\) 0 0
\(871\) −5.56862 −0.188685
\(872\) 0 0
\(873\) 20.4228 0.691209
\(874\) 0 0
\(875\) 1.09203 0.0369174
\(876\) 0 0
\(877\) 42.2331 1.42611 0.713055 0.701108i \(-0.247311\pi\)
0.713055 + 0.701108i \(0.247311\pi\)
\(878\) 0 0
\(879\) 6.78055 0.228702
\(880\) 0 0
\(881\) 8.49895 0.286337 0.143168 0.989698i \(-0.454271\pi\)
0.143168 + 0.989698i \(0.454271\pi\)
\(882\) 0 0
\(883\) 52.5509 1.76848 0.884239 0.467034i \(-0.154677\pi\)
0.884239 + 0.467034i \(0.154677\pi\)
\(884\) 0 0
\(885\) −0.438174 −0.0147291
\(886\) 0 0
\(887\) −18.1331 −0.608851 −0.304426 0.952536i \(-0.598465\pi\)
−0.304426 + 0.952536i \(0.598465\pi\)
\(888\) 0 0
\(889\) 2.41256 0.0809146
\(890\) 0 0
\(891\) −45.8533 −1.53614
\(892\) 0 0
\(893\) −9.91586 −0.331822
\(894\) 0 0
\(895\) 20.6634 0.690700
\(896\) 0 0
\(897\) 0.0596479 0.00199159
\(898\) 0 0
\(899\) 9.77145 0.325896
\(900\) 0 0
\(901\) −54.8195 −1.82630
\(902\) 0 0
\(903\) 1.98751 0.0661403
\(904\) 0 0
\(905\) 21.0657 0.700246
\(906\) 0 0
\(907\) 19.8329 0.658539 0.329270 0.944236i \(-0.393197\pi\)
0.329270 + 0.944236i \(0.393197\pi\)
\(908\) 0 0
\(909\) 24.5004 0.812626
\(910\) 0 0
\(911\) 33.2248 1.10079 0.550394 0.834905i \(-0.314478\pi\)
0.550394 + 0.834905i \(0.314478\pi\)
\(912\) 0 0
\(913\) −7.30529 −0.241770
\(914\) 0 0
\(915\) 1.31945 0.0436197
\(916\) 0 0
\(917\) 7.28651 0.240622
\(918\) 0 0
\(919\) −54.8075 −1.80793 −0.903966 0.427605i \(-0.859358\pi\)
−0.903966 + 0.427605i \(0.859358\pi\)
\(920\) 0 0
\(921\) −6.97926 −0.229974
\(922\) 0 0
\(923\) −2.07387 −0.0682622
\(924\) 0 0
\(925\) −2.27464 −0.0747897
\(926\) 0 0
\(927\) −10.3509 −0.339967
\(928\) 0 0
\(929\) −26.5749 −0.871894 −0.435947 0.899972i \(-0.643586\pi\)
−0.435947 + 0.899972i \(0.643586\pi\)
\(930\) 0 0
\(931\) −26.0660 −0.854280
\(932\) 0 0
\(933\) 8.72258 0.285564
\(934\) 0 0
\(935\) 24.0061 0.785083
\(936\) 0 0
\(937\) 1.47491 0.0481834 0.0240917 0.999710i \(-0.492331\pi\)
0.0240917 + 0.999710i \(0.492331\pi\)
\(938\) 0 0
\(939\) 9.50313 0.310123
\(940\) 0 0
\(941\) −16.9047 −0.551079 −0.275539 0.961290i \(-0.588856\pi\)
−0.275539 + 0.961290i \(0.588856\pi\)
\(942\) 0 0
\(943\) 0.154508 0.00503147
\(944\) 0 0
\(945\) 2.22273 0.0723055
\(946\) 0 0
\(947\) 12.4544 0.404715 0.202357 0.979312i \(-0.435140\pi\)
0.202357 + 0.979312i \(0.435140\pi\)
\(948\) 0 0
\(949\) −6.70507 −0.217656
\(950\) 0 0
\(951\) −9.07180 −0.294173
\(952\) 0 0
\(953\) −21.5033 −0.696560 −0.348280 0.937390i \(-0.613234\pi\)
−0.348280 + 0.937390i \(0.613234\pi\)
\(954\) 0 0
\(955\) −7.14467 −0.231196
\(956\) 0 0
\(957\) 2.00000 0.0646508
\(958\) 0 0
\(959\) −11.8403 −0.382344
\(960\) 0 0
\(961\) 64.4813 2.08004
\(962\) 0 0
\(963\) 36.9243 1.18987
\(964\) 0 0
\(965\) 1.67390 0.0538849
\(966\) 0 0
\(967\) −2.45922 −0.0790833 −0.0395416 0.999218i \(-0.512590\pi\)
−0.0395416 + 0.999218i \(0.512590\pi\)
\(968\) 0 0
\(969\) −6.45508 −0.207367
\(970\) 0 0
\(971\) 46.0525 1.47790 0.738948 0.673762i \(-0.235323\pi\)
0.738948 + 0.673762i \(0.235323\pi\)
\(972\) 0 0
\(973\) −7.60599 −0.243837
\(974\) 0 0
\(975\) 0.172320 0.00551864
\(976\) 0 0
\(977\) −61.4124 −1.96476 −0.982378 0.186903i \(-0.940155\pi\)
−0.982378 + 0.186903i \(0.940155\pi\)
\(978\) 0 0
\(979\) −78.7159 −2.51577
\(980\) 0 0
\(981\) 14.3884 0.459385
\(982\) 0 0
\(983\) −17.6457 −0.562810 −0.281405 0.959589i \(-0.590801\pi\)
−0.281405 + 0.959589i \(0.590801\pi\)
\(984\) 0 0
\(985\) 8.97874 0.286086
\(986\) 0 0
\(987\) −0.835100 −0.0265815
\(988\) 0 0
\(989\) 1.82001 0.0578730
\(990\) 0 0
\(991\) 48.4193 1.53809 0.769045 0.639195i \(-0.220732\pi\)
0.769045 + 0.639195i \(0.220732\pi\)
\(992\) 0 0
\(993\) −9.49911 −0.301445
\(994\) 0 0
\(995\) −12.1530 −0.385276
\(996\) 0 0
\(997\) 28.3972 0.899349 0.449675 0.893192i \(-0.351540\pi\)
0.449675 + 0.893192i \(0.351540\pi\)
\(998\) 0 0
\(999\) −4.62982 −0.146481
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9280.2.a.cs.1.4 8
4.3 odd 2 inner 9280.2.a.cs.1.5 8
8.3 odd 2 4640.2.a.y.1.4 8
8.5 even 2 4640.2.a.y.1.5 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4640.2.a.y.1.4 8 8.3 odd 2
4640.2.a.y.1.5 yes 8 8.5 even 2
9280.2.a.cs.1.4 8 1.1 even 1 trivial
9280.2.a.cs.1.5 8 4.3 odd 2 inner