Properties

Label 9280.2.a.y.1.1
Level $9280$
Weight $2$
Character 9280.1
Self dual yes
Analytic conductor $74.101$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9280,2,Mod(1,9280)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9280, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9280.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9280 = 2^{6} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9280.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(74.1011730757\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 4640)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(1.61803\) of defining polynomial
Character \(\chi\) \(=\) 9280.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.61803 q^{3} +1.00000 q^{5} -3.85410 q^{7} -0.381966 q^{9} +1.23607 q^{11} -6.09017 q^{13} -1.61803 q^{15} -1.38197 q^{17} +7.23607 q^{19} +6.23607 q^{21} +0.854102 q^{23} +1.00000 q^{25} +5.47214 q^{27} -1.00000 q^{29} -0.618034 q^{31} -2.00000 q^{33} -3.85410 q^{35} -4.76393 q^{37} +9.85410 q^{39} +9.70820 q^{41} -5.38197 q^{43} -0.381966 q^{45} +8.00000 q^{47} +7.85410 q^{49} +2.23607 q^{51} +6.32624 q^{53} +1.23607 q^{55} -11.7082 q^{57} -11.6180 q^{59} -8.85410 q^{61} +1.47214 q^{63} -6.09017 q^{65} +6.47214 q^{67} -1.38197 q^{69} +4.94427 q^{71} +13.0902 q^{73} -1.61803 q^{75} -4.76393 q^{77} +14.0902 q^{79} -7.70820 q^{81} +2.29180 q^{83} -1.38197 q^{85} +1.61803 q^{87} +11.7082 q^{89} +23.4721 q^{91} +1.00000 q^{93} +7.23607 q^{95} -15.7984 q^{97} -0.472136 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} + 2 q^{5} - q^{7} - 3 q^{9} - 2 q^{11} - q^{13} - q^{15} - 5 q^{17} + 10 q^{19} + 8 q^{21} - 5 q^{23} + 2 q^{25} + 2 q^{27} - 2 q^{29} + q^{31} - 4 q^{33} - q^{35} - 14 q^{37} + 13 q^{39}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.61803 −0.934172 −0.467086 0.884212i \(-0.654696\pi\)
−0.467086 + 0.884212i \(0.654696\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −3.85410 −1.45671 −0.728357 0.685198i \(-0.759716\pi\)
−0.728357 + 0.685198i \(0.759716\pi\)
\(8\) 0 0
\(9\) −0.381966 −0.127322
\(10\) 0 0
\(11\) 1.23607 0.372689 0.186344 0.982485i \(-0.440336\pi\)
0.186344 + 0.982485i \(0.440336\pi\)
\(12\) 0 0
\(13\) −6.09017 −1.68911 −0.844555 0.535469i \(-0.820135\pi\)
−0.844555 + 0.535469i \(0.820135\pi\)
\(14\) 0 0
\(15\) −1.61803 −0.417775
\(16\) 0 0
\(17\) −1.38197 −0.335176 −0.167588 0.985857i \(-0.553598\pi\)
−0.167588 + 0.985857i \(0.553598\pi\)
\(18\) 0 0
\(19\) 7.23607 1.66007 0.830034 0.557713i \(-0.188321\pi\)
0.830034 + 0.557713i \(0.188321\pi\)
\(20\) 0 0
\(21\) 6.23607 1.36082
\(22\) 0 0
\(23\) 0.854102 0.178093 0.0890463 0.996027i \(-0.471618\pi\)
0.0890463 + 0.996027i \(0.471618\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 5.47214 1.05311
\(28\) 0 0
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) −0.618034 −0.111002 −0.0555011 0.998459i \(-0.517676\pi\)
−0.0555011 + 0.998459i \(0.517676\pi\)
\(32\) 0 0
\(33\) −2.00000 −0.348155
\(34\) 0 0
\(35\) −3.85410 −0.651462
\(36\) 0 0
\(37\) −4.76393 −0.783186 −0.391593 0.920139i \(-0.628076\pi\)
−0.391593 + 0.920139i \(0.628076\pi\)
\(38\) 0 0
\(39\) 9.85410 1.57792
\(40\) 0 0
\(41\) 9.70820 1.51617 0.758083 0.652158i \(-0.226136\pi\)
0.758083 + 0.652158i \(0.226136\pi\)
\(42\) 0 0
\(43\) −5.38197 −0.820742 −0.410371 0.911919i \(-0.634601\pi\)
−0.410371 + 0.911919i \(0.634601\pi\)
\(44\) 0 0
\(45\) −0.381966 −0.0569401
\(46\) 0 0
\(47\) 8.00000 1.16692 0.583460 0.812142i \(-0.301699\pi\)
0.583460 + 0.812142i \(0.301699\pi\)
\(48\) 0 0
\(49\) 7.85410 1.12201
\(50\) 0 0
\(51\) 2.23607 0.313112
\(52\) 0 0
\(53\) 6.32624 0.868976 0.434488 0.900678i \(-0.356929\pi\)
0.434488 + 0.900678i \(0.356929\pi\)
\(54\) 0 0
\(55\) 1.23607 0.166671
\(56\) 0 0
\(57\) −11.7082 −1.55079
\(58\) 0 0
\(59\) −11.6180 −1.51254 −0.756270 0.654260i \(-0.772980\pi\)
−0.756270 + 0.654260i \(0.772980\pi\)
\(60\) 0 0
\(61\) −8.85410 −1.13365 −0.566826 0.823838i \(-0.691829\pi\)
−0.566826 + 0.823838i \(0.691829\pi\)
\(62\) 0 0
\(63\) 1.47214 0.185472
\(64\) 0 0
\(65\) −6.09017 −0.755393
\(66\) 0 0
\(67\) 6.47214 0.790697 0.395349 0.918531i \(-0.370624\pi\)
0.395349 + 0.918531i \(0.370624\pi\)
\(68\) 0 0
\(69\) −1.38197 −0.166369
\(70\) 0 0
\(71\) 4.94427 0.586777 0.293389 0.955993i \(-0.405217\pi\)
0.293389 + 0.955993i \(0.405217\pi\)
\(72\) 0 0
\(73\) 13.0902 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(74\) 0 0
\(75\) −1.61803 −0.186834
\(76\) 0 0
\(77\) −4.76393 −0.542900
\(78\) 0 0
\(79\) 14.0902 1.58527 0.792634 0.609698i \(-0.208709\pi\)
0.792634 + 0.609698i \(0.208709\pi\)
\(80\) 0 0
\(81\) −7.70820 −0.856467
\(82\) 0 0
\(83\) 2.29180 0.251557 0.125779 0.992058i \(-0.459857\pi\)
0.125779 + 0.992058i \(0.459857\pi\)
\(84\) 0 0
\(85\) −1.38197 −0.149895
\(86\) 0 0
\(87\) 1.61803 0.173471
\(88\) 0 0
\(89\) 11.7082 1.24107 0.620534 0.784180i \(-0.286916\pi\)
0.620534 + 0.784180i \(0.286916\pi\)
\(90\) 0 0
\(91\) 23.4721 2.46055
\(92\) 0 0
\(93\) 1.00000 0.103695
\(94\) 0 0
\(95\) 7.23607 0.742405
\(96\) 0 0
\(97\) −15.7984 −1.60408 −0.802041 0.597269i \(-0.796252\pi\)
−0.802041 + 0.597269i \(0.796252\pi\)
\(98\) 0 0
\(99\) −0.472136 −0.0474514
\(100\) 0 0
\(101\) −4.09017 −0.406987 −0.203494 0.979076i \(-0.565230\pi\)
−0.203494 + 0.979076i \(0.565230\pi\)
\(102\) 0 0
\(103\) 8.94427 0.881305 0.440653 0.897678i \(-0.354747\pi\)
0.440653 + 0.897678i \(0.354747\pi\)
\(104\) 0 0
\(105\) 6.23607 0.608578
\(106\) 0 0
\(107\) 13.7082 1.32522 0.662611 0.748964i \(-0.269448\pi\)
0.662611 + 0.748964i \(0.269448\pi\)
\(108\) 0 0
\(109\) 1.70820 0.163616 0.0818081 0.996648i \(-0.473931\pi\)
0.0818081 + 0.996648i \(0.473931\pi\)
\(110\) 0 0
\(111\) 7.70820 0.731630
\(112\) 0 0
\(113\) −15.7984 −1.48619 −0.743093 0.669188i \(-0.766642\pi\)
−0.743093 + 0.669188i \(0.766642\pi\)
\(114\) 0 0
\(115\) 0.854102 0.0796454
\(116\) 0 0
\(117\) 2.32624 0.215061
\(118\) 0 0
\(119\) 5.32624 0.488255
\(120\) 0 0
\(121\) −9.47214 −0.861103
\(122\) 0 0
\(123\) −15.7082 −1.41636
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −16.9443 −1.50356 −0.751780 0.659413i \(-0.770805\pi\)
−0.751780 + 0.659413i \(0.770805\pi\)
\(128\) 0 0
\(129\) 8.70820 0.766715
\(130\) 0 0
\(131\) −1.05573 −0.0922394 −0.0461197 0.998936i \(-0.514686\pi\)
−0.0461197 + 0.998936i \(0.514686\pi\)
\(132\) 0 0
\(133\) −27.8885 −2.41824
\(134\) 0 0
\(135\) 5.47214 0.470966
\(136\) 0 0
\(137\) −6.85410 −0.585585 −0.292793 0.956176i \(-0.594585\pi\)
−0.292793 + 0.956176i \(0.594585\pi\)
\(138\) 0 0
\(139\) 3.38197 0.286855 0.143427 0.989661i \(-0.454188\pi\)
0.143427 + 0.989661i \(0.454188\pi\)
\(140\) 0 0
\(141\) −12.9443 −1.09010
\(142\) 0 0
\(143\) −7.52786 −0.629512
\(144\) 0 0
\(145\) −1.00000 −0.0830455
\(146\) 0 0
\(147\) −12.7082 −1.04815
\(148\) 0 0
\(149\) 6.18034 0.506313 0.253157 0.967425i \(-0.418531\pi\)
0.253157 + 0.967425i \(0.418531\pi\)
\(150\) 0 0
\(151\) 3.23607 0.263347 0.131674 0.991293i \(-0.457965\pi\)
0.131674 + 0.991293i \(0.457965\pi\)
\(152\) 0 0
\(153\) 0.527864 0.0426753
\(154\) 0 0
\(155\) −0.618034 −0.0496417
\(156\) 0 0
\(157\) −22.9443 −1.83115 −0.915576 0.402145i \(-0.868265\pi\)
−0.915576 + 0.402145i \(0.868265\pi\)
\(158\) 0 0
\(159\) −10.2361 −0.811773
\(160\) 0 0
\(161\) −3.29180 −0.259430
\(162\) 0 0
\(163\) −22.4721 −1.76015 −0.880077 0.474831i \(-0.842509\pi\)
−0.880077 + 0.474831i \(0.842509\pi\)
\(164\) 0 0
\(165\) −2.00000 −0.155700
\(166\) 0 0
\(167\) 6.61803 0.512119 0.256059 0.966661i \(-0.417576\pi\)
0.256059 + 0.966661i \(0.417576\pi\)
\(168\) 0 0
\(169\) 24.0902 1.85309
\(170\) 0 0
\(171\) −2.76393 −0.211363
\(172\) 0 0
\(173\) −19.7984 −1.50524 −0.752621 0.658454i \(-0.771211\pi\)
−0.752621 + 0.658454i \(0.771211\pi\)
\(174\) 0 0
\(175\) −3.85410 −0.291343
\(176\) 0 0
\(177\) 18.7984 1.41297
\(178\) 0 0
\(179\) 10.0902 0.754175 0.377087 0.926178i \(-0.376926\pi\)
0.377087 + 0.926178i \(0.376926\pi\)
\(180\) 0 0
\(181\) −13.7082 −1.01892 −0.509461 0.860494i \(-0.670155\pi\)
−0.509461 + 0.860494i \(0.670155\pi\)
\(182\) 0 0
\(183\) 14.3262 1.05903
\(184\) 0 0
\(185\) −4.76393 −0.350251
\(186\) 0 0
\(187\) −1.70820 −0.124916
\(188\) 0 0
\(189\) −21.0902 −1.53408
\(190\) 0 0
\(191\) 14.1459 1.02356 0.511781 0.859116i \(-0.328986\pi\)
0.511781 + 0.859116i \(0.328986\pi\)
\(192\) 0 0
\(193\) 6.85410 0.493369 0.246685 0.969096i \(-0.420659\pi\)
0.246685 + 0.969096i \(0.420659\pi\)
\(194\) 0 0
\(195\) 9.85410 0.705667
\(196\) 0 0
\(197\) −12.1459 −0.865359 −0.432680 0.901548i \(-0.642432\pi\)
−0.432680 + 0.901548i \(0.642432\pi\)
\(198\) 0 0
\(199\) 13.2361 0.938280 0.469140 0.883124i \(-0.344564\pi\)
0.469140 + 0.883124i \(0.344564\pi\)
\(200\) 0 0
\(201\) −10.4721 −0.738648
\(202\) 0 0
\(203\) 3.85410 0.270505
\(204\) 0 0
\(205\) 9.70820 0.678050
\(206\) 0 0
\(207\) −0.326238 −0.0226751
\(208\) 0 0
\(209\) 8.94427 0.618688
\(210\) 0 0
\(211\) 10.7639 0.741020 0.370510 0.928829i \(-0.379183\pi\)
0.370510 + 0.928829i \(0.379183\pi\)
\(212\) 0 0
\(213\) −8.00000 −0.548151
\(214\) 0 0
\(215\) −5.38197 −0.367047
\(216\) 0 0
\(217\) 2.38197 0.161698
\(218\) 0 0
\(219\) −21.1803 −1.43123
\(220\) 0 0
\(221\) 8.41641 0.566149
\(222\) 0 0
\(223\) −21.9787 −1.47180 −0.735902 0.677088i \(-0.763241\pi\)
−0.735902 + 0.677088i \(0.763241\pi\)
\(224\) 0 0
\(225\) −0.381966 −0.0254644
\(226\) 0 0
\(227\) 2.00000 0.132745 0.0663723 0.997795i \(-0.478857\pi\)
0.0663723 + 0.997795i \(0.478857\pi\)
\(228\) 0 0
\(229\) 7.09017 0.468532 0.234266 0.972173i \(-0.424731\pi\)
0.234266 + 0.972173i \(0.424731\pi\)
\(230\) 0 0
\(231\) 7.70820 0.507163
\(232\) 0 0
\(233\) 7.52786 0.493167 0.246583 0.969122i \(-0.420692\pi\)
0.246583 + 0.969122i \(0.420692\pi\)
\(234\) 0 0
\(235\) 8.00000 0.521862
\(236\) 0 0
\(237\) −22.7984 −1.48091
\(238\) 0 0
\(239\) −20.4721 −1.32423 −0.662116 0.749401i \(-0.730341\pi\)
−0.662116 + 0.749401i \(0.730341\pi\)
\(240\) 0 0
\(241\) −25.7984 −1.66182 −0.830910 0.556407i \(-0.812179\pi\)
−0.830910 + 0.556407i \(0.812179\pi\)
\(242\) 0 0
\(243\) −3.94427 −0.253025
\(244\) 0 0
\(245\) 7.85410 0.501780
\(246\) 0 0
\(247\) −44.0689 −2.80404
\(248\) 0 0
\(249\) −3.70820 −0.234998
\(250\) 0 0
\(251\) 4.18034 0.263861 0.131930 0.991259i \(-0.457882\pi\)
0.131930 + 0.991259i \(0.457882\pi\)
\(252\) 0 0
\(253\) 1.05573 0.0663731
\(254\) 0 0
\(255\) 2.23607 0.140028
\(256\) 0 0
\(257\) 30.0689 1.87565 0.937823 0.347115i \(-0.112839\pi\)
0.937823 + 0.347115i \(0.112839\pi\)
\(258\) 0 0
\(259\) 18.3607 1.14088
\(260\) 0 0
\(261\) 0.381966 0.0236431
\(262\) 0 0
\(263\) 26.4721 1.63234 0.816171 0.577811i \(-0.196093\pi\)
0.816171 + 0.577811i \(0.196093\pi\)
\(264\) 0 0
\(265\) 6.32624 0.388618
\(266\) 0 0
\(267\) −18.9443 −1.15937
\(268\) 0 0
\(269\) −6.43769 −0.392513 −0.196257 0.980553i \(-0.562879\pi\)
−0.196257 + 0.980553i \(0.562879\pi\)
\(270\) 0 0
\(271\) −11.4164 −0.693497 −0.346749 0.937958i \(-0.612714\pi\)
−0.346749 + 0.937958i \(0.612714\pi\)
\(272\) 0 0
\(273\) −37.9787 −2.29858
\(274\) 0 0
\(275\) 1.23607 0.0745377
\(276\) 0 0
\(277\) −30.0000 −1.80253 −0.901263 0.433273i \(-0.857359\pi\)
−0.901263 + 0.433273i \(0.857359\pi\)
\(278\) 0 0
\(279\) 0.236068 0.0141330
\(280\) 0 0
\(281\) 1.85410 0.110606 0.0553032 0.998470i \(-0.482387\pi\)
0.0553032 + 0.998470i \(0.482387\pi\)
\(282\) 0 0
\(283\) −0.180340 −0.0107201 −0.00536005 0.999986i \(-0.501706\pi\)
−0.00536005 + 0.999986i \(0.501706\pi\)
\(284\) 0 0
\(285\) −11.7082 −0.693534
\(286\) 0 0
\(287\) −37.4164 −2.20862
\(288\) 0 0
\(289\) −15.0902 −0.887657
\(290\) 0 0
\(291\) 25.5623 1.49849
\(292\) 0 0
\(293\) 8.18034 0.477901 0.238950 0.971032i \(-0.423197\pi\)
0.238950 + 0.971032i \(0.423197\pi\)
\(294\) 0 0
\(295\) −11.6180 −0.676428
\(296\) 0 0
\(297\) 6.76393 0.392483
\(298\) 0 0
\(299\) −5.20163 −0.300818
\(300\) 0 0
\(301\) 20.7426 1.19559
\(302\) 0 0
\(303\) 6.61803 0.380196
\(304\) 0 0
\(305\) −8.85410 −0.506984
\(306\) 0 0
\(307\) −18.4721 −1.05426 −0.527130 0.849785i \(-0.676732\pi\)
−0.527130 + 0.849785i \(0.676732\pi\)
\(308\) 0 0
\(309\) −14.4721 −0.823291
\(310\) 0 0
\(311\) 9.32624 0.528842 0.264421 0.964407i \(-0.414819\pi\)
0.264421 + 0.964407i \(0.414819\pi\)
\(312\) 0 0
\(313\) 31.8885 1.80245 0.901224 0.433355i \(-0.142670\pi\)
0.901224 + 0.433355i \(0.142670\pi\)
\(314\) 0 0
\(315\) 1.47214 0.0829455
\(316\) 0 0
\(317\) 9.23607 0.518749 0.259375 0.965777i \(-0.416484\pi\)
0.259375 + 0.965777i \(0.416484\pi\)
\(318\) 0 0
\(319\) −1.23607 −0.0692065
\(320\) 0 0
\(321\) −22.1803 −1.23799
\(322\) 0 0
\(323\) −10.0000 −0.556415
\(324\) 0 0
\(325\) −6.09017 −0.337822
\(326\) 0 0
\(327\) −2.76393 −0.152846
\(328\) 0 0
\(329\) −30.8328 −1.69987
\(330\) 0 0
\(331\) −23.7082 −1.30312 −0.651560 0.758597i \(-0.725885\pi\)
−0.651560 + 0.758597i \(0.725885\pi\)
\(332\) 0 0
\(333\) 1.81966 0.0997168
\(334\) 0 0
\(335\) 6.47214 0.353611
\(336\) 0 0
\(337\) 23.8541 1.29942 0.649708 0.760184i \(-0.274891\pi\)
0.649708 + 0.760184i \(0.274891\pi\)
\(338\) 0 0
\(339\) 25.5623 1.38835
\(340\) 0 0
\(341\) −0.763932 −0.0413692
\(342\) 0 0
\(343\) −3.29180 −0.177740
\(344\) 0 0
\(345\) −1.38197 −0.0744025
\(346\) 0 0
\(347\) 35.2361 1.89157 0.945786 0.324792i \(-0.105294\pi\)
0.945786 + 0.324792i \(0.105294\pi\)
\(348\) 0 0
\(349\) −4.94427 −0.264661 −0.132330 0.991206i \(-0.542246\pi\)
−0.132330 + 0.991206i \(0.542246\pi\)
\(350\) 0 0
\(351\) −33.3262 −1.77882
\(352\) 0 0
\(353\) −9.52786 −0.507117 −0.253559 0.967320i \(-0.581601\pi\)
−0.253559 + 0.967320i \(0.581601\pi\)
\(354\) 0 0
\(355\) 4.94427 0.262415
\(356\) 0 0
\(357\) −8.61803 −0.456115
\(358\) 0 0
\(359\) −26.0902 −1.37699 −0.688493 0.725243i \(-0.741728\pi\)
−0.688493 + 0.725243i \(0.741728\pi\)
\(360\) 0 0
\(361\) 33.3607 1.75583
\(362\) 0 0
\(363\) 15.3262 0.804419
\(364\) 0 0
\(365\) 13.0902 0.685171
\(366\) 0 0
\(367\) −4.18034 −0.218212 −0.109106 0.994030i \(-0.534799\pi\)
−0.109106 + 0.994030i \(0.534799\pi\)
\(368\) 0 0
\(369\) −3.70820 −0.193041
\(370\) 0 0
\(371\) −24.3820 −1.26585
\(372\) 0 0
\(373\) 7.27051 0.376453 0.188226 0.982126i \(-0.439726\pi\)
0.188226 + 0.982126i \(0.439726\pi\)
\(374\) 0 0
\(375\) −1.61803 −0.0835549
\(376\) 0 0
\(377\) 6.09017 0.313660
\(378\) 0 0
\(379\) −20.0689 −1.03087 −0.515435 0.856929i \(-0.672370\pi\)
−0.515435 + 0.856929i \(0.672370\pi\)
\(380\) 0 0
\(381\) 27.4164 1.40459
\(382\) 0 0
\(383\) −7.27051 −0.371506 −0.185753 0.982596i \(-0.559472\pi\)
−0.185753 + 0.982596i \(0.559472\pi\)
\(384\) 0 0
\(385\) −4.76393 −0.242792
\(386\) 0 0
\(387\) 2.05573 0.104499
\(388\) 0 0
\(389\) 18.0000 0.912636 0.456318 0.889817i \(-0.349168\pi\)
0.456318 + 0.889817i \(0.349168\pi\)
\(390\) 0 0
\(391\) −1.18034 −0.0596924
\(392\) 0 0
\(393\) 1.70820 0.0861675
\(394\) 0 0
\(395\) 14.0902 0.708953
\(396\) 0 0
\(397\) −11.8541 −0.594940 −0.297470 0.954731i \(-0.596143\pi\)
−0.297470 + 0.954731i \(0.596143\pi\)
\(398\) 0 0
\(399\) 45.1246 2.25906
\(400\) 0 0
\(401\) −7.32624 −0.365855 −0.182927 0.983126i \(-0.558557\pi\)
−0.182927 + 0.983126i \(0.558557\pi\)
\(402\) 0 0
\(403\) 3.76393 0.187495
\(404\) 0 0
\(405\) −7.70820 −0.383024
\(406\) 0 0
\(407\) −5.88854 −0.291884
\(408\) 0 0
\(409\) −19.4164 −0.960080 −0.480040 0.877247i \(-0.659378\pi\)
−0.480040 + 0.877247i \(0.659378\pi\)
\(410\) 0 0
\(411\) 11.0902 0.547038
\(412\) 0 0
\(413\) 44.7771 2.20334
\(414\) 0 0
\(415\) 2.29180 0.112500
\(416\) 0 0
\(417\) −5.47214 −0.267972
\(418\) 0 0
\(419\) 15.0902 0.737203 0.368602 0.929587i \(-0.379837\pi\)
0.368602 + 0.929587i \(0.379837\pi\)
\(420\) 0 0
\(421\) −16.4721 −0.802803 −0.401401 0.915902i \(-0.631477\pi\)
−0.401401 + 0.915902i \(0.631477\pi\)
\(422\) 0 0
\(423\) −3.05573 −0.148575
\(424\) 0 0
\(425\) −1.38197 −0.0670352
\(426\) 0 0
\(427\) 34.1246 1.65141
\(428\) 0 0
\(429\) 12.1803 0.588072
\(430\) 0 0
\(431\) −10.2918 −0.495738 −0.247869 0.968794i \(-0.579730\pi\)
−0.247869 + 0.968794i \(0.579730\pi\)
\(432\) 0 0
\(433\) −4.47214 −0.214917 −0.107459 0.994210i \(-0.534271\pi\)
−0.107459 + 0.994210i \(0.534271\pi\)
\(434\) 0 0
\(435\) 1.61803 0.0775788
\(436\) 0 0
\(437\) 6.18034 0.295646
\(438\) 0 0
\(439\) −6.00000 −0.286364 −0.143182 0.989696i \(-0.545733\pi\)
−0.143182 + 0.989696i \(0.545733\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) 0 0
\(443\) −8.27051 −0.392944 −0.196472 0.980509i \(-0.562948\pi\)
−0.196472 + 0.980509i \(0.562948\pi\)
\(444\) 0 0
\(445\) 11.7082 0.555022
\(446\) 0 0
\(447\) −10.0000 −0.472984
\(448\) 0 0
\(449\) 34.0689 1.60781 0.803905 0.594758i \(-0.202752\pi\)
0.803905 + 0.594758i \(0.202752\pi\)
\(450\) 0 0
\(451\) 12.0000 0.565058
\(452\) 0 0
\(453\) −5.23607 −0.246012
\(454\) 0 0
\(455\) 23.4721 1.10039
\(456\) 0 0
\(457\) 22.0000 1.02912 0.514558 0.857455i \(-0.327956\pi\)
0.514558 + 0.857455i \(0.327956\pi\)
\(458\) 0 0
\(459\) −7.56231 −0.352978
\(460\) 0 0
\(461\) 3.67376 0.171104 0.0855521 0.996334i \(-0.472735\pi\)
0.0855521 + 0.996334i \(0.472735\pi\)
\(462\) 0 0
\(463\) −14.8328 −0.689339 −0.344670 0.938724i \(-0.612009\pi\)
−0.344670 + 0.938724i \(0.612009\pi\)
\(464\) 0 0
\(465\) 1.00000 0.0463739
\(466\) 0 0
\(467\) −38.3262 −1.77353 −0.886763 0.462224i \(-0.847052\pi\)
−0.886763 + 0.462224i \(0.847052\pi\)
\(468\) 0 0
\(469\) −24.9443 −1.15182
\(470\) 0 0
\(471\) 37.1246 1.71061
\(472\) 0 0
\(473\) −6.65248 −0.305881
\(474\) 0 0
\(475\) 7.23607 0.332014
\(476\) 0 0
\(477\) −2.41641 −0.110640
\(478\) 0 0
\(479\) −16.3262 −0.745965 −0.372982 0.927838i \(-0.621665\pi\)
−0.372982 + 0.927838i \(0.621665\pi\)
\(480\) 0 0
\(481\) 29.0132 1.32289
\(482\) 0 0
\(483\) 5.32624 0.242352
\(484\) 0 0
\(485\) −15.7984 −0.717367
\(486\) 0 0
\(487\) −12.2705 −0.556030 −0.278015 0.960577i \(-0.589676\pi\)
−0.278015 + 0.960577i \(0.589676\pi\)
\(488\) 0 0
\(489\) 36.3607 1.64429
\(490\) 0 0
\(491\) 21.3050 0.961479 0.480740 0.876863i \(-0.340368\pi\)
0.480740 + 0.876863i \(0.340368\pi\)
\(492\) 0 0
\(493\) 1.38197 0.0622406
\(494\) 0 0
\(495\) −0.472136 −0.0212209
\(496\) 0 0
\(497\) −19.0557 −0.854766
\(498\) 0 0
\(499\) −17.3262 −0.775629 −0.387814 0.921737i \(-0.626770\pi\)
−0.387814 + 0.921737i \(0.626770\pi\)
\(500\) 0 0
\(501\) −10.7082 −0.478407
\(502\) 0 0
\(503\) −20.0000 −0.891756 −0.445878 0.895094i \(-0.647108\pi\)
−0.445878 + 0.895094i \(0.647108\pi\)
\(504\) 0 0
\(505\) −4.09017 −0.182010
\(506\) 0 0
\(507\) −38.9787 −1.73111
\(508\) 0 0
\(509\) −9.70820 −0.430309 −0.215154 0.976580i \(-0.569025\pi\)
−0.215154 + 0.976580i \(0.569025\pi\)
\(510\) 0 0
\(511\) −50.4508 −2.23181
\(512\) 0 0
\(513\) 39.5967 1.74824
\(514\) 0 0
\(515\) 8.94427 0.394132
\(516\) 0 0
\(517\) 9.88854 0.434898
\(518\) 0 0
\(519\) 32.0344 1.40616
\(520\) 0 0
\(521\) −19.6738 −0.861923 −0.430962 0.902370i \(-0.641826\pi\)
−0.430962 + 0.902370i \(0.641826\pi\)
\(522\) 0 0
\(523\) 12.1803 0.532609 0.266305 0.963889i \(-0.414197\pi\)
0.266305 + 0.963889i \(0.414197\pi\)
\(524\) 0 0
\(525\) 6.23607 0.272164
\(526\) 0 0
\(527\) 0.854102 0.0372053
\(528\) 0 0
\(529\) −22.2705 −0.968283
\(530\) 0 0
\(531\) 4.43769 0.192580
\(532\) 0 0
\(533\) −59.1246 −2.56097
\(534\) 0 0
\(535\) 13.7082 0.592657
\(536\) 0 0
\(537\) −16.3262 −0.704529
\(538\) 0 0
\(539\) 9.70820 0.418162
\(540\) 0 0
\(541\) 24.0344 1.03332 0.516661 0.856190i \(-0.327175\pi\)
0.516661 + 0.856190i \(0.327175\pi\)
\(542\) 0 0
\(543\) 22.1803 0.951849
\(544\) 0 0
\(545\) 1.70820 0.0731714
\(546\) 0 0
\(547\) −21.1246 −0.903223 −0.451612 0.892215i \(-0.649151\pi\)
−0.451612 + 0.892215i \(0.649151\pi\)
\(548\) 0 0
\(549\) 3.38197 0.144339
\(550\) 0 0
\(551\) −7.23607 −0.308267
\(552\) 0 0
\(553\) −54.3050 −2.30928
\(554\) 0 0
\(555\) 7.70820 0.327195
\(556\) 0 0
\(557\) −30.8541 −1.30733 −0.653665 0.756784i \(-0.726770\pi\)
−0.653665 + 0.756784i \(0.726770\pi\)
\(558\) 0 0
\(559\) 32.7771 1.38632
\(560\) 0 0
\(561\) 2.76393 0.116693
\(562\) 0 0
\(563\) −45.3951 −1.91318 −0.956588 0.291443i \(-0.905865\pi\)
−0.956588 + 0.291443i \(0.905865\pi\)
\(564\) 0 0
\(565\) −15.7984 −0.664643
\(566\) 0 0
\(567\) 29.7082 1.24763
\(568\) 0 0
\(569\) −12.3607 −0.518187 −0.259093 0.965852i \(-0.583424\pi\)
−0.259093 + 0.965852i \(0.583424\pi\)
\(570\) 0 0
\(571\) −26.8541 −1.12381 −0.561905 0.827202i \(-0.689931\pi\)
−0.561905 + 0.827202i \(0.689931\pi\)
\(572\) 0 0
\(573\) −22.8885 −0.956183
\(574\) 0 0
\(575\) 0.854102 0.0356185
\(576\) 0 0
\(577\) −29.7426 −1.23820 −0.619101 0.785311i \(-0.712503\pi\)
−0.619101 + 0.785311i \(0.712503\pi\)
\(578\) 0 0
\(579\) −11.0902 −0.460892
\(580\) 0 0
\(581\) −8.83282 −0.366447
\(582\) 0 0
\(583\) 7.81966 0.323857
\(584\) 0 0
\(585\) 2.32624 0.0961781
\(586\) 0 0
\(587\) 44.8328 1.85045 0.925224 0.379421i \(-0.123877\pi\)
0.925224 + 0.379421i \(0.123877\pi\)
\(588\) 0 0
\(589\) −4.47214 −0.184271
\(590\) 0 0
\(591\) 19.6525 0.808395
\(592\) 0 0
\(593\) 24.6525 1.01236 0.506178 0.862429i \(-0.331058\pi\)
0.506178 + 0.862429i \(0.331058\pi\)
\(594\) 0 0
\(595\) 5.32624 0.218354
\(596\) 0 0
\(597\) −21.4164 −0.876515
\(598\) 0 0
\(599\) 16.3262 0.667072 0.333536 0.942737i \(-0.391758\pi\)
0.333536 + 0.942737i \(0.391758\pi\)
\(600\) 0 0
\(601\) −46.5410 −1.89845 −0.949224 0.314601i \(-0.898129\pi\)
−0.949224 + 0.314601i \(0.898129\pi\)
\(602\) 0 0
\(603\) −2.47214 −0.100673
\(604\) 0 0
\(605\) −9.47214 −0.385097
\(606\) 0 0
\(607\) −6.47214 −0.262696 −0.131348 0.991336i \(-0.541931\pi\)
−0.131348 + 0.991336i \(0.541931\pi\)
\(608\) 0 0
\(609\) −6.23607 −0.252698
\(610\) 0 0
\(611\) −48.7214 −1.97106
\(612\) 0 0
\(613\) 9.74265 0.393502 0.196751 0.980454i \(-0.436961\pi\)
0.196751 + 0.980454i \(0.436961\pi\)
\(614\) 0 0
\(615\) −15.7082 −0.633416
\(616\) 0 0
\(617\) −7.20163 −0.289927 −0.144963 0.989437i \(-0.546306\pi\)
−0.144963 + 0.989437i \(0.546306\pi\)
\(618\) 0 0
\(619\) −29.7771 −1.19684 −0.598421 0.801182i \(-0.704205\pi\)
−0.598421 + 0.801182i \(0.704205\pi\)
\(620\) 0 0
\(621\) 4.67376 0.187552
\(622\) 0 0
\(623\) −45.1246 −1.80788
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −14.4721 −0.577961
\(628\) 0 0
\(629\) 6.58359 0.262505
\(630\) 0 0
\(631\) 6.36068 0.253215 0.126607 0.991953i \(-0.459591\pi\)
0.126607 + 0.991953i \(0.459591\pi\)
\(632\) 0 0
\(633\) −17.4164 −0.692240
\(634\) 0 0
\(635\) −16.9443 −0.672413
\(636\) 0 0
\(637\) −47.8328 −1.89521
\(638\) 0 0
\(639\) −1.88854 −0.0747096
\(640\) 0 0
\(641\) −43.2361 −1.70772 −0.853861 0.520501i \(-0.825745\pi\)
−0.853861 + 0.520501i \(0.825745\pi\)
\(642\) 0 0
\(643\) −12.2918 −0.484741 −0.242371 0.970184i \(-0.577925\pi\)
−0.242371 + 0.970184i \(0.577925\pi\)
\(644\) 0 0
\(645\) 8.70820 0.342885
\(646\) 0 0
\(647\) 25.3050 0.994840 0.497420 0.867510i \(-0.334281\pi\)
0.497420 + 0.867510i \(0.334281\pi\)
\(648\) 0 0
\(649\) −14.3607 −0.563706
\(650\) 0 0
\(651\) −3.85410 −0.151054
\(652\) 0 0
\(653\) 9.59675 0.375550 0.187775 0.982212i \(-0.439872\pi\)
0.187775 + 0.982212i \(0.439872\pi\)
\(654\) 0 0
\(655\) −1.05573 −0.0412507
\(656\) 0 0
\(657\) −5.00000 −0.195069
\(658\) 0 0
\(659\) −38.1803 −1.48729 −0.743647 0.668572i \(-0.766906\pi\)
−0.743647 + 0.668572i \(0.766906\pi\)
\(660\) 0 0
\(661\) 21.5967 0.840016 0.420008 0.907520i \(-0.362027\pi\)
0.420008 + 0.907520i \(0.362027\pi\)
\(662\) 0 0
\(663\) −13.6180 −0.528881
\(664\) 0 0
\(665\) −27.8885 −1.08147
\(666\) 0 0
\(667\) −0.854102 −0.0330710
\(668\) 0 0
\(669\) 35.5623 1.37492
\(670\) 0 0
\(671\) −10.9443 −0.422499
\(672\) 0 0
\(673\) 23.2361 0.895685 0.447842 0.894113i \(-0.352193\pi\)
0.447842 + 0.894113i \(0.352193\pi\)
\(674\) 0 0
\(675\) 5.47214 0.210623
\(676\) 0 0
\(677\) −21.8885 −0.841245 −0.420623 0.907236i \(-0.638188\pi\)
−0.420623 + 0.907236i \(0.638188\pi\)
\(678\) 0 0
\(679\) 60.8885 2.33669
\(680\) 0 0
\(681\) −3.23607 −0.124006
\(682\) 0 0
\(683\) 46.6525 1.78511 0.892554 0.450941i \(-0.148912\pi\)
0.892554 + 0.450941i \(0.148912\pi\)
\(684\) 0 0
\(685\) −6.85410 −0.261882
\(686\) 0 0
\(687\) −11.4721 −0.437689
\(688\) 0 0
\(689\) −38.5279 −1.46779
\(690\) 0 0
\(691\) −16.0344 −0.609979 −0.304989 0.952356i \(-0.598653\pi\)
−0.304989 + 0.952356i \(0.598653\pi\)
\(692\) 0 0
\(693\) 1.81966 0.0691232
\(694\) 0 0
\(695\) 3.38197 0.128285
\(696\) 0 0
\(697\) −13.4164 −0.508183
\(698\) 0 0
\(699\) −12.1803 −0.460703
\(700\) 0 0
\(701\) −27.1246 −1.02448 −0.512241 0.858842i \(-0.671185\pi\)
−0.512241 + 0.858842i \(0.671185\pi\)
\(702\) 0 0
\(703\) −34.4721 −1.30014
\(704\) 0 0
\(705\) −12.9443 −0.487509
\(706\) 0 0
\(707\) 15.7639 0.592864
\(708\) 0 0
\(709\) 31.7082 1.19083 0.595413 0.803420i \(-0.296988\pi\)
0.595413 + 0.803420i \(0.296988\pi\)
\(710\) 0 0
\(711\) −5.38197 −0.201839
\(712\) 0 0
\(713\) −0.527864 −0.0197687
\(714\) 0 0
\(715\) −7.52786 −0.281526
\(716\) 0 0
\(717\) 33.1246 1.23706
\(718\) 0 0
\(719\) 10.6525 0.397270 0.198635 0.980074i \(-0.436349\pi\)
0.198635 + 0.980074i \(0.436349\pi\)
\(720\) 0 0
\(721\) −34.4721 −1.28381
\(722\) 0 0
\(723\) 41.7426 1.55243
\(724\) 0 0
\(725\) −1.00000 −0.0371391
\(726\) 0 0
\(727\) −49.2361 −1.82606 −0.913032 0.407887i \(-0.866266\pi\)
−0.913032 + 0.407887i \(0.866266\pi\)
\(728\) 0 0
\(729\) 29.5066 1.09284
\(730\) 0 0
\(731\) 7.43769 0.275093
\(732\) 0 0
\(733\) 35.7771 1.32146 0.660728 0.750625i \(-0.270247\pi\)
0.660728 + 0.750625i \(0.270247\pi\)
\(734\) 0 0
\(735\) −12.7082 −0.468749
\(736\) 0 0
\(737\) 8.00000 0.294684
\(738\) 0 0
\(739\) 23.4164 0.861386 0.430693 0.902498i \(-0.358269\pi\)
0.430693 + 0.902498i \(0.358269\pi\)
\(740\) 0 0
\(741\) 71.3050 2.61945
\(742\) 0 0
\(743\) −19.4164 −0.712319 −0.356159 0.934425i \(-0.615914\pi\)
−0.356159 + 0.934425i \(0.615914\pi\)
\(744\) 0 0
\(745\) 6.18034 0.226430
\(746\) 0 0
\(747\) −0.875388 −0.0320288
\(748\) 0 0
\(749\) −52.8328 −1.93047
\(750\) 0 0
\(751\) 40.0000 1.45962 0.729810 0.683650i \(-0.239608\pi\)
0.729810 + 0.683650i \(0.239608\pi\)
\(752\) 0 0
\(753\) −6.76393 −0.246491
\(754\) 0 0
\(755\) 3.23607 0.117773
\(756\) 0 0
\(757\) 0.180340 0.00655456 0.00327728 0.999995i \(-0.498957\pi\)
0.00327728 + 0.999995i \(0.498957\pi\)
\(758\) 0 0
\(759\) −1.70820 −0.0620039
\(760\) 0 0
\(761\) 4.03444 0.146248 0.0731242 0.997323i \(-0.476703\pi\)
0.0731242 + 0.997323i \(0.476703\pi\)
\(762\) 0 0
\(763\) −6.58359 −0.238342
\(764\) 0 0
\(765\) 0.527864 0.0190850
\(766\) 0 0
\(767\) 70.7558 2.55484
\(768\) 0 0
\(769\) 19.3475 0.697690 0.348845 0.937181i \(-0.386574\pi\)
0.348845 + 0.937181i \(0.386574\pi\)
\(770\) 0 0
\(771\) −48.6525 −1.75218
\(772\) 0 0
\(773\) −0.832816 −0.0299543 −0.0149771 0.999888i \(-0.504768\pi\)
−0.0149771 + 0.999888i \(0.504768\pi\)
\(774\) 0 0
\(775\) −0.618034 −0.0222004
\(776\) 0 0
\(777\) −29.7082 −1.06578
\(778\) 0 0
\(779\) 70.2492 2.51694
\(780\) 0 0
\(781\) 6.11146 0.218685
\(782\) 0 0
\(783\) −5.47214 −0.195558
\(784\) 0 0
\(785\) −22.9443 −0.818916
\(786\) 0 0
\(787\) −13.3475 −0.475788 −0.237894 0.971291i \(-0.576457\pi\)
−0.237894 + 0.971291i \(0.576457\pi\)
\(788\) 0 0
\(789\) −42.8328 −1.52489
\(790\) 0 0
\(791\) 60.8885 2.16495
\(792\) 0 0
\(793\) 53.9230 1.91486
\(794\) 0 0
\(795\) −10.2361 −0.363036
\(796\) 0 0
\(797\) 22.8328 0.808780 0.404390 0.914587i \(-0.367484\pi\)
0.404390 + 0.914587i \(0.367484\pi\)
\(798\) 0 0
\(799\) −11.0557 −0.391124
\(800\) 0 0
\(801\) −4.47214 −0.158015
\(802\) 0 0
\(803\) 16.1803 0.570992
\(804\) 0 0
\(805\) −3.29180 −0.116021
\(806\) 0 0
\(807\) 10.4164 0.366675
\(808\) 0 0
\(809\) −15.4164 −0.542012 −0.271006 0.962578i \(-0.587356\pi\)
−0.271006 + 0.962578i \(0.587356\pi\)
\(810\) 0 0
\(811\) −16.3262 −0.573292 −0.286646 0.958037i \(-0.592540\pi\)
−0.286646 + 0.958037i \(0.592540\pi\)
\(812\) 0 0
\(813\) 18.4721 0.647846
\(814\) 0 0
\(815\) −22.4721 −0.787165
\(816\) 0 0
\(817\) −38.9443 −1.36249
\(818\) 0 0
\(819\) −8.96556 −0.313282
\(820\) 0 0
\(821\) −24.0689 −0.840010 −0.420005 0.907522i \(-0.637972\pi\)
−0.420005 + 0.907522i \(0.637972\pi\)
\(822\) 0 0
\(823\) −25.7771 −0.898533 −0.449266 0.893398i \(-0.648315\pi\)
−0.449266 + 0.893398i \(0.648315\pi\)
\(824\) 0 0
\(825\) −2.00000 −0.0696311
\(826\) 0 0
\(827\) −13.0902 −0.455190 −0.227595 0.973756i \(-0.573086\pi\)
−0.227595 + 0.973756i \(0.573086\pi\)
\(828\) 0 0
\(829\) 21.2016 0.736363 0.368181 0.929754i \(-0.379981\pi\)
0.368181 + 0.929754i \(0.379981\pi\)
\(830\) 0 0
\(831\) 48.5410 1.68387
\(832\) 0 0
\(833\) −10.8541 −0.376072
\(834\) 0 0
\(835\) 6.61803 0.229027
\(836\) 0 0
\(837\) −3.38197 −0.116898
\(838\) 0 0
\(839\) −16.3607 −0.564833 −0.282417 0.959292i \(-0.591136\pi\)
−0.282417 + 0.959292i \(0.591136\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 0 0
\(843\) −3.00000 −0.103325
\(844\) 0 0
\(845\) 24.0902 0.828727
\(846\) 0 0
\(847\) 36.5066 1.25438
\(848\) 0 0
\(849\) 0.291796 0.0100144
\(850\) 0 0
\(851\) −4.06888 −0.139480
\(852\) 0 0
\(853\) −24.1803 −0.827919 −0.413960 0.910295i \(-0.635855\pi\)
−0.413960 + 0.910295i \(0.635855\pi\)
\(854\) 0 0
\(855\) −2.76393 −0.0945245
\(856\) 0 0
\(857\) 20.2918 0.693155 0.346577 0.938021i \(-0.387344\pi\)
0.346577 + 0.938021i \(0.387344\pi\)
\(858\) 0 0
\(859\) 14.6525 0.499936 0.249968 0.968254i \(-0.419580\pi\)
0.249968 + 0.968254i \(0.419580\pi\)
\(860\) 0 0
\(861\) 60.5410 2.06323
\(862\) 0 0
\(863\) 25.0344 0.852182 0.426091 0.904680i \(-0.359890\pi\)
0.426091 + 0.904680i \(0.359890\pi\)
\(864\) 0 0
\(865\) −19.7984 −0.673165
\(866\) 0 0
\(867\) 24.4164 0.829225
\(868\) 0 0
\(869\) 17.4164 0.590811
\(870\) 0 0
\(871\) −39.4164 −1.33557
\(872\) 0 0
\(873\) 6.03444 0.204235
\(874\) 0 0
\(875\) −3.85410 −0.130292
\(876\) 0 0
\(877\) −48.3820 −1.63374 −0.816871 0.576820i \(-0.804293\pi\)
−0.816871 + 0.576820i \(0.804293\pi\)
\(878\) 0 0
\(879\) −13.2361 −0.446441
\(880\) 0 0
\(881\) −12.1803 −0.410366 −0.205183 0.978724i \(-0.565779\pi\)
−0.205183 + 0.978724i \(0.565779\pi\)
\(882\) 0 0
\(883\) −27.5967 −0.928705 −0.464352 0.885651i \(-0.653713\pi\)
−0.464352 + 0.885651i \(0.653713\pi\)
\(884\) 0 0
\(885\) 18.7984 0.631900
\(886\) 0 0
\(887\) −4.58359 −0.153902 −0.0769510 0.997035i \(-0.524518\pi\)
−0.0769510 + 0.997035i \(0.524518\pi\)
\(888\) 0 0
\(889\) 65.3050 2.19026
\(890\) 0 0
\(891\) −9.52786 −0.319195
\(892\) 0 0
\(893\) 57.8885 1.93717
\(894\) 0 0
\(895\) 10.0902 0.337277
\(896\) 0 0
\(897\) 8.41641 0.281016
\(898\) 0 0
\(899\) 0.618034 0.0206126
\(900\) 0 0
\(901\) −8.74265 −0.291260
\(902\) 0 0
\(903\) −33.5623 −1.11688
\(904\) 0 0
\(905\) −13.7082 −0.455676
\(906\) 0 0
\(907\) −37.0902 −1.23156 −0.615779 0.787919i \(-0.711159\pi\)
−0.615779 + 0.787919i \(0.711159\pi\)
\(908\) 0 0
\(909\) 1.56231 0.0518184
\(910\) 0 0
\(911\) −5.72949 −0.189826 −0.0949132 0.995486i \(-0.530257\pi\)
−0.0949132 + 0.995486i \(0.530257\pi\)
\(912\) 0 0
\(913\) 2.83282 0.0937525
\(914\) 0 0
\(915\) 14.3262 0.473611
\(916\) 0 0
\(917\) 4.06888 0.134366
\(918\) 0 0
\(919\) −17.5279 −0.578191 −0.289095 0.957300i \(-0.593354\pi\)
−0.289095 + 0.957300i \(0.593354\pi\)
\(920\) 0 0
\(921\) 29.8885 0.984861
\(922\) 0 0
\(923\) −30.1115 −0.991131
\(924\) 0 0
\(925\) −4.76393 −0.156637
\(926\) 0 0
\(927\) −3.41641 −0.112210
\(928\) 0 0
\(929\) 11.4508 0.375690 0.187845 0.982199i \(-0.439850\pi\)
0.187845 + 0.982199i \(0.439850\pi\)
\(930\) 0 0
\(931\) 56.8328 1.86262
\(932\) 0 0
\(933\) −15.0902 −0.494030
\(934\) 0 0
\(935\) −1.70820 −0.0558642
\(936\) 0 0
\(937\) 2.87539 0.0939348 0.0469674 0.998896i \(-0.485044\pi\)
0.0469674 + 0.998896i \(0.485044\pi\)
\(938\) 0 0
\(939\) −51.5967 −1.68380
\(940\) 0 0
\(941\) 12.3607 0.402947 0.201473 0.979494i \(-0.435427\pi\)
0.201473 + 0.979494i \(0.435427\pi\)
\(942\) 0 0
\(943\) 8.29180 0.270018
\(944\) 0 0
\(945\) −21.0902 −0.686063
\(946\) 0 0
\(947\) 43.9098 1.42688 0.713439 0.700717i \(-0.247137\pi\)
0.713439 + 0.700717i \(0.247137\pi\)
\(948\) 0 0
\(949\) −79.7214 −2.58786
\(950\) 0 0
\(951\) −14.9443 −0.484601
\(952\) 0 0
\(953\) −40.8328 −1.32270 −0.661352 0.750075i \(-0.730017\pi\)
−0.661352 + 0.750075i \(0.730017\pi\)
\(954\) 0 0
\(955\) 14.1459 0.457751
\(956\) 0 0
\(957\) 2.00000 0.0646508
\(958\) 0 0
\(959\) 26.4164 0.853030
\(960\) 0 0
\(961\) −30.6180 −0.987679
\(962\) 0 0
\(963\) −5.23607 −0.168730
\(964\) 0 0
\(965\) 6.85410 0.220641
\(966\) 0 0
\(967\) −25.5967 −0.823136 −0.411568 0.911379i \(-0.635019\pi\)
−0.411568 + 0.911379i \(0.635019\pi\)
\(968\) 0 0
\(969\) 16.1803 0.519787
\(970\) 0 0
\(971\) −6.06888 −0.194760 −0.0973799 0.995247i \(-0.531046\pi\)
−0.0973799 + 0.995247i \(0.531046\pi\)
\(972\) 0 0
\(973\) −13.0344 −0.417865
\(974\) 0 0
\(975\) 9.85410 0.315584
\(976\) 0 0
\(977\) −20.6525 −0.660731 −0.330366 0.943853i \(-0.607172\pi\)
−0.330366 + 0.943853i \(0.607172\pi\)
\(978\) 0 0
\(979\) 14.4721 0.462531
\(980\) 0 0
\(981\) −0.652476 −0.0208320
\(982\) 0 0
\(983\) 30.9443 0.986969 0.493484 0.869755i \(-0.335723\pi\)
0.493484 + 0.869755i \(0.335723\pi\)
\(984\) 0 0
\(985\) −12.1459 −0.387000
\(986\) 0 0
\(987\) 49.8885 1.58797
\(988\) 0 0
\(989\) −4.59675 −0.146168
\(990\) 0 0
\(991\) −48.0689 −1.52696 −0.763479 0.645832i \(-0.776510\pi\)
−0.763479 + 0.645832i \(0.776510\pi\)
\(992\) 0 0
\(993\) 38.3607 1.21734
\(994\) 0 0
\(995\) 13.2361 0.419612
\(996\) 0 0
\(997\) −21.8197 −0.691036 −0.345518 0.938412i \(-0.612297\pi\)
−0.345518 + 0.938412i \(0.612297\pi\)
\(998\) 0 0
\(999\) −26.0689 −0.824783
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9280.2.a.y.1.1 2
4.3 odd 2 9280.2.a.bd.1.2 2
8.3 odd 2 4640.2.a.g.1.1 2
8.5 even 2 4640.2.a.i.1.2 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4640.2.a.g.1.1 2 8.3 odd 2
4640.2.a.i.1.2 yes 2 8.5 even 2
9280.2.a.y.1.1 2 1.1 even 1 trivial
9280.2.a.bd.1.2 2 4.3 odd 2