Properties

Label 936.1.bs.a.259.3
Level $936$
Weight $1$
Character 936.259
Analytic conductor $0.467$
Analytic rank $0$
Dimension $6$
Projective image $D_{9}$
CM discriminant -104
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [936,1,Mod(259,936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(936, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 4, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("936.259");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 936.bs (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.467124851824\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{9}\)
Projective field: Galois closure of 9.1.62171080298496.1

Embedding invariants

Embedding label 259.3
Root \(-0.766044 - 0.642788i\) of defining polynomial
Character \(\chi\) \(=\) 936.259
Dual form 936.1.bs.a.571.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(0.766044 - 0.642788i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-0.766044 - 1.32683i) q^{5} +(0.173648 + 0.984808i) q^{6} +(-0.173648 + 0.300767i) q^{7} +1.00000 q^{8} +(0.173648 - 0.984808i) q^{9} +1.53209 q^{10} +(-0.939693 - 0.342020i) q^{12} +(-0.500000 - 0.866025i) q^{13} +(-0.173648 - 0.300767i) q^{14} +(-1.43969 - 0.524005i) q^{15} +(-0.500000 + 0.866025i) q^{16} -1.87939 q^{17} +(0.766044 + 0.642788i) q^{18} +(-0.766044 + 1.32683i) q^{20} +(0.0603074 + 0.342020i) q^{21} +(0.766044 - 0.642788i) q^{24} +(-0.673648 + 1.16679i) q^{25} +1.00000 q^{26} +(-0.500000 - 0.866025i) q^{27} +0.347296 q^{28} +(1.17365 - 0.984808i) q^{30} +(0.500000 + 0.866025i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(0.939693 - 1.62760i) q^{34} +0.532089 q^{35} +(-0.939693 + 0.342020i) q^{36} +1.53209 q^{37} +(-0.939693 - 0.342020i) q^{39} +(-0.766044 - 1.32683i) q^{40} +(-0.326352 - 0.118782i) q^{42} +(0.939693 - 1.62760i) q^{43} +(-1.43969 + 0.524005i) q^{45} +(0.939693 - 1.62760i) q^{47} +(0.173648 + 0.984808i) q^{48} +(0.439693 + 0.761570i) q^{49} +(-0.673648 - 1.16679i) q^{50} +(-1.43969 + 1.20805i) q^{51} +(-0.500000 + 0.866025i) q^{52} +1.00000 q^{54} +(-0.173648 + 0.300767i) q^{56} +(0.266044 + 1.50881i) q^{60} -1.00000 q^{62} +(0.266044 + 0.223238i) q^{63} +1.00000 q^{64} +(-0.766044 + 1.32683i) q^{65} +(0.939693 + 1.62760i) q^{68} +(-0.266044 + 0.460802i) q^{70} +0.347296 q^{71} +(0.173648 - 0.984808i) q^{72} +(-0.766044 + 1.32683i) q^{74} +(0.233956 + 1.32683i) q^{75} +(0.766044 - 0.642788i) q^{78} +1.53209 q^{80} +(-0.939693 - 0.342020i) q^{81} +(0.266044 - 0.223238i) q^{84} +(1.43969 + 2.49362i) q^{85} +(0.939693 + 1.62760i) q^{86} +(0.266044 - 1.50881i) q^{90} +0.347296 q^{91} +(0.939693 + 0.342020i) q^{93} +(0.939693 + 1.62760i) q^{94} +(-0.939693 - 0.342020i) q^{96} -0.879385 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{2} - 3 q^{4} + 6 q^{8} - 3 q^{13} - 3 q^{15} - 3 q^{16} + 6 q^{21} - 3 q^{25} + 6 q^{26} - 3 q^{27} + 6 q^{30} + 3 q^{31} - 3 q^{32} - 6 q^{35} - 3 q^{42} - 3 q^{45} - 3 q^{49} - 3 q^{50} - 3 q^{51}+ \cdots + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(3\) 0.766044 0.642788i 0.766044 0.642788i
\(4\) −0.500000 0.866025i −0.500000 0.866025i
\(5\) −0.766044 1.32683i −0.766044 1.32683i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(6\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(7\) −0.173648 + 0.300767i −0.173648 + 0.300767i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(8\) 1.00000 1.00000
\(9\) 0.173648 0.984808i 0.173648 0.984808i
\(10\) 1.53209 1.53209
\(11\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(12\) −0.939693 0.342020i −0.939693 0.342020i
\(13\) −0.500000 0.866025i −0.500000 0.866025i
\(14\) −0.173648 0.300767i −0.173648 0.300767i
\(15\) −1.43969 0.524005i −1.43969 0.524005i
\(16\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(17\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(18\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(21\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i
\(22\) 0 0
\(23\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(24\) 0.766044 0.642788i 0.766044 0.642788i
\(25\) −0.673648 + 1.16679i −0.673648 + 1.16679i
\(26\) 1.00000 1.00000
\(27\) −0.500000 0.866025i −0.500000 0.866025i
\(28\) 0.347296 0.347296
\(29\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(30\) 1.17365 0.984808i 1.17365 0.984808i
\(31\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(32\) −0.500000 0.866025i −0.500000 0.866025i
\(33\) 0 0
\(34\) 0.939693 1.62760i 0.939693 1.62760i
\(35\) 0.532089 0.532089
\(36\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(37\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(38\) 0 0
\(39\) −0.939693 0.342020i −0.939693 0.342020i
\(40\) −0.766044 1.32683i −0.766044 1.32683i
\(41\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(42\) −0.326352 0.118782i −0.326352 0.118782i
\(43\) 0.939693 1.62760i 0.939693 1.62760i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(44\) 0 0
\(45\) −1.43969 + 0.524005i −1.43969 + 0.524005i
\(46\) 0 0
\(47\) 0.939693 1.62760i 0.939693 1.62760i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(48\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(49\) 0.439693 + 0.761570i 0.439693 + 0.761570i
\(50\) −0.673648 1.16679i −0.673648 1.16679i
\(51\) −1.43969 + 1.20805i −1.43969 + 1.20805i
\(52\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 1.00000 1.00000
\(55\) 0 0
\(56\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(60\) 0.266044 + 1.50881i 0.266044 + 1.50881i
\(61\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(62\) −1.00000 −1.00000
\(63\) 0.266044 + 0.223238i 0.266044 + 0.223238i
\(64\) 1.00000 1.00000
\(65\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(66\) 0 0
\(67\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(68\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(69\) 0 0
\(70\) −0.266044 + 0.460802i −0.266044 + 0.460802i
\(71\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(72\) 0.173648 0.984808i 0.173648 0.984808i
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(75\) 0.233956 + 1.32683i 0.233956 + 1.32683i
\(76\) 0 0
\(77\) 0 0
\(78\) 0.766044 0.642788i 0.766044 0.642788i
\(79\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(80\) 1.53209 1.53209
\(81\) −0.939693 0.342020i −0.939693 0.342020i
\(82\) 0 0
\(83\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(84\) 0.266044 0.223238i 0.266044 0.223238i
\(85\) 1.43969 + 2.49362i 1.43969 + 2.49362i
\(86\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0.266044 1.50881i 0.266044 1.50881i
\(91\) 0.347296 0.347296
\(92\) 0 0
\(93\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(94\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(95\) 0 0
\(96\) −0.939693 0.342020i −0.939693 0.342020i
\(97\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(98\) −0.879385 −0.879385
\(99\) 0 0
\(100\) 1.34730 1.34730
\(101\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(102\) −0.326352 1.85083i −0.326352 1.85083i
\(103\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(104\) −0.500000 0.866025i −0.500000 0.866025i
\(105\) 0.407604 0.342020i 0.407604 0.342020i
\(106\) 0 0
\(107\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(108\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(109\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(110\) 0 0
\(111\) 1.17365 0.984808i 1.17365 0.984808i
\(112\) −0.173648 0.300767i −0.173648 0.300767i
\(113\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(118\) 0 0
\(119\) 0.326352 0.565258i 0.326352 0.565258i
\(120\) −1.43969 0.524005i −1.43969 0.524005i
\(121\) −0.500000 0.866025i −0.500000 0.866025i
\(122\) 0 0
\(123\) 0 0
\(124\) 0.500000 0.866025i 0.500000 0.866025i
\(125\) 0.532089 0.532089
\(126\) −0.326352 + 0.118782i −0.326352 + 0.118782i
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(129\) −0.326352 1.85083i −0.326352 1.85083i
\(130\) −0.766044 1.32683i −0.766044 1.32683i
\(131\) 0.939693 + 1.62760i 0.939693 + 1.62760i 0.766044 + 0.642788i \(0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(136\) −1.87939 −1.87939
\(137\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(138\) 0 0
\(139\) −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i \(-0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(140\) −0.266044 0.460802i −0.266044 0.460802i
\(141\) −0.326352 1.85083i −0.326352 1.85083i
\(142\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(143\) 0 0
\(144\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(145\) 0 0
\(146\) 0 0
\(147\) 0.826352 + 0.300767i 0.826352 + 0.300767i
\(148\) −0.766044 1.32683i −0.766044 1.32683i
\(149\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(150\) −1.26604 0.460802i −1.26604 0.460802i
\(151\) −0.766044 + 1.32683i −0.766044 + 1.32683i 0.173648 + 0.984808i \(0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(152\) 0 0
\(153\) −0.326352 + 1.85083i −0.326352 + 1.85083i
\(154\) 0 0
\(155\) 0.766044 1.32683i 0.766044 1.32683i
\(156\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(157\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(161\) 0 0
\(162\) 0.766044 0.642788i 0.766044 0.642788i
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(168\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i
\(169\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(170\) −2.87939 −2.87939
\(171\) 0 0
\(172\) −1.87939 −1.87939
\(173\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(174\) 0 0
\(175\) −0.233956 0.405223i −0.233956 0.405223i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(180\) 1.17365 + 0.984808i 1.17365 + 0.984808i
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(183\) 0 0
\(184\) 0 0
\(185\) −1.17365 2.03282i −1.17365 2.03282i
\(186\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(187\) 0 0
\(188\) −1.87939 −1.87939
\(189\) 0.347296 0.347296
\(190\) 0 0
\(191\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(192\) 0.766044 0.642788i 0.766044 0.642788i
\(193\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(194\) 0 0
\(195\) 0.266044 + 1.50881i 0.266044 + 1.50881i
\(196\) 0.439693 0.761570i 0.439693 0.761570i
\(197\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) −0.673648 + 1.16679i −0.673648 + 1.16679i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 1.76604 + 0.642788i 1.76604 + 0.642788i
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 1.00000 1.00000
\(209\) 0 0
\(210\) 0.0923963 + 0.524005i 0.0923963 + 0.524005i
\(211\) −0.766044 1.32683i −0.766044 1.32683i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(212\) 0 0
\(213\) 0.266044 0.223238i 0.266044 0.223238i
\(214\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(215\) −2.87939 −2.87939
\(216\) −0.500000 0.866025i −0.500000 0.866025i
\(217\) −0.347296 −0.347296
\(218\) 0.939693 1.62760i 0.939693 1.62760i
\(219\) 0 0
\(220\) 0 0
\(221\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(222\) 0.266044 + 1.50881i 0.266044 + 1.50881i
\(223\) 0.939693 1.62760i 0.939693 1.62760i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(224\) 0.347296 0.347296
\(225\) 1.03209 + 0.866025i 1.03209 + 0.866025i
\(226\) −1.00000 −1.00000
\(227\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(228\) 0 0
\(229\) −0.766044 1.32683i −0.766044 1.32683i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(234\) 0.173648 0.984808i 0.173648 0.984808i
\(235\) −2.87939 −2.87939
\(236\) 0 0
\(237\) 0 0
\(238\) 0.326352 + 0.565258i 0.326352 + 0.565258i
\(239\) 0.939693 + 1.62760i 0.939693 + 1.62760i 0.766044 + 0.642788i \(0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(240\) 1.17365 0.984808i 1.17365 0.984808i
\(241\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(242\) 1.00000 1.00000
\(243\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(244\) 0 0
\(245\) 0.673648 1.16679i 0.673648 1.16679i
\(246\) 0 0
\(247\) 0 0
\(248\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(249\) 0 0
\(250\) −0.266044 + 0.460802i −0.266044 + 0.460802i
\(251\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(252\) 0.0603074 0.342020i 0.0603074 0.342020i
\(253\) 0 0
\(254\) 0 0
\(255\) 2.70574 + 0.984808i 2.70574 + 0.984808i
\(256\) −0.500000 0.866025i −0.500000 0.866025i
\(257\) −0.766044 1.32683i −0.766044 1.32683i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(258\) 1.76604 + 0.642788i 1.76604 + 0.642788i
\(259\) −0.266044 + 0.460802i −0.266044 + 0.460802i
\(260\) 1.53209 1.53209
\(261\) 0 0
\(262\) −1.87939 −1.87939
\(263\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) −0.766044 1.32683i −0.766044 1.32683i
\(271\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(272\) 0.939693 1.62760i 0.939693 1.62760i
\(273\) 0.266044 0.223238i 0.266044 0.223238i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(278\) 0.347296 0.347296
\(279\) 0.939693 0.342020i 0.939693 0.342020i
\(280\) 0.532089 0.532089
\(281\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(282\) 1.76604 + 0.642788i 1.76604 + 0.642788i
\(283\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(284\) −0.173648 0.300767i −0.173648 0.300767i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(289\) 2.53209 2.53209
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i \(-0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(294\) −0.673648 + 0.565258i −0.673648 + 0.565258i
\(295\) 0 0
\(296\) 1.53209 1.53209
\(297\) 0 0
\(298\) −1.00000 −1.00000
\(299\) 0 0
\(300\) 1.03209 0.866025i 1.03209 0.866025i
\(301\) 0.326352 + 0.565258i 0.326352 + 0.565258i
\(302\) −0.766044 1.32683i −0.766044 1.32683i
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) −1.43969 1.20805i −1.43969 1.20805i
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0.766044 + 1.32683i 0.766044 + 1.32683i
\(311\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(312\) −0.939693 0.342020i −0.939693 0.342020i
\(313\) −0.766044 + 1.32683i −0.766044 + 1.32683i 0.173648 + 0.984808i \(0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(314\) 0 0
\(315\) 0.0923963 0.524005i 0.0923963 0.524005i
\(316\) 0 0
\(317\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(318\) 0 0
\(319\) 0 0
\(320\) −0.766044 1.32683i −0.766044 1.32683i
\(321\) 1.53209 1.28558i 1.53209 1.28558i
\(322\) 0 0
\(323\) 0 0
\(324\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(325\) 1.34730 1.34730
\(326\) 0 0
\(327\) −1.43969 + 1.20805i −1.43969 + 1.20805i
\(328\) 0 0
\(329\) 0.326352 + 0.565258i 0.326352 + 0.565258i
\(330\) 0 0
\(331\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(332\) 0 0
\(333\) 0.266044 1.50881i 0.266044 1.50881i
\(334\) −1.00000 −1.00000
\(335\) 0 0
\(336\) −0.326352 0.118782i −0.326352 0.118782i
\(337\) −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i \(-0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(338\) −0.500000 0.866025i −0.500000 0.866025i
\(339\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(340\) 1.43969 2.49362i 1.43969 2.49362i
\(341\) 0 0
\(342\) 0 0
\(343\) −0.652704 −0.652704
\(344\) 0.939693 1.62760i 0.939693 1.62760i
\(345\) 0 0
\(346\) 0 0
\(347\) −0.766044 1.32683i −0.766044 1.32683i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(348\) 0 0
\(349\) −0.766044 + 1.32683i −0.766044 + 1.32683i 0.173648 + 0.984808i \(0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(350\) 0.467911 0.467911
\(351\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(352\) 0 0
\(353\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(354\) 0 0
\(355\) −0.266044 0.460802i −0.266044 0.460802i
\(356\) 0 0
\(357\) −0.113341 0.642788i −0.113341 0.642788i
\(358\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(359\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(360\) −1.43969 + 0.524005i −1.43969 + 0.524005i
\(361\) 1.00000 1.00000
\(362\) 0 0
\(363\) −0.939693 0.342020i −0.939693 0.342020i
\(364\) −0.173648 0.300767i −0.173648 0.300767i
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 2.34730 2.34730
\(371\) 0 0
\(372\) −0.173648 0.984808i −0.173648 0.984808i
\(373\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(374\) 0 0
\(375\) 0.407604 0.342020i 0.407604 0.342020i
\(376\) 0.939693 1.62760i 0.939693 1.62760i
\(377\) 0 0
\(378\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i \(-0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(384\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(385\) 0 0
\(386\) 0 0
\(387\) −1.43969 1.20805i −1.43969 1.20805i
\(388\) 0 0
\(389\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(390\) −1.43969 0.524005i −1.43969 0.524005i
\(391\) 0 0
\(392\) 0.439693 + 0.761570i 0.439693 + 0.761570i
\(393\) 1.76604 + 0.642788i 1.76604 + 0.642788i
\(394\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(395\) 0 0
\(396\) 0 0
\(397\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −0.673648 1.16679i −0.673648 1.16679i
\(401\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(402\) 0 0
\(403\) 0.500000 0.866025i 0.500000 0.866025i
\(404\) 0 0
\(405\) 0.266044 + 1.50881i 0.266044 + 1.50881i
\(406\) 0 0
\(407\) 0 0
\(408\) −1.43969 + 1.20805i −1.43969 + 1.20805i
\(409\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(417\) −0.326352 0.118782i −0.326352 0.118782i
\(418\) 0 0
\(419\) −0.766044 1.32683i −0.766044 1.32683i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(420\) −0.500000 0.181985i −0.500000 0.181985i
\(421\) −0.173648 + 0.300767i −0.173648 + 0.300767i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(422\) 1.53209 1.53209
\(423\) −1.43969 1.20805i −1.43969 1.20805i
\(424\) 0 0
\(425\) 1.26604 2.19285i 1.26604 2.19285i
\(426\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i
\(427\) 0 0
\(428\) −1.00000 1.73205i −1.00000 1.73205i
\(429\) 0 0
\(430\) 1.43969 2.49362i 1.43969 2.49362i
\(431\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(432\) 1.00000 1.00000
\(433\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(434\) 0.173648 0.300767i 0.173648 0.300767i
\(435\) 0 0
\(436\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(440\) 0 0
\(441\) 0.826352 0.300767i 0.826352 0.300767i
\(442\) −1.87939 −1.87939
\(443\) −0.173648 + 0.300767i −0.173648 + 0.300767i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(444\) −1.43969 0.524005i −1.43969 0.524005i
\(445\) 0 0
\(446\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(447\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(448\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) −1.26604 + 0.460802i −1.26604 + 0.460802i
\(451\) 0 0
\(452\) 0.500000 0.866025i 0.500000 0.866025i
\(453\) 0.266044 + 1.50881i 0.266044 + 1.50881i
\(454\) 0 0
\(455\) −0.266044 0.460802i −0.266044 0.460802i
\(456\) 0 0
\(457\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(458\) 1.53209 1.53209
\(459\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(460\) 0 0
\(461\) −0.173648 + 0.300767i −0.173648 + 0.300767i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(462\) 0 0
\(463\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(464\) 0 0
\(465\) −0.266044 1.50881i −0.266044 1.50881i
\(466\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(467\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(468\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(469\) 0 0
\(470\) 1.43969 2.49362i 1.43969 2.49362i
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) −0.652704 −0.652704
\(477\) 0 0
\(478\) −1.87939 −1.87939
\(479\) −0.766044 + 1.32683i −0.766044 + 1.32683i 0.173648 + 0.984808i \(0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(480\) 0.266044 + 1.50881i 0.266044 + 1.50881i
\(481\) −0.766044 1.32683i −0.766044 1.32683i
\(482\) 0 0
\(483\) 0 0
\(484\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(485\) 0 0
\(486\) 0.173648 0.984808i 0.173648 0.984808i
\(487\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0.673648 + 1.16679i 0.673648 + 1.16679i
\(491\) 0.939693 + 1.62760i 0.939693 + 1.62760i 0.766044 + 0.642788i \(0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −1.00000 −1.00000
\(497\) −0.0603074 + 0.104455i −0.0603074 + 0.104455i
\(498\) 0 0
\(499\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(500\) −0.266044 0.460802i −0.266044 0.460802i
\(501\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(502\) 0.500000 0.866025i 0.500000 0.866025i
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0.266044 + 0.223238i 0.266044 + 0.223238i
\(505\) 0 0
\(506\) 0 0
\(507\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(508\) 0 0
\(509\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(510\) −2.20574 + 1.85083i −2.20574 + 1.85083i
\(511\) 0 0
\(512\) 1.00000 1.00000
\(513\) 0 0
\(514\) 1.53209 1.53209
\(515\) 0 0
\(516\) −1.43969 + 1.20805i −1.43969 + 1.20805i
\(517\) 0 0
\(518\) −0.266044 0.460802i −0.266044 0.460802i
\(519\) 0 0
\(520\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(521\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(522\) 0 0
\(523\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(524\) 0.939693 1.62760i 0.939693 1.62760i
\(525\) −0.439693 0.160035i −0.439693 0.160035i
\(526\) 0 0
\(527\) −0.939693 1.62760i −0.939693 1.62760i
\(528\) 0 0
\(529\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −1.53209 2.65366i −1.53209 2.65366i
\(536\) 0 0
\(537\) 0.266044 0.223238i 0.266044 0.223238i
\(538\) 0 0
\(539\) 0 0
\(540\) 1.53209 1.53209
\(541\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(542\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(543\) 0 0
\(544\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(545\) 1.43969 + 2.49362i 1.43969 + 2.49362i
\(546\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i
\(547\) −0.766044 + 1.32683i −0.766044 + 1.32683i 0.173648 + 0.984808i \(0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −2.20574 0.802823i −2.20574 0.802823i
\(556\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(557\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(558\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(559\) −1.87939 −1.87939
\(560\) −0.266044 + 0.460802i −0.266044 + 0.460802i
\(561\) 0 0
\(562\) 0 0
\(563\) −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i \(-0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(564\) −1.43969 + 1.20805i −1.43969 + 1.20805i
\(565\) 0.766044 1.32683i 0.766044 1.32683i
\(566\) −1.00000 −1.00000
\(567\) 0.266044 0.223238i 0.266044 0.223238i
\(568\) 0.347296 0.347296
\(569\) −0.766044 + 1.32683i −0.766044 + 1.32683i 0.173648 + 0.984808i \(0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(570\) 0 0
\(571\) 0.939693 + 1.62760i 0.939693 + 1.62760i 0.766044 + 0.642788i \(0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0.173648 0.984808i 0.173648 0.984808i
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) −1.26604 + 2.19285i −1.26604 + 2.19285i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 1.17365 + 0.984808i 1.17365 + 0.984808i
\(586\) 0.347296 0.347296
\(587\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(588\) −0.152704 0.866025i −0.152704 0.866025i
\(589\) 0 0
\(590\) 0 0
\(591\) 0.266044 0.223238i 0.266044 0.223238i
\(592\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) −1.00000 −1.00000
\(596\) 0.500000 0.866025i 0.500000 0.866025i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(600\) 0.233956 + 1.32683i 0.233956 + 1.32683i
\(601\) 0.939693 1.62760i 0.939693 1.62760i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(602\) −0.652704 −0.652704
\(603\) 0 0
\(604\) 1.53209 1.53209
\(605\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(606\) 0 0
\(607\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1.87939 −1.87939
\(612\) 1.76604 0.642788i 1.76604 0.642788i
\(613\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(618\) 0 0
\(619\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(620\) −1.53209 −1.53209
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0.766044 0.642788i 0.766044 0.642788i
\(625\) 0.266044 + 0.460802i 0.266044 + 0.460802i
\(626\) −0.766044 1.32683i −0.766044 1.32683i
\(627\) 0 0
\(628\) 0 0
\(629\) −2.87939 −2.87939
\(630\) 0.407604 + 0.342020i 0.407604 + 0.342020i
\(631\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(632\) 0 0
\(633\) −1.43969 0.524005i −1.43969 0.524005i
\(634\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(635\) 0 0
\(636\) 0 0
\(637\) 0.439693 0.761570i 0.439693 0.761570i
\(638\) 0 0
\(639\) 0.0603074 0.342020i 0.0603074 0.342020i
\(640\) 1.53209 1.53209
\(641\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(642\) 0.347296 + 1.96962i 0.347296 + 1.96962i
\(643\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(644\) 0 0
\(645\) −2.20574 + 1.85083i −2.20574 + 1.85083i
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) −0.939693 0.342020i −0.939693 0.342020i
\(649\) 0 0
\(650\) −0.673648 + 1.16679i −0.673648 + 1.16679i
\(651\) −0.266044 + 0.223238i −0.266044 + 0.223238i
\(652\) 0 0
\(653\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(654\) −0.326352 1.85083i −0.326352 1.85083i
\(655\) 1.43969 2.49362i 1.43969 2.49362i
\(656\) 0 0
\(657\) 0 0
\(658\) −0.652704 −0.652704
\(659\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(660\) 0 0
\(661\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(662\) 0 0
\(663\) 1.76604 + 0.642788i 1.76604 + 0.642788i
\(664\) 0 0
\(665\) 0 0
\(666\) 1.17365 + 0.984808i 1.17365 + 0.984808i
\(667\) 0 0
\(668\) 0.500000 0.866025i 0.500000 0.866025i
\(669\) −0.326352 1.85083i −0.326352 1.85083i
\(670\) 0 0
\(671\) 0 0
\(672\) 0.266044 0.223238i 0.266044 0.223238i
\(673\) −0.766044 + 1.32683i −0.766044 + 1.32683i 0.173648 + 0.984808i \(0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(674\) 0.347296 0.347296
\(675\) 1.34730 1.34730
\(676\) 1.00000 1.00000
\(677\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(678\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(679\) 0 0
\(680\) 1.43969 + 2.49362i 1.43969 + 2.49362i
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0.326352 0.565258i 0.326352 0.565258i
\(687\) −1.43969 0.524005i −1.43969 0.524005i
\(688\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 1.53209 1.53209
\(695\) −0.266044 + 0.460802i −0.266044 + 0.460802i
\(696\) 0 0
\(697\) 0 0
\(698\) −0.766044 1.32683i −0.766044 1.32683i
\(699\) 0.266044 0.223238i 0.266044 0.223238i
\(700\) −0.233956 + 0.405223i −0.233956 + 0.405223i
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) −0.500000 0.866025i −0.500000 0.866025i
\(703\) 0 0
\(704\) 0 0
\(705\) −2.20574 + 1.85083i −2.20574 + 1.85083i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(710\) 0.532089 0.532089
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0.613341 + 0.223238i 0.613341 + 0.223238i
\(715\) 0 0
\(716\) −0.173648 0.300767i −0.173648 0.300767i
\(717\) 1.76604 + 0.642788i 1.76604 + 0.642788i
\(718\) 0.500000 0.866025i 0.500000 0.866025i
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0.266044 1.50881i 0.266044 1.50881i
\(721\) 0 0
\(722\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0.766044 0.642788i 0.766044 0.642788i
\(727\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(728\) 0.347296 0.347296
\(729\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(730\) 0 0
\(731\) −1.76604 + 3.05888i −1.76604 + 3.05888i
\(732\) 0 0
\(733\) −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i \(-0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(734\) 0 0
\(735\) −0.233956 1.32683i −0.233956 1.32683i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) −1.17365 + 2.03282i −1.17365 + 2.03282i
\(741\) 0 0
\(742\) 0 0
\(743\) 0.939693 + 1.62760i 0.939693 + 1.62760i 0.766044 + 0.642788i \(0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(744\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(745\) 0.766044 1.32683i 0.766044 1.32683i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −0.347296 + 0.601535i −0.347296 + 0.601535i
\(750\) 0.0923963 + 0.524005i 0.0923963 + 0.524005i
\(751\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(752\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(753\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(754\) 0 0
\(755\) 2.34730 2.34730
\(756\) −0.173648 0.300767i −0.173648 0.300767i
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(762\) 0 0
\(763\) 0.326352 0.565258i 0.326352 0.565258i
\(764\) 0 0
\(765\) 2.70574 0.984808i 2.70574 0.984808i
\(766\) 0.347296 0.347296
\(767\) 0 0
\(768\) −0.939693 0.342020i −0.939693 0.342020i
\(769\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(770\) 0 0
\(771\) −1.43969 0.524005i −1.43969 0.524005i
\(772\) 0 0
\(773\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(774\) 1.76604 0.642788i 1.76604 0.642788i
\(775\) −1.34730 −1.34730
\(776\) 0 0
\(777\) 0.0923963 + 0.524005i 0.0923963 + 0.524005i
\(778\) 0 0
\(779\) 0 0
\(780\) 1.17365 0.984808i 1.17365 0.984808i
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −0.879385 −0.879385
\(785\) 0 0
\(786\) −1.43969 + 1.20805i −1.43969 + 1.20805i
\(787\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(788\) −0.173648 0.300767i −0.173648 0.300767i
\(789\) 0 0
\(790\) 0 0
\(791\) −0.347296 −0.347296
\(792\) 0 0
\(793\) 0 0
\(794\) 0.500000 0.866025i 0.500000 0.866025i
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(798\) 0 0
\(799\) −1.76604 + 3.05888i −1.76604 + 3.05888i
\(800\) 1.34730 1.34730
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(807\) 0 0
\(808\) 0 0
\(809\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(810\) −1.43969 0.524005i −1.43969 0.524005i
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 1.17365 0.984808i 1.17365 0.984808i
\(814\) 0 0
\(815\) 0 0
\(816\) −0.326352 1.85083i −0.326352 1.85083i
\(817\) 0 0
\(818\) 0 0
\(819\) 0.0603074 0.342020i 0.0603074 0.342020i
\(820\) 0 0
\(821\) 0.939693 1.62760i 0.939693 1.62760i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(822\) 0 0
\(823\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −0.500000 0.866025i −0.500000 0.866025i
\(833\) −0.826352 1.43128i −0.826352 1.43128i
\(834\) 0.266044 0.223238i 0.266044 0.223238i
\(835\) 0.766044 1.32683i 0.766044 1.32683i
\(836\) 0 0
\(837\) 0.500000 0.866025i 0.500000 0.866025i
\(838\) 1.53209 1.53209
\(839\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(840\) 0.407604 0.342020i 0.407604 0.342020i
\(841\) −0.500000 0.866025i −0.500000 0.866025i
\(842\) −0.173648 0.300767i −0.173648 0.300767i
\(843\) 0 0
\(844\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(845\) 1.53209 1.53209
\(846\) 1.76604 0.642788i 1.76604 0.642788i
\(847\) 0.347296 0.347296
\(848\) 0 0
\(849\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(850\) 1.26604 + 2.19285i 1.26604 + 2.19285i
\(851\) 0 0
\(852\) −0.326352 0.118782i −0.326352 0.118782i
\(853\) 0.939693 1.62760i 0.939693 1.62760i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 2.00000 2.00000
\(857\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(858\) 0 0
\(859\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(860\) 1.43969 + 2.49362i 1.43969 + 2.49362i
\(861\) 0 0
\(862\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(863\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(864\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(865\) 0 0
\(866\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(867\) 1.93969 1.62760i 1.93969 1.62760i
\(868\) 0.173648 + 0.300767i 0.173648 + 0.300767i
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −1.87939 −1.87939
\(873\) 0 0
\(874\) 0 0
\(875\) −0.0923963 + 0.160035i −0.0923963 + 0.160035i
\(876\) 0 0
\(877\) −0.766044 1.32683i −0.766044 1.32683i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(878\) 0 0
\(879\) −0.326352 0.118782i −0.326352 0.118782i
\(880\) 0 0
\(881\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(882\) −0.152704 + 0.866025i −0.152704 + 0.866025i
\(883\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(884\) 0.939693 1.62760i 0.939693 1.62760i
\(885\) 0 0
\(886\) −0.173648 0.300767i −0.173648 0.300767i
\(887\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(888\) 1.17365 0.984808i 1.17365 0.984808i
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) −1.87939 −1.87939
\(893\) 0 0
\(894\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(895\) −0.266044 0.460802i −0.266044 0.460802i
\(896\) −0.173648 0.300767i −0.173648 0.300767i
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0.233956 1.32683i 0.233956 1.32683i
\(901\) 0 0
\(902\) 0 0
\(903\) 0.613341 + 0.223238i 0.613341 + 0.223238i
\(904\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(905\) 0 0
\(906\) −1.43969 0.524005i −1.43969 0.524005i
\(907\) −0.173648 + 0.300767i −0.173648 + 0.300767i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0.532089 0.532089
\(911\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(917\) −0.652704 −0.652704
\(918\) −1.87939 −1.87939
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −0.173648 0.300767i −0.173648 0.300767i
\(923\) −0.173648 0.300767i −0.173648 0.300767i
\(924\) 0 0
\(925\) −1.03209 + 1.78763i −1.03209 + 1.78763i
\(926\) −1.00000 −1.00000
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(930\) 1.43969 + 0.524005i 1.43969 + 0.524005i
\(931\) 0 0
\(932\) −0.173648 0.300767i −0.173648 0.300767i
\(933\) 0 0
\(934\) 0.500000 0.866025i 0.500000 0.866025i
\(935\) 0 0
\(936\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(937\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(938\) 0 0
\(939\) 0.266044 + 1.50881i 0.266044 + 1.50881i
\(940\) 1.43969 + 2.49362i 1.43969 + 2.49362i
\(941\) −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i \(-0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) −0.266044 0.460802i −0.266044 0.460802i
\(946\) 0 0
\(947\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −0.173648 0.984808i −0.173648 0.984808i
\(952\) 0.326352 0.565258i 0.326352 0.565258i
\(953\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0.939693 1.62760i 0.939693 1.62760i
\(957\) 0 0
\(958\) −0.766044 1.32683i −0.766044 1.32683i
\(959\) 0 0
\(960\) −1.43969 0.524005i −1.43969 0.524005i
\(961\) 0 0
\(962\) 1.53209 1.53209
\(963\) 0.347296 1.96962i 0.347296 1.96962i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0.939693 + 1.62760i 0.939693 + 1.62760i 0.766044 + 0.642788i \(0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(968\) −0.500000 0.866025i −0.500000 0.866025i
\(969\) 0 0
\(970\) 0 0
\(971\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(972\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(973\) 0.120615 0.120615
\(974\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(975\) 1.03209 0.866025i 1.03209 0.866025i
\(976\) 0 0
\(977\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −1.34730 −1.34730
\(981\) −0.326352 + 1.85083i −0.326352 + 1.85083i
\(982\) −1.87939 −1.87939
\(983\) −0.766044 + 1.32683i −0.766044 + 1.32683i 0.173648 + 0.984808i \(0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(984\) 0 0
\(985\) −0.266044 0.460802i −0.266044 0.460802i
\(986\) 0 0
\(987\) 0.613341 + 0.223238i 0.613341 + 0.223238i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0.500000 0.866025i 0.500000 0.866025i
\(993\) 0 0
\(994\) −0.0603074 0.104455i −0.0603074 0.104455i
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(998\) 0 0
\(999\) −0.766044 1.32683i −0.766044 1.32683i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.1.bs.a.259.3 6
3.2 odd 2 2808.1.bs.b.883.3 6
4.3 odd 2 3744.1.ci.a.3535.1 6
8.3 odd 2 936.1.bs.b.259.3 yes 6
8.5 even 2 3744.1.ci.b.3535.1 6
9.4 even 3 inner 936.1.bs.a.571.3 yes 6
9.5 odd 6 2808.1.bs.b.1819.3 6
13.12 even 2 936.1.bs.b.259.3 yes 6
24.11 even 2 2808.1.bs.a.883.1 6
36.31 odd 6 3744.1.ci.a.1039.1 6
39.38 odd 2 2808.1.bs.a.883.1 6
52.51 odd 2 3744.1.ci.b.3535.1 6
72.13 even 6 3744.1.ci.b.1039.1 6
72.59 even 6 2808.1.bs.a.1819.1 6
72.67 odd 6 936.1.bs.b.571.3 yes 6
104.51 odd 2 CM 936.1.bs.a.259.3 6
104.77 even 2 3744.1.ci.a.3535.1 6
117.77 odd 6 2808.1.bs.a.1819.1 6
117.103 even 6 936.1.bs.b.571.3 yes 6
312.155 even 2 2808.1.bs.b.883.3 6
468.103 odd 6 3744.1.ci.b.1039.1 6
936.571 odd 6 inner 936.1.bs.a.571.3 yes 6
936.779 even 6 2808.1.bs.b.1819.3 6
936.805 even 6 3744.1.ci.a.1039.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.1.bs.a.259.3 6 1.1 even 1 trivial
936.1.bs.a.259.3 6 104.51 odd 2 CM
936.1.bs.a.571.3 yes 6 9.4 even 3 inner
936.1.bs.a.571.3 yes 6 936.571 odd 6 inner
936.1.bs.b.259.3 yes 6 8.3 odd 2
936.1.bs.b.259.3 yes 6 13.12 even 2
936.1.bs.b.571.3 yes 6 72.67 odd 6
936.1.bs.b.571.3 yes 6 117.103 even 6
2808.1.bs.a.883.1 6 24.11 even 2
2808.1.bs.a.883.1 6 39.38 odd 2
2808.1.bs.a.1819.1 6 72.59 even 6
2808.1.bs.a.1819.1 6 117.77 odd 6
2808.1.bs.b.883.3 6 3.2 odd 2
2808.1.bs.b.883.3 6 312.155 even 2
2808.1.bs.b.1819.3 6 9.5 odd 6
2808.1.bs.b.1819.3 6 936.779 even 6
3744.1.ci.a.1039.1 6 36.31 odd 6
3744.1.ci.a.1039.1 6 936.805 even 6
3744.1.ci.a.3535.1 6 4.3 odd 2
3744.1.ci.a.3535.1 6 104.77 even 2
3744.1.ci.b.1039.1 6 72.13 even 6
3744.1.ci.b.1039.1 6 468.103 odd 6
3744.1.ci.b.3535.1 6 8.5 even 2
3744.1.ci.b.3535.1 6 52.51 odd 2