Properties

Label 936.2.a.k.1.1
Level $936$
Weight $2$
Character 936.1
Self dual yes
Analytic conductor $7.474$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [936,2,Mod(1,936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(936, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("936.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.47399762919\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 936.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.82843 q^{5} +0.828427 q^{7} +0.828427 q^{11} +1.00000 q^{13} -4.00000 q^{17} +0.828427 q^{19} -4.00000 q^{23} +3.00000 q^{25} -4.00000 q^{29} -10.4853 q^{31} -2.34315 q^{35} +2.00000 q^{37} -1.17157 q^{41} -5.65685 q^{43} -6.48528 q^{47} -6.31371 q^{49} -2.34315 q^{53} -2.34315 q^{55} -0.828427 q^{59} +9.31371 q^{61} -2.82843 q^{65} -0.828427 q^{67} -14.4853 q^{71} +6.00000 q^{73} +0.686292 q^{77} -4.00000 q^{79} +8.82843 q^{83} +11.3137 q^{85} +4.48528 q^{89} +0.828427 q^{91} -2.34315 q^{95} +17.3137 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{7} - 4 q^{11} + 2 q^{13} - 8 q^{17} - 4 q^{19} - 8 q^{23} + 6 q^{25} - 8 q^{29} - 4 q^{31} - 16 q^{35} + 4 q^{37} - 8 q^{41} + 4 q^{47} + 10 q^{49} - 16 q^{53} - 16 q^{55} + 4 q^{59} - 4 q^{61}+ \cdots + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.82843 −1.26491 −0.632456 0.774597i \(-0.717953\pi\)
−0.632456 + 0.774597i \(0.717953\pi\)
\(6\) 0 0
\(7\) 0.828427 0.313116 0.156558 0.987669i \(-0.449960\pi\)
0.156558 + 0.987669i \(0.449960\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.828427 0.249780 0.124890 0.992171i \(-0.460142\pi\)
0.124890 + 0.992171i \(0.460142\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4.00000 −0.970143 −0.485071 0.874475i \(-0.661206\pi\)
−0.485071 + 0.874475i \(0.661206\pi\)
\(18\) 0 0
\(19\) 0.828427 0.190054 0.0950271 0.995475i \(-0.469706\pi\)
0.0950271 + 0.995475i \(0.469706\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 0 0
\(25\) 3.00000 0.600000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.00000 −0.742781 −0.371391 0.928477i \(-0.621119\pi\)
−0.371391 + 0.928477i \(0.621119\pi\)
\(30\) 0 0
\(31\) −10.4853 −1.88321 −0.941606 0.336717i \(-0.890684\pi\)
−0.941606 + 0.336717i \(0.890684\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.34315 −0.396064
\(36\) 0 0
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.17157 −0.182969 −0.0914845 0.995807i \(-0.529161\pi\)
−0.0914845 + 0.995807i \(0.529161\pi\)
\(42\) 0 0
\(43\) −5.65685 −0.862662 −0.431331 0.902194i \(-0.641956\pi\)
−0.431331 + 0.902194i \(0.641956\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −6.48528 −0.945976 −0.472988 0.881069i \(-0.656825\pi\)
−0.472988 + 0.881069i \(0.656825\pi\)
\(48\) 0 0
\(49\) −6.31371 −0.901958
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −2.34315 −0.321856 −0.160928 0.986966i \(-0.551449\pi\)
−0.160928 + 0.986966i \(0.551449\pi\)
\(54\) 0 0
\(55\) −2.34315 −0.315950
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −0.828427 −0.107852 −0.0539260 0.998545i \(-0.517174\pi\)
−0.0539260 + 0.998545i \(0.517174\pi\)
\(60\) 0 0
\(61\) 9.31371 1.19250 0.596249 0.802799i \(-0.296657\pi\)
0.596249 + 0.802799i \(0.296657\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.82843 −0.350823
\(66\) 0 0
\(67\) −0.828427 −0.101208 −0.0506042 0.998719i \(-0.516115\pi\)
−0.0506042 + 0.998719i \(0.516115\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −14.4853 −1.71909 −0.859543 0.511063i \(-0.829252\pi\)
−0.859543 + 0.511063i \(0.829252\pi\)
\(72\) 0 0
\(73\) 6.00000 0.702247 0.351123 0.936329i \(-0.385800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.686292 0.0782102
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 8.82843 0.969046 0.484523 0.874779i \(-0.338993\pi\)
0.484523 + 0.874779i \(0.338993\pi\)
\(84\) 0 0
\(85\) 11.3137 1.22714
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.48528 0.475439 0.237719 0.971334i \(-0.423600\pi\)
0.237719 + 0.971334i \(0.423600\pi\)
\(90\) 0 0
\(91\) 0.828427 0.0868428
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2.34315 −0.240402
\(96\) 0 0
\(97\) 17.3137 1.75794 0.878970 0.476876i \(-0.158231\pi\)
0.878970 + 0.476876i \(0.158231\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 11.3137 1.12576 0.562878 0.826540i \(-0.309694\pi\)
0.562878 + 0.826540i \(0.309694\pi\)
\(102\) 0 0
\(103\) −6.34315 −0.625009 −0.312504 0.949916i \(-0.601168\pi\)
−0.312504 + 0.949916i \(0.601168\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −4.00000 −0.386695 −0.193347 0.981130i \(-0.561934\pi\)
−0.193347 + 0.981130i \(0.561934\pi\)
\(108\) 0 0
\(109\) −5.31371 −0.508961 −0.254480 0.967078i \(-0.581904\pi\)
−0.254480 + 0.967078i \(0.581904\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −9.65685 −0.908440 −0.454220 0.890889i \(-0.650082\pi\)
−0.454220 + 0.890889i \(0.650082\pi\)
\(114\) 0 0
\(115\) 11.3137 1.05501
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −3.31371 −0.303767
\(120\) 0 0
\(121\) −10.3137 −0.937610
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 5.65685 0.505964
\(126\) 0 0
\(127\) −13.6569 −1.21185 −0.605925 0.795522i \(-0.707197\pi\)
−0.605925 + 0.795522i \(0.707197\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 7.31371 0.639002 0.319501 0.947586i \(-0.396485\pi\)
0.319501 + 0.947586i \(0.396485\pi\)
\(132\) 0 0
\(133\) 0.686292 0.0595090
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 22.8284 1.95036 0.975182 0.221404i \(-0.0710641\pi\)
0.975182 + 0.221404i \(0.0710641\pi\)
\(138\) 0 0
\(139\) 12.0000 1.01783 0.508913 0.860818i \(-0.330047\pi\)
0.508913 + 0.860818i \(0.330047\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.828427 0.0692766
\(144\) 0 0
\(145\) 11.3137 0.939552
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −5.17157 −0.423672 −0.211836 0.977305i \(-0.567944\pi\)
−0.211836 + 0.977305i \(0.567944\pi\)
\(150\) 0 0
\(151\) −16.8284 −1.36948 −0.684739 0.728788i \(-0.740084\pi\)
−0.684739 + 0.728788i \(0.740084\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 29.6569 2.38210
\(156\) 0 0
\(157\) −17.3137 −1.38178 −0.690892 0.722958i \(-0.742782\pi\)
−0.690892 + 0.722958i \(0.742782\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −3.31371 −0.261157
\(162\) 0 0
\(163\) −0.828427 −0.0648874 −0.0324437 0.999474i \(-0.510329\pi\)
−0.0324437 + 0.999474i \(0.510329\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 20.8284 1.61175 0.805876 0.592084i \(-0.201695\pi\)
0.805876 + 0.592084i \(0.201695\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −11.3137 −0.860165 −0.430083 0.902790i \(-0.641516\pi\)
−0.430083 + 0.902790i \(0.641516\pi\)
\(174\) 0 0
\(175\) 2.48528 0.187870
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −16.9706 −1.26844 −0.634220 0.773153i \(-0.718679\pi\)
−0.634220 + 0.773153i \(0.718679\pi\)
\(180\) 0 0
\(181\) 2.68629 0.199670 0.0998352 0.995004i \(-0.468168\pi\)
0.0998352 + 0.995004i \(0.468168\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −5.65685 −0.415900
\(186\) 0 0
\(187\) −3.31371 −0.242322
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 16.9706 1.22795 0.613973 0.789327i \(-0.289570\pi\)
0.613973 + 0.789327i \(0.289570\pi\)
\(192\) 0 0
\(193\) −6.00000 −0.431889 −0.215945 0.976406i \(-0.569283\pi\)
−0.215945 + 0.976406i \(0.569283\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 16.4853 1.17453 0.587264 0.809396i \(-0.300205\pi\)
0.587264 + 0.809396i \(0.300205\pi\)
\(198\) 0 0
\(199\) −13.6569 −0.968109 −0.484054 0.875038i \(-0.660836\pi\)
−0.484054 + 0.875038i \(0.660836\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −3.31371 −0.232577
\(204\) 0 0
\(205\) 3.31371 0.231439
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.686292 0.0474718
\(210\) 0 0
\(211\) 8.00000 0.550743 0.275371 0.961338i \(-0.411199\pi\)
0.275371 + 0.961338i \(0.411199\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 16.0000 1.09119
\(216\) 0 0
\(217\) −8.68629 −0.589664
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −4.00000 −0.269069
\(222\) 0 0
\(223\) −10.4853 −0.702146 −0.351073 0.936348i \(-0.614183\pi\)
−0.351073 + 0.936348i \(0.614183\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 10.4853 0.695933 0.347966 0.937507i \(-0.386872\pi\)
0.347966 + 0.937507i \(0.386872\pi\)
\(228\) 0 0
\(229\) 9.31371 0.615467 0.307734 0.951473i \(-0.400429\pi\)
0.307734 + 0.951473i \(0.400429\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 10.3431 0.677602 0.338801 0.940858i \(-0.389979\pi\)
0.338801 + 0.940858i \(0.389979\pi\)
\(234\) 0 0
\(235\) 18.3431 1.19657
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 16.1421 1.04415 0.522074 0.852900i \(-0.325158\pi\)
0.522074 + 0.852900i \(0.325158\pi\)
\(240\) 0 0
\(241\) −5.31371 −0.342286 −0.171143 0.985246i \(-0.554746\pi\)
−0.171143 + 0.985246i \(0.554746\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 17.8579 1.14090
\(246\) 0 0
\(247\) 0.828427 0.0527116
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −25.6569 −1.61945 −0.809723 0.586812i \(-0.800383\pi\)
−0.809723 + 0.586812i \(0.800383\pi\)
\(252\) 0 0
\(253\) −3.31371 −0.208331
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 5.65685 0.352865 0.176432 0.984313i \(-0.443544\pi\)
0.176432 + 0.984313i \(0.443544\pi\)
\(258\) 0 0
\(259\) 1.65685 0.102952
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −6.34315 −0.391135 −0.195568 0.980690i \(-0.562655\pi\)
−0.195568 + 0.980690i \(0.562655\pi\)
\(264\) 0 0
\(265\) 6.62742 0.407119
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −23.3137 −1.42146 −0.710731 0.703464i \(-0.751636\pi\)
−0.710731 + 0.703464i \(0.751636\pi\)
\(270\) 0 0
\(271\) 20.1421 1.22355 0.611774 0.791033i \(-0.290456\pi\)
0.611774 + 0.791033i \(0.290456\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.48528 0.149868
\(276\) 0 0
\(277\) 2.00000 0.120168 0.0600842 0.998193i \(-0.480863\pi\)
0.0600842 + 0.998193i \(0.480863\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 21.4558 1.27995 0.639974 0.768396i \(-0.278945\pi\)
0.639974 + 0.768396i \(0.278945\pi\)
\(282\) 0 0
\(283\) 25.6569 1.52514 0.762571 0.646905i \(-0.223937\pi\)
0.762571 + 0.646905i \(0.223937\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −0.970563 −0.0572905
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 22.1421 1.29356 0.646779 0.762678i \(-0.276116\pi\)
0.646779 + 0.762678i \(0.276116\pi\)
\(294\) 0 0
\(295\) 2.34315 0.136423
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −4.00000 −0.231326
\(300\) 0 0
\(301\) −4.68629 −0.270113
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −26.3431 −1.50840
\(306\) 0 0
\(307\) 8.82843 0.503865 0.251932 0.967745i \(-0.418934\pi\)
0.251932 + 0.967745i \(0.418934\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 34.6274 1.96354 0.981770 0.190071i \(-0.0608718\pi\)
0.981770 + 0.190071i \(0.0608718\pi\)
\(312\) 0 0
\(313\) −6.68629 −0.377932 −0.188966 0.981984i \(-0.560514\pi\)
−0.188966 + 0.981984i \(0.560514\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 13.1716 0.739789 0.369895 0.929074i \(-0.379394\pi\)
0.369895 + 0.929074i \(0.379394\pi\)
\(318\) 0 0
\(319\) −3.31371 −0.185532
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −3.31371 −0.184380
\(324\) 0 0
\(325\) 3.00000 0.166410
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −5.37258 −0.296200
\(330\) 0 0
\(331\) −8.82843 −0.485254 −0.242627 0.970120i \(-0.578009\pi\)
−0.242627 + 0.970120i \(0.578009\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 2.34315 0.128020
\(336\) 0 0
\(337\) 13.3137 0.725244 0.362622 0.931936i \(-0.381882\pi\)
0.362622 + 0.931936i \(0.381882\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −8.68629 −0.470389
\(342\) 0 0
\(343\) −11.0294 −0.595534
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −33.9411 −1.82206 −0.911028 0.412346i \(-0.864710\pi\)
−0.911028 + 0.412346i \(0.864710\pi\)
\(348\) 0 0
\(349\) −33.3137 −1.78324 −0.891621 0.452783i \(-0.850431\pi\)
−0.891621 + 0.452783i \(0.850431\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 3.51472 0.187070 0.0935348 0.995616i \(-0.470183\pi\)
0.0935348 + 0.995616i \(0.470183\pi\)
\(354\) 0 0
\(355\) 40.9706 2.17449
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −27.1716 −1.43406 −0.717030 0.697042i \(-0.754499\pi\)
−0.717030 + 0.697042i \(0.754499\pi\)
\(360\) 0 0
\(361\) −18.3137 −0.963879
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −16.9706 −0.888280
\(366\) 0 0
\(367\) −19.3137 −1.00817 −0.504084 0.863655i \(-0.668170\pi\)
−0.504084 + 0.863655i \(0.668170\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −1.94113 −0.100778
\(372\) 0 0
\(373\) −28.6274 −1.48227 −0.741136 0.671355i \(-0.765713\pi\)
−0.741136 + 0.671355i \(0.765713\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −4.00000 −0.206010
\(378\) 0 0
\(379\) 16.8284 0.864418 0.432209 0.901773i \(-0.357734\pi\)
0.432209 + 0.901773i \(0.357734\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −36.8284 −1.88184 −0.940922 0.338622i \(-0.890039\pi\)
−0.940922 + 0.338622i \(0.890039\pi\)
\(384\) 0 0
\(385\) −1.94113 −0.0989289
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 20.9706 1.06325 0.531625 0.846980i \(-0.321582\pi\)
0.531625 + 0.846980i \(0.321582\pi\)
\(390\) 0 0
\(391\) 16.0000 0.809155
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 11.3137 0.569254
\(396\) 0 0
\(397\) −14.0000 −0.702640 −0.351320 0.936255i \(-0.614267\pi\)
−0.351320 + 0.936255i \(0.614267\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 5.85786 0.292528 0.146264 0.989246i \(-0.453275\pi\)
0.146264 + 0.989246i \(0.453275\pi\)
\(402\) 0 0
\(403\) −10.4853 −0.522309
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.65685 0.0821272
\(408\) 0 0
\(409\) −21.3137 −1.05390 −0.526948 0.849898i \(-0.676664\pi\)
−0.526948 + 0.849898i \(0.676664\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −0.686292 −0.0337702
\(414\) 0 0
\(415\) −24.9706 −1.22576
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −31.3137 −1.52977 −0.764887 0.644164i \(-0.777205\pi\)
−0.764887 + 0.644164i \(0.777205\pi\)
\(420\) 0 0
\(421\) 22.0000 1.07221 0.536107 0.844150i \(-0.319894\pi\)
0.536107 + 0.844150i \(0.319894\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −12.0000 −0.582086
\(426\) 0 0
\(427\) 7.71573 0.373390
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −20.8284 −1.00327 −0.501635 0.865079i \(-0.667268\pi\)
−0.501635 + 0.865079i \(0.667268\pi\)
\(432\) 0 0
\(433\) 16.6274 0.799063 0.399531 0.916720i \(-0.369173\pi\)
0.399531 + 0.916720i \(0.369173\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −3.31371 −0.158516
\(438\) 0 0
\(439\) 24.2843 1.15903 0.579513 0.814963i \(-0.303243\pi\)
0.579513 + 0.814963i \(0.303243\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 10.6274 0.504924 0.252462 0.967607i \(-0.418760\pi\)
0.252462 + 0.967607i \(0.418760\pi\)
\(444\) 0 0
\(445\) −12.6863 −0.601388
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 12.4853 0.589217 0.294608 0.955618i \(-0.404811\pi\)
0.294608 + 0.955618i \(0.404811\pi\)
\(450\) 0 0
\(451\) −0.970563 −0.0457020
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −2.34315 −0.109848
\(456\) 0 0
\(457\) −27.9411 −1.30703 −0.653515 0.756913i \(-0.726707\pi\)
−0.653515 + 0.756913i \(0.726707\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −30.1421 −1.40386 −0.701930 0.712246i \(-0.747678\pi\)
−0.701930 + 0.712246i \(0.747678\pi\)
\(462\) 0 0
\(463\) −3.85786 −0.179290 −0.0896451 0.995974i \(-0.528573\pi\)
−0.0896451 + 0.995974i \(0.528573\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 17.6569 0.817062 0.408531 0.912744i \(-0.366041\pi\)
0.408531 + 0.912744i \(0.366041\pi\)
\(468\) 0 0
\(469\) −0.686292 −0.0316900
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −4.68629 −0.215476
\(474\) 0 0
\(475\) 2.48528 0.114033
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 7.85786 0.359035 0.179517 0.983755i \(-0.442546\pi\)
0.179517 + 0.983755i \(0.442546\pi\)
\(480\) 0 0
\(481\) 2.00000 0.0911922
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −48.9706 −2.22364
\(486\) 0 0
\(487\) −33.1127 −1.50048 −0.750240 0.661166i \(-0.770062\pi\)
−0.750240 + 0.661166i \(0.770062\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −28.9706 −1.30742 −0.653712 0.756744i \(-0.726789\pi\)
−0.653712 + 0.756744i \(0.726789\pi\)
\(492\) 0 0
\(493\) 16.0000 0.720604
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −12.0000 −0.538274
\(498\) 0 0
\(499\) 37.7990 1.69212 0.846058 0.533092i \(-0.178970\pi\)
0.846058 + 0.533092i \(0.178970\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −3.02944 −0.135076 −0.0675380 0.997717i \(-0.521514\pi\)
−0.0675380 + 0.997717i \(0.521514\pi\)
\(504\) 0 0
\(505\) −32.0000 −1.42398
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −15.5147 −0.687678 −0.343839 0.939029i \(-0.611727\pi\)
−0.343839 + 0.939029i \(0.611727\pi\)
\(510\) 0 0
\(511\) 4.97056 0.219885
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 17.9411 0.790580
\(516\) 0 0
\(517\) −5.37258 −0.236286
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −20.9706 −0.918737 −0.459369 0.888246i \(-0.651924\pi\)
−0.459369 + 0.888246i \(0.651924\pi\)
\(522\) 0 0
\(523\) 26.6274 1.16434 0.582168 0.813069i \(-0.302205\pi\)
0.582168 + 0.813069i \(0.302205\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 41.9411 1.82698
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −1.17157 −0.0507465
\(534\) 0 0
\(535\) 11.3137 0.489134
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −5.23045 −0.225291
\(540\) 0 0
\(541\) 23.9411 1.02931 0.514655 0.857398i \(-0.327920\pi\)
0.514655 + 0.857398i \(0.327920\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 15.0294 0.643790
\(546\) 0 0
\(547\) 34.6274 1.48056 0.740281 0.672298i \(-0.234693\pi\)
0.740281 + 0.672298i \(0.234693\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −3.31371 −0.141169
\(552\) 0 0
\(553\) −3.31371 −0.140913
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 2.82843 0.119844 0.0599222 0.998203i \(-0.480915\pi\)
0.0599222 + 0.998203i \(0.480915\pi\)
\(558\) 0 0
\(559\) −5.65685 −0.239259
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −32.9706 −1.38954 −0.694772 0.719230i \(-0.744495\pi\)
−0.694772 + 0.719230i \(0.744495\pi\)
\(564\) 0 0
\(565\) 27.3137 1.14910
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −24.9706 −1.04682 −0.523410 0.852081i \(-0.675340\pi\)
−0.523410 + 0.852081i \(0.675340\pi\)
\(570\) 0 0
\(571\) −9.65685 −0.404127 −0.202063 0.979372i \(-0.564765\pi\)
−0.202063 + 0.979372i \(0.564765\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −12.0000 −0.500435
\(576\) 0 0
\(577\) 37.3137 1.55339 0.776695 0.629877i \(-0.216895\pi\)
0.776695 + 0.629877i \(0.216895\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 7.31371 0.303424
\(582\) 0 0
\(583\) −1.94113 −0.0803932
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 36.1421 1.49175 0.745873 0.666088i \(-0.232033\pi\)
0.745873 + 0.666088i \(0.232033\pi\)
\(588\) 0 0
\(589\) −8.68629 −0.357912
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −30.8284 −1.26597 −0.632986 0.774163i \(-0.718171\pi\)
−0.632986 + 0.774163i \(0.718171\pi\)
\(594\) 0 0
\(595\) 9.37258 0.384238
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −36.9706 −1.51058 −0.755288 0.655393i \(-0.772503\pi\)
−0.755288 + 0.655393i \(0.772503\pi\)
\(600\) 0 0
\(601\) 9.31371 0.379914 0.189957 0.981792i \(-0.439165\pi\)
0.189957 + 0.981792i \(0.439165\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 29.1716 1.18599
\(606\) 0 0
\(607\) 24.0000 0.974130 0.487065 0.873366i \(-0.338067\pi\)
0.487065 + 0.873366i \(0.338067\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −6.48528 −0.262366
\(612\) 0 0
\(613\) 18.0000 0.727013 0.363507 0.931592i \(-0.381579\pi\)
0.363507 + 0.931592i \(0.381579\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 18.1421 0.730375 0.365187 0.930934i \(-0.381005\pi\)
0.365187 + 0.930934i \(0.381005\pi\)
\(618\) 0 0
\(619\) −45.7990 −1.84082 −0.920408 0.390958i \(-0.872144\pi\)
−0.920408 + 0.390958i \(0.872144\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 3.71573 0.148868
\(624\) 0 0
\(625\) −31.0000 −1.24000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −8.00000 −0.318981
\(630\) 0 0
\(631\) −13.5147 −0.538012 −0.269006 0.963138i \(-0.586695\pi\)
−0.269006 + 0.963138i \(0.586695\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 38.6274 1.53288
\(636\) 0 0
\(637\) −6.31371 −0.250158
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −23.3137 −0.920836 −0.460418 0.887702i \(-0.652300\pi\)
−0.460418 + 0.887702i \(0.652300\pi\)
\(642\) 0 0
\(643\) −28.1421 −1.10982 −0.554909 0.831911i \(-0.687247\pi\)
−0.554909 + 0.831911i \(0.687247\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 30.6274 1.20409 0.602044 0.798463i \(-0.294353\pi\)
0.602044 + 0.798463i \(0.294353\pi\)
\(648\) 0 0
\(649\) −0.686292 −0.0269393
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −23.3137 −0.912336 −0.456168 0.889894i \(-0.650778\pi\)
−0.456168 + 0.889894i \(0.650778\pi\)
\(654\) 0 0
\(655\) −20.6863 −0.808280
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −35.3137 −1.37563 −0.687813 0.725888i \(-0.741429\pi\)
−0.687813 + 0.725888i \(0.741429\pi\)
\(660\) 0 0
\(661\) −22.0000 −0.855701 −0.427850 0.903850i \(-0.640729\pi\)
−0.427850 + 0.903850i \(0.640729\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.94113 −0.0752736
\(666\) 0 0
\(667\) 16.0000 0.619522
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 7.71573 0.297862
\(672\) 0 0
\(673\) 41.3137 1.59253 0.796263 0.604950i \(-0.206807\pi\)
0.796263 + 0.604950i \(0.206807\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 32.9706 1.26716 0.633581 0.773677i \(-0.281584\pi\)
0.633581 + 0.773677i \(0.281584\pi\)
\(678\) 0 0
\(679\) 14.3431 0.550439
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −2.48528 −0.0950966 −0.0475483 0.998869i \(-0.515141\pi\)
−0.0475483 + 0.998869i \(0.515141\pi\)
\(684\) 0 0
\(685\) −64.5685 −2.46704
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −2.34315 −0.0892667
\(690\) 0 0
\(691\) −24.8284 −0.944518 −0.472259 0.881460i \(-0.656561\pi\)
−0.472259 + 0.881460i \(0.656561\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −33.9411 −1.28746
\(696\) 0 0
\(697\) 4.68629 0.177506
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 44.9706 1.69851 0.849257 0.527979i \(-0.177050\pi\)
0.849257 + 0.527979i \(0.177050\pi\)
\(702\) 0 0
\(703\) 1.65685 0.0624894
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 9.37258 0.352492
\(708\) 0 0
\(709\) 6.00000 0.225335 0.112667 0.993633i \(-0.464061\pi\)
0.112667 + 0.993633i \(0.464061\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 41.9411 1.57071
\(714\) 0 0
\(715\) −2.34315 −0.0876287
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −24.6863 −0.920643 −0.460322 0.887752i \(-0.652266\pi\)
−0.460322 + 0.887752i \(0.652266\pi\)
\(720\) 0 0
\(721\) −5.25483 −0.195700
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −12.0000 −0.445669
\(726\) 0 0
\(727\) −7.02944 −0.260707 −0.130354 0.991468i \(-0.541611\pi\)
−0.130354 + 0.991468i \(0.541611\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 22.6274 0.836905
\(732\) 0 0
\(733\) 2.68629 0.0992204 0.0496102 0.998769i \(-0.484202\pi\)
0.0496102 + 0.998769i \(0.484202\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −0.686292 −0.0252799
\(738\) 0 0
\(739\) 24.8284 0.913328 0.456664 0.889639i \(-0.349044\pi\)
0.456664 + 0.889639i \(0.349044\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −9.79899 −0.359490 −0.179745 0.983713i \(-0.557527\pi\)
−0.179745 + 0.983713i \(0.557527\pi\)
\(744\) 0 0
\(745\) 14.6274 0.535907
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −3.31371 −0.121080
\(750\) 0 0
\(751\) −24.2843 −0.886146 −0.443073 0.896486i \(-0.646112\pi\)
−0.443073 + 0.896486i \(0.646112\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 47.5980 1.73227
\(756\) 0 0
\(757\) 37.3137 1.35619 0.678095 0.734974i \(-0.262806\pi\)
0.678095 + 0.734974i \(0.262806\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −7.79899 −0.282713 −0.141357 0.989959i \(-0.545146\pi\)
−0.141357 + 0.989959i \(0.545146\pi\)
\(762\) 0 0
\(763\) −4.40202 −0.159364
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −0.828427 −0.0299128
\(768\) 0 0
\(769\) −4.62742 −0.166869 −0.0834345 0.996513i \(-0.526589\pi\)
−0.0834345 + 0.996513i \(0.526589\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −11.7990 −0.424380 −0.212190 0.977228i \(-0.568060\pi\)
−0.212190 + 0.977228i \(0.568060\pi\)
\(774\) 0 0
\(775\) −31.4558 −1.12993
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −0.970563 −0.0347740
\(780\) 0 0
\(781\) −12.0000 −0.429394
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 48.9706 1.74783
\(786\) 0 0
\(787\) −18.4853 −0.658929 −0.329465 0.944168i \(-0.606868\pi\)
−0.329465 + 0.944168i \(0.606868\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −8.00000 −0.284447
\(792\) 0 0
\(793\) 9.31371 0.330739
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 51.5980 1.82769 0.913847 0.406058i \(-0.133097\pi\)
0.913847 + 0.406058i \(0.133097\pi\)
\(798\) 0 0
\(799\) 25.9411 0.917731
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 4.97056 0.175407
\(804\) 0 0
\(805\) 9.37258 0.330340
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −17.6569 −0.620782 −0.310391 0.950609i \(-0.600460\pi\)
−0.310391 + 0.950609i \(0.600460\pi\)
\(810\) 0 0
\(811\) 15.4558 0.542728 0.271364 0.962477i \(-0.412525\pi\)
0.271364 + 0.962477i \(0.412525\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 2.34315 0.0820768
\(816\) 0 0
\(817\) −4.68629 −0.163953
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1.85786 −0.0648399 −0.0324200 0.999474i \(-0.510321\pi\)
−0.0324200 + 0.999474i \(0.510321\pi\)
\(822\) 0 0
\(823\) −33.6569 −1.17320 −0.586602 0.809875i \(-0.699535\pi\)
−0.586602 + 0.809875i \(0.699535\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 24.8284 0.863369 0.431685 0.902025i \(-0.357919\pi\)
0.431685 + 0.902025i \(0.357919\pi\)
\(828\) 0 0
\(829\) −10.6863 −0.371150 −0.185575 0.982630i \(-0.559415\pi\)
−0.185575 + 0.982630i \(0.559415\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 25.2548 0.875028
\(834\) 0 0
\(835\) −58.9117 −2.03872
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 30.4853 1.05247 0.526234 0.850340i \(-0.323603\pi\)
0.526234 + 0.850340i \(0.323603\pi\)
\(840\) 0 0
\(841\) −13.0000 −0.448276
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −2.82843 −0.0973009
\(846\) 0 0
\(847\) −8.54416 −0.293581
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −8.00000 −0.274236
\(852\) 0 0
\(853\) 50.0000 1.71197 0.855984 0.517003i \(-0.172952\pi\)
0.855984 + 0.517003i \(0.172952\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 48.9706 1.67280 0.836401 0.548118i \(-0.184655\pi\)
0.836401 + 0.548118i \(0.184655\pi\)
\(858\) 0 0
\(859\) 28.6863 0.978764 0.489382 0.872070i \(-0.337222\pi\)
0.489382 + 0.872070i \(0.337222\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 3.17157 0.107962 0.0539808 0.998542i \(-0.482809\pi\)
0.0539808 + 0.998542i \(0.482809\pi\)
\(864\) 0 0
\(865\) 32.0000 1.08803
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −3.31371 −0.112410
\(870\) 0 0
\(871\) −0.828427 −0.0280702
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 4.68629 0.158426
\(876\) 0 0
\(877\) 27.9411 0.943505 0.471752 0.881731i \(-0.343622\pi\)
0.471752 + 0.881731i \(0.343622\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 34.3431 1.15705 0.578525 0.815665i \(-0.303629\pi\)
0.578525 + 0.815665i \(0.303629\pi\)
\(882\) 0 0
\(883\) −44.9706 −1.51338 −0.756690 0.653774i \(-0.773185\pi\)
−0.756690 + 0.653774i \(0.773185\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −8.97056 −0.301202 −0.150601 0.988595i \(-0.548121\pi\)
−0.150601 + 0.988595i \(0.548121\pi\)
\(888\) 0 0
\(889\) −11.3137 −0.379450
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −5.37258 −0.179787
\(894\) 0 0
\(895\) 48.0000 1.60446
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 41.9411 1.39881
\(900\) 0 0
\(901\) 9.37258 0.312246
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −7.59798 −0.252565
\(906\) 0 0
\(907\) 27.5980 0.916376 0.458188 0.888855i \(-0.348499\pi\)
0.458188 + 0.888855i \(0.348499\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −50.9117 −1.68678 −0.843390 0.537302i \(-0.819443\pi\)
−0.843390 + 0.537302i \(0.819443\pi\)
\(912\) 0 0
\(913\) 7.31371 0.242048
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 6.05887 0.200082
\(918\) 0 0
\(919\) 50.6274 1.67004 0.835022 0.550216i \(-0.185455\pi\)
0.835022 + 0.550216i \(0.185455\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −14.4853 −0.476789
\(924\) 0 0
\(925\) 6.00000 0.197279
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −35.1127 −1.15201 −0.576005 0.817446i \(-0.695389\pi\)
−0.576005 + 0.817446i \(0.695389\pi\)
\(930\) 0 0
\(931\) −5.23045 −0.171421
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 9.37258 0.306516
\(936\) 0 0
\(937\) −30.0000 −0.980057 −0.490029 0.871706i \(-0.663014\pi\)
−0.490029 + 0.871706i \(0.663014\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 31.5147 1.02735 0.513675 0.857985i \(-0.328284\pi\)
0.513675 + 0.857985i \(0.328284\pi\)
\(942\) 0 0
\(943\) 4.68629 0.152607
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 34.4853 1.12062 0.560311 0.828283i \(-0.310682\pi\)
0.560311 + 0.828283i \(0.310682\pi\)
\(948\) 0 0
\(949\) 6.00000 0.194768
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −10.3431 −0.335047 −0.167524 0.985868i \(-0.553577\pi\)
−0.167524 + 0.985868i \(0.553577\pi\)
\(954\) 0 0
\(955\) −48.0000 −1.55324
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 18.9117 0.610690
\(960\) 0 0
\(961\) 78.9411 2.54649
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 16.9706 0.546302
\(966\) 0 0
\(967\) −53.7990 −1.73006 −0.865029 0.501721i \(-0.832700\pi\)
−0.865029 + 0.501721i \(0.832700\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 9.94113 0.318698
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 11.1127 0.355527 0.177763 0.984073i \(-0.443114\pi\)
0.177763 + 0.984073i \(0.443114\pi\)
\(978\) 0 0
\(979\) 3.71573 0.118755
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 17.7990 0.567700 0.283850 0.958869i \(-0.408388\pi\)
0.283850 + 0.958869i \(0.408388\pi\)
\(984\) 0 0
\(985\) −46.6274 −1.48567
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 22.6274 0.719510
\(990\) 0 0
\(991\) 6.62742 0.210527 0.105263 0.994444i \(-0.466431\pi\)
0.105263 + 0.994444i \(0.466431\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 38.6274 1.22457
\(996\) 0 0
\(997\) 44.6274 1.41336 0.706682 0.707531i \(-0.250191\pi\)
0.706682 + 0.707531i \(0.250191\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.a.k.1.1 2
3.2 odd 2 936.2.a.l.1.2 yes 2
4.3 odd 2 1872.2.a.y.1.1 2
8.3 odd 2 7488.2.a.cp.1.2 2
8.5 even 2 7488.2.a.ck.1.2 2
12.11 even 2 1872.2.a.x.1.2 2
24.5 odd 2 7488.2.a.ci.1.1 2
24.11 even 2 7488.2.a.cr.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.a.k.1.1 2 1.1 even 1 trivial
936.2.a.l.1.2 yes 2 3.2 odd 2
1872.2.a.x.1.2 2 12.11 even 2
1872.2.a.y.1.1 2 4.3 odd 2
7488.2.a.ci.1.1 2 24.5 odd 2
7488.2.a.ck.1.2 2 8.5 even 2
7488.2.a.cp.1.2 2 8.3 odd 2
7488.2.a.cr.1.1 2 24.11 even 2