Properties

Label 936.2.ba.b
Level 936936
Weight 22
Character orbit 936.ba
Analytic conductor 7.4747.474
Analytic rank 00
Dimension 1212
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(161,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 2, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.161"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 936=233213 936 = 2^{3} \cdot 3^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 936.ba (of order 44, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 7.473997629197.47399762919
Analytic rank: 00
Dimension: 1212
Relative dimension: 66 over Q(i)\Q(i)
Coefficient field: 12.0.125772815663104.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x12+27x8+107x4+1 x^{12} + 27x^{8} + 107x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a25]\Z[a_1, \ldots, a_{25}]
Coefficient ring index: 27 2^{7}
Twist minimal: yes
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β111,\beta_1,\ldots,\beta_{11} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ2q5+(β7β5+β1)q7+β11q11+(β7+2β6+β5)q13β8q17+(2β7β6+β4++1)q19++(β76β6+4β4++6)q97+O(q100) q - \beta_{2} q^{5} + ( - \beta_{7} - \beta_{5} + \beta_1) q^{7} + \beta_{11} q^{11} + ( - \beta_{7} + 2 \beta_{6} + \beta_{5}) q^{13} - \beta_{8} q^{17} + ( - 2 \beta_{7} - \beta_{6} + \beta_{4} + \cdots + 1) q^{19}+ \cdots + ( - \beta_{7} - 6 \beta_{6} + 4 \beta_{4} + \cdots + 6) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q4q13+16q198q31+28q37+56q61+8q6712q7364q79+8q8524q91+60q97+O(q100) 12 q - 4 q^{13} + 16 q^{19} - 8 q^{31} + 28 q^{37} + 56 q^{61} + 8 q^{67} - 12 q^{73} - 64 q^{79} + 8 q^{85} - 24 q^{91} + 60 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x12+27x8+107x4+1 x^{12} + 27x^{8} + 107x^{4} + 1 : Copy content Toggle raw display

β1\beta_{1}== (ν8+38ν4+145)/76 ( \nu^{8} + 38\nu^{4} + 145 ) / 76 Copy content Toggle raw display
β2\beta_{2}== (ν9+38ν5+373ν)/76 ( \nu^{9} + 38\nu^{5} + 373\nu ) / 76 Copy content Toggle raw display
β3\beta_{3}== (7ν9190ν5711ν)/76 ( -7\nu^{9} - 190\nu^{5} - 711\nu ) / 76 Copy content Toggle raw display
β4\beta_{4}== (3ν102ν8+76ν638ν4+245ν224)/76 ( 3\nu^{10} - 2\nu^{8} + 76\nu^{6} - 38\nu^{4} + 245\nu^{2} - 24 ) / 76 Copy content Toggle raw display
β5\beta_{5}== (3ν102ν876ν638ν4245ν224)/76 ( -3\nu^{10} - 2\nu^{8} - 76\nu^{6} - 38\nu^{4} - 245\nu^{2} - 24 ) / 76 Copy content Toggle raw display
β6\beta_{6}== (7ν10+190ν6+787ν2)/76 ( 7\nu^{10} + 190\nu^{6} + 787\nu^{2} ) / 76 Copy content Toggle raw display
β7\beta_{7}== (7ν10190ν6749ν2)/38 ( -7\nu^{10} - 190\nu^{6} - 749\nu^{2} ) / 38 Copy content Toggle raw display
β8\beta_{8}== (24ν113ν9+646ν776ν5+2530ν3245ν)/76 ( 24\nu^{11} - 3\nu^{9} + 646\nu^{7} - 76\nu^{5} + 2530\nu^{3} - 245\nu ) / 76 Copy content Toggle raw display
β9\beta_{9}== (24ν113ν9646ν776ν52530ν3245ν)/76 ( -24\nu^{11} - 3\nu^{9} - 646\nu^{7} - 76\nu^{5} - 2530\nu^{3} - 245\nu ) / 76 Copy content Toggle raw display
β10\beta_{10}== (35ν11950ν73859ν3)/76 ( -35\nu^{11} - 950\nu^{7} - 3859\nu^{3} ) / 76 Copy content Toggle raw display
β11\beta_{11}== (69ν111862ν77345ν3)/76 ( -69\nu^{11} - 1862\nu^{7} - 7345\nu^{3} ) / 76 Copy content Toggle raw display
ν\nu== (β9β8+β3+β2)/2 ( -\beta_{9} - \beta_{8} + \beta_{3} + \beta_{2} ) / 2 Copy content Toggle raw display
ν2\nu^{2}== β7+2β6 \beta_{7} + 2\beta_{6} Copy content Toggle raw display
ν3\nu^{3}== (5β113β105β9+5β8)/2 ( 5\beta_{11} - 3\beta_{10} - 5\beta_{9} + 5\beta_{8} ) / 2 Copy content Toggle raw display
ν4\nu^{4}== β5+β4+4β17 \beta_{5} + \beta_{4} + 4\beta _1 - 7 Copy content Toggle raw display
ν5\nu^{5}== (25β9+25β823β311β2)/2 ( 25\beta_{9} + 25\beta_{8} - 23\beta_{3} - 11\beta_{2} ) / 2 Copy content Toggle raw display
ν6\nu^{6}== 17β728β6+7β57β4 -17\beta_{7} - 28\beta_{6} + 7\beta_{5} - 7\beta_{4} Copy content Toggle raw display
ν7\nu^{7}== (107β11+45β10+121β9121β8)/2 ( -107\beta_{11} + 45\beta_{10} + 121\beta_{9} - 121\beta_{8} ) / 2 Copy content Toggle raw display
ν8\nu^{8}== 38β538β476β1+121 -38\beta_{5} - 38\beta_{4} - 76\beta _1 + 121 Copy content Toggle raw display
ν9\nu^{9}== (577β9577β8+501β3+197β2)/2 ( -577\beta_{9} - 577\beta_{8} + 501\beta_{3} + 197\beta_{2} ) / 2 Copy content Toggle raw display
ν10\nu^{10}== 349β7+546β6190β5+190β4 349\beta_{7} + 546\beta_{6} - 190\beta_{5} + 190\beta_{4} Copy content Toggle raw display
ν11\nu^{11}== (2353β11895β102733β9+2733β8)/2 ( 2353\beta_{11} - 895\beta_{10} - 2733\beta_{9} + 2733\beta_{8} ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/936Z)×\left(\mathbb{Z}/936\mathbb{Z}\right)^\times.

nn 145145 209209 469469 703703
χ(n)\chi(n) β6-\beta_{6} 1-1 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
161.1
1.04736 + 1.04736i
0.219986 + 0.219986i
1.53448 + 1.53448i
−1.53448 1.53448i
−0.219986 0.219986i
−1.04736 1.04736i
1.04736 1.04736i
0.219986 0.219986i
1.53448 1.53448i
−1.53448 + 1.53448i
−0.219986 + 0.219986i
−1.04736 + 1.04736i
0 0 0 −2.93897 2.93897i 0 −1.67513 1.67513i 0 0 0
161.2 0 0 0 −1.07864 1.07864i 0 2.21432 + 2.21432i 0 0 0
161.3 0 0 0 −0.446112 0.446112i 0 −0.539189 0.539189i 0 0 0
161.4 0 0 0 0.446112 + 0.446112i 0 −0.539189 0.539189i 0 0 0
161.5 0 0 0 1.07864 + 1.07864i 0 2.21432 + 2.21432i 0 0 0
161.6 0 0 0 2.93897 + 2.93897i 0 −1.67513 1.67513i 0 0 0
593.1 0 0 0 −2.93897 + 2.93897i 0 −1.67513 + 1.67513i 0 0 0
593.2 0 0 0 −1.07864 + 1.07864i 0 2.21432 2.21432i 0 0 0
593.3 0 0 0 −0.446112 + 0.446112i 0 −0.539189 + 0.539189i 0 0 0
593.4 0 0 0 0.446112 0.446112i 0 −0.539189 + 0.539189i 0 0 0
593.5 0 0 0 1.07864 1.07864i 0 2.21432 2.21432i 0 0 0
593.6 0 0 0 2.93897 2.93897i 0 −1.67513 + 1.67513i 0 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 161.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
13.d odd 4 1 inner
39.f even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 936.2.ba.b 12
3.b odd 2 1 inner 936.2.ba.b 12
4.b odd 2 1 1872.2.bi.e 12
12.b even 2 1 1872.2.bi.e 12
13.d odd 4 1 inner 936.2.ba.b 12
39.f even 4 1 inner 936.2.ba.b 12
52.f even 4 1 1872.2.bi.e 12
156.l odd 4 1 1872.2.bi.e 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
936.2.ba.b 12 1.a even 1 1 trivial
936.2.ba.b 12 3.b odd 2 1 inner
936.2.ba.b 12 13.d odd 4 1 inner
936.2.ba.b 12 39.f even 4 1 inner
1872.2.bi.e 12 4.b odd 2 1
1872.2.bi.e 12 12.b even 2 1
1872.2.bi.e 12 52.f even 4 1
1872.2.bi.e 12 156.l odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T512+304T58+1664T54+256 T_{5}^{12} + 304T_{5}^{8} + 1664T_{5}^{4} + 256 acting on S2new(936,[χ])S_{2}^{\mathrm{new}}(936, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T12 T^{12} Copy content Toggle raw display
33 T12 T^{12} Copy content Toggle raw display
55 T12+304T8++256 T^{12} + 304 T^{8} + \cdots + 256 Copy content Toggle raw display
77 (T6+8T3+64T2++32)2 (T^{6} + 8 T^{3} + 64 T^{2} + \cdots + 32)^{2} Copy content Toggle raw display
1111 T12+80T8++256 T^{12} + 80 T^{8} + \cdots + 256 Copy content Toggle raw display
1313 (T6+2T5++2197)2 (T^{6} + 2 T^{5} + \cdots + 2197)^{2} Copy content Toggle raw display
1717 (T22)6 (T^{2} - 2)^{6} Copy content Toggle raw display
1919 (T68T5++11552)2 (T^{6} - 8 T^{5} + \cdots + 11552)^{2} Copy content Toggle raw display
2323 (T6112T4+21632)2 (T^{6} - 112 T^{4} + \cdots - 21632)^{2} Copy content Toggle raw display
2929 (T6+22T4+108T2+8)2 (T^{6} + 22 T^{4} + 108 T^{2} + 8)^{2} Copy content Toggle raw display
3131 (T6+4T5+8T4++32)2 (T^{6} + 4 T^{5} + 8 T^{4} + \cdots + 32)^{2} Copy content Toggle raw display
3737 (T614T5++14792)2 (T^{6} - 14 T^{5} + \cdots + 14792)^{2} Copy content Toggle raw display
4141 T12++181063936 T^{12} + \cdots + 181063936 Copy content Toggle raw display
4343 (T6+112T4++6400)2 (T^{6} + 112 T^{4} + \cdots + 6400)^{2} Copy content Toggle raw display
4747 T12++5158686976 T^{12} + \cdots + 5158686976 Copy content Toggle raw display
5353 (T6+70T4+652T2+8)2 (T^{6} + 70 T^{4} + 652 T^{2} + 8)^{2} Copy content Toggle raw display
5959 T12+40112T8++71639296 T^{12} + 40112 T^{8} + \cdots + 71639296 Copy content Toggle raw display
6161 (T314T2++472)4 (T^{3} - 14 T^{2} + \cdots + 472)^{4} Copy content Toggle raw display
6767 (T64T5++800)2 (T^{6} - 4 T^{5} + \cdots + 800)^{2} Copy content Toggle raw display
7171 T12++3797883801856 T^{12} + \cdots + 3797883801856 Copy content Toggle raw display
7373 (T6+6T5++5832)2 (T^{6} + 6 T^{5} + \cdots + 5832)^{2} Copy content Toggle raw display
7979 (T3+16T2++32)4 (T^{3} + 16 T^{2} + \cdots + 32)^{4} Copy content Toggle raw display
8383 T12+16496T8++160000 T^{12} + 16496 T^{8} + \cdots + 160000 Copy content Toggle raw display
8989 T12++41740124416 T^{12} + \cdots + 41740124416 Copy content Toggle raw display
9797 (T630T5+450T4++8)2 (T^{6} - 30 T^{5} + 450 T^{4} + \cdots + 8)^{2} Copy content Toggle raw display
show more
show less