gp: [N,k,chi] = [936,2,Mod(161,936)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(936, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([0, 0, 2, 3]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("936.161");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [12,0,0,0,0,0,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 11 1,\beta_1,\ldots,\beta_{11} 1 , β 1 , … , β 1 1 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 12 + 27 x 8 + 107 x 4 + 1 x^{12} + 27x^{8} + 107x^{4} + 1 x 1 2 + 2 7 x 8 + 1 0 7 x 4 + 1
x^12 + 27*x^8 + 107*x^4 + 1
:
β 1 \beta_{1} β 1 = = =
( ν 8 + 38 ν 4 + 145 ) / 76 ( \nu^{8} + 38\nu^{4} + 145 ) / 76 ( ν 8 + 3 8 ν 4 + 1 4 5 ) / 7 6
(v^8 + 38*v^4 + 145) / 76
β 2 \beta_{2} β 2 = = =
( ν 9 + 38 ν 5 + 373 ν ) / 76 ( \nu^{9} + 38\nu^{5} + 373\nu ) / 76 ( ν 9 + 3 8 ν 5 + 3 7 3 ν ) / 7 6
(v^9 + 38*v^5 + 373*v) / 76
β 3 \beta_{3} β 3 = = =
( − 7 ν 9 − 190 ν 5 − 711 ν ) / 76 ( -7\nu^{9} - 190\nu^{5} - 711\nu ) / 76 ( − 7 ν 9 − 1 9 0 ν 5 − 7 1 1 ν ) / 7 6
(-7*v^9 - 190*v^5 - 711*v) / 76
β 4 \beta_{4} β 4 = = =
( 3 ν 10 − 2 ν 8 + 76 ν 6 − 38 ν 4 + 245 ν 2 − 24 ) / 76 ( 3\nu^{10} - 2\nu^{8} + 76\nu^{6} - 38\nu^{4} + 245\nu^{2} - 24 ) / 76 ( 3 ν 1 0 − 2 ν 8 + 7 6 ν 6 − 3 8 ν 4 + 2 4 5 ν 2 − 2 4 ) / 7 6
(3*v^10 - 2*v^8 + 76*v^6 - 38*v^4 + 245*v^2 - 24) / 76
β 5 \beta_{5} β 5 = = =
( − 3 ν 10 − 2 ν 8 − 76 ν 6 − 38 ν 4 − 245 ν 2 − 24 ) / 76 ( -3\nu^{10} - 2\nu^{8} - 76\nu^{6} - 38\nu^{4} - 245\nu^{2} - 24 ) / 76 ( − 3 ν 1 0 − 2 ν 8 − 7 6 ν 6 − 3 8 ν 4 − 2 4 5 ν 2 − 2 4 ) / 7 6
(-3*v^10 - 2*v^8 - 76*v^6 - 38*v^4 - 245*v^2 - 24) / 76
β 6 \beta_{6} β 6 = = =
( 7 ν 10 + 190 ν 6 + 787 ν 2 ) / 76 ( 7\nu^{10} + 190\nu^{6} + 787\nu^{2} ) / 76 ( 7 ν 1 0 + 1 9 0 ν 6 + 7 8 7 ν 2 ) / 7 6
(7*v^10 + 190*v^6 + 787*v^2) / 76
β 7 \beta_{7} β 7 = = =
( − 7 ν 10 − 190 ν 6 − 749 ν 2 ) / 38 ( -7\nu^{10} - 190\nu^{6} - 749\nu^{2} ) / 38 ( − 7 ν 1 0 − 1 9 0 ν 6 − 7 4 9 ν 2 ) / 3 8
(-7*v^10 - 190*v^6 - 749*v^2) / 38
β 8 \beta_{8} β 8 = = =
( 24 ν 11 − 3 ν 9 + 646 ν 7 − 76 ν 5 + 2530 ν 3 − 245 ν ) / 76 ( 24\nu^{11} - 3\nu^{9} + 646\nu^{7} - 76\nu^{5} + 2530\nu^{3} - 245\nu ) / 76 ( 2 4 ν 1 1 − 3 ν 9 + 6 4 6 ν 7 − 7 6 ν 5 + 2 5 3 0 ν 3 − 2 4 5 ν ) / 7 6
(24*v^11 - 3*v^9 + 646*v^7 - 76*v^5 + 2530*v^3 - 245*v) / 76
β 9 \beta_{9} β 9 = = =
( − 24 ν 11 − 3 ν 9 − 646 ν 7 − 76 ν 5 − 2530 ν 3 − 245 ν ) / 76 ( -24\nu^{11} - 3\nu^{9} - 646\nu^{7} - 76\nu^{5} - 2530\nu^{3} - 245\nu ) / 76 ( − 2 4 ν 1 1 − 3 ν 9 − 6 4 6 ν 7 − 7 6 ν 5 − 2 5 3 0 ν 3 − 2 4 5 ν ) / 7 6
(-24*v^11 - 3*v^9 - 646*v^7 - 76*v^5 - 2530*v^3 - 245*v) / 76
β 10 \beta_{10} β 1 0 = = =
( − 35 ν 11 − 950 ν 7 − 3859 ν 3 ) / 76 ( -35\nu^{11} - 950\nu^{7} - 3859\nu^{3} ) / 76 ( − 3 5 ν 1 1 − 9 5 0 ν 7 − 3 8 5 9 ν 3 ) / 7 6
(-35*v^11 - 950*v^7 - 3859*v^3) / 76
β 11 \beta_{11} β 1 1 = = =
( − 69 ν 11 − 1862 ν 7 − 7345 ν 3 ) / 76 ( -69\nu^{11} - 1862\nu^{7} - 7345\nu^{3} ) / 76 ( − 6 9 ν 1 1 − 1 8 6 2 ν 7 − 7 3 4 5 ν 3 ) / 7 6
(-69*v^11 - 1862*v^7 - 7345*v^3) / 76
ν \nu ν = = =
( − β 9 − β 8 + β 3 + β 2 ) / 2 ( -\beta_{9} - \beta_{8} + \beta_{3} + \beta_{2} ) / 2 ( − β 9 − β 8 + β 3 + β 2 ) / 2
(-b9 - b8 + b3 + b2) / 2
ν 2 \nu^{2} ν 2 = = =
β 7 + 2 β 6 \beta_{7} + 2\beta_{6} β 7 + 2 β 6
b7 + 2*b6
ν 3 \nu^{3} ν 3 = = =
( 5 β 11 − 3 β 10 − 5 β 9 + 5 β 8 ) / 2 ( 5\beta_{11} - 3\beta_{10} - 5\beta_{9} + 5\beta_{8} ) / 2 ( 5 β 1 1 − 3 β 1 0 − 5 β 9 + 5 β 8 ) / 2
(5*b11 - 3*b10 - 5*b9 + 5*b8) / 2
ν 4 \nu^{4} ν 4 = = =
β 5 + β 4 + 4 β 1 − 7 \beta_{5} + \beta_{4} + 4\beta _1 - 7 β 5 + β 4 + 4 β 1 − 7
b5 + b4 + 4*b1 - 7
ν 5 \nu^{5} ν 5 = = =
( 25 β 9 + 25 β 8 − 23 β 3 − 11 β 2 ) / 2 ( 25\beta_{9} + 25\beta_{8} - 23\beta_{3} - 11\beta_{2} ) / 2 ( 2 5 β 9 + 2 5 β 8 − 2 3 β 3 − 1 1 β 2 ) / 2
(25*b9 + 25*b8 - 23*b3 - 11*b2) / 2
ν 6 \nu^{6} ν 6 = = =
− 17 β 7 − 28 β 6 + 7 β 5 − 7 β 4 -17\beta_{7} - 28\beta_{6} + 7\beta_{5} - 7\beta_{4} − 1 7 β 7 − 2 8 β 6 + 7 β 5 − 7 β 4
-17*b7 - 28*b6 + 7*b5 - 7*b4
ν 7 \nu^{7} ν 7 = = =
( − 107 β 11 + 45 β 10 + 121 β 9 − 121 β 8 ) / 2 ( -107\beta_{11} + 45\beta_{10} + 121\beta_{9} - 121\beta_{8} ) / 2 ( − 1 0 7 β 1 1 + 4 5 β 1 0 + 1 2 1 β 9 − 1 2 1 β 8 ) / 2
(-107*b11 + 45*b10 + 121*b9 - 121*b8) / 2
ν 8 \nu^{8} ν 8 = = =
− 38 β 5 − 38 β 4 − 76 β 1 + 121 -38\beta_{5} - 38\beta_{4} - 76\beta _1 + 121 − 3 8 β 5 − 3 8 β 4 − 7 6 β 1 + 1 2 1
-38*b5 - 38*b4 - 76*b1 + 121
ν 9 \nu^{9} ν 9 = = =
( − 577 β 9 − 577 β 8 + 501 β 3 + 197 β 2 ) / 2 ( -577\beta_{9} - 577\beta_{8} + 501\beta_{3} + 197\beta_{2} ) / 2 ( − 5 7 7 β 9 − 5 7 7 β 8 + 5 0 1 β 3 + 1 9 7 β 2 ) / 2
(-577*b9 - 577*b8 + 501*b3 + 197*b2) / 2
ν 10 \nu^{10} ν 1 0 = = =
349 β 7 + 546 β 6 − 190 β 5 + 190 β 4 349\beta_{7} + 546\beta_{6} - 190\beta_{5} + 190\beta_{4} 3 4 9 β 7 + 5 4 6 β 6 − 1 9 0 β 5 + 1 9 0 β 4
349*b7 + 546*b6 - 190*b5 + 190*b4
ν 11 \nu^{11} ν 1 1 = = =
( 2353 β 11 − 895 β 10 − 2733 β 9 + 2733 β 8 ) / 2 ( 2353\beta_{11} - 895\beta_{10} - 2733\beta_{9} + 2733\beta_{8} ) / 2 ( 2 3 5 3 β 1 1 − 8 9 5 β 1 0 − 2 7 3 3 β 9 + 2 7 3 3 β 8 ) / 2
(2353*b11 - 895*b10 - 2733*b9 + 2733*b8) / 2
Character values
We give the values of χ \chi χ on generators for ( Z / 936 Z ) × \left(\mathbb{Z}/936\mathbb{Z}\right)^\times ( Z / 9 3 6 Z ) × .
n n n
145 145 1 4 5
209 209 2 0 9
469 469 4 6 9
703 703 7 0 3
χ ( n ) \chi(n) χ ( n )
− β 6 -\beta_{6} − β 6
− 1 -1 − 1
1 1 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 5 12 + 304 T 5 8 + 1664 T 5 4 + 256 T_{5}^{12} + 304T_{5}^{8} + 1664T_{5}^{4} + 256 T 5 1 2 + 3 0 4 T 5 8 + 1 6 6 4 T 5 4 + 2 5 6
T5^12 + 304*T5^8 + 1664*T5^4 + 256
acting on S 2 n e w ( 936 , [ χ ] ) S_{2}^{\mathrm{new}}(936, [\chi]) S 2 n e w ( 9 3 6 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 12 T^{12} T 1 2
T^12
3 3 3
T 12 T^{12} T 1 2
T^12
5 5 5
T 12 + 304 T 8 + ⋯ + 256 T^{12} + 304 T^{8} + \cdots + 256 T 1 2 + 3 0 4 T 8 + ⋯ + 2 5 6
T^12 + 304*T^8 + 1664*T^4 + 256
7 7 7
( T 6 + 8 T 3 + 64 T 2 + ⋯ + 32 ) 2 (T^{6} + 8 T^{3} + 64 T^{2} + \cdots + 32)^{2} ( T 6 + 8 T 3 + 6 4 T 2 + ⋯ + 3 2 ) 2
(T^6 + 8*T^3 + 64*T^2 + 64*T + 32)^2
11 11 1 1
T 12 + 80 T 8 + ⋯ + 256 T^{12} + 80 T^{8} + \cdots + 256 T 1 2 + 8 0 T 8 + ⋯ + 2 5 6
T^12 + 80*T^8 + 640*T^4 + 256
13 13 1 3
( T 6 + 2 T 5 + ⋯ + 2197 ) 2 (T^{6} + 2 T^{5} + \cdots + 2197)^{2} ( T 6 + 2 T 5 + ⋯ + 2 1 9 7 ) 2
(T^6 + 2*T^5 + 27*T^4 + 44*T^3 + 351*T^2 + 338*T + 2197)^2
17 17 1 7
( T 2 − 2 ) 6 (T^{2} - 2)^{6} ( T 2 − 2 ) 6
(T^2 - 2)^6
19 19 1 9
( T 6 − 8 T 5 + ⋯ + 11552 ) 2 (T^{6} - 8 T^{5} + \cdots + 11552)^{2} ( T 6 − 8 T 5 + ⋯ + 1 1 5 5 2 ) 2
(T^6 - 8*T^5 + 32*T^4 + 8*T^3 + 400*T^2 - 3040*T + 11552)^2
23 23 2 3
( T 6 − 112 T 4 + ⋯ − 21632 ) 2 (T^{6} - 112 T^{4} + \cdots - 21632)^{2} ( T 6 − 1 1 2 T 4 + ⋯ − 2 1 6 3 2 ) 2
(T^6 - 112*T^4 + 3136*T^2 - 21632)^2
29 29 2 9
( T 6 + 22 T 4 + 108 T 2 + 8 ) 2 (T^{6} + 22 T^{4} + 108 T^{2} + 8)^{2} ( T 6 + 2 2 T 4 + 1 0 8 T 2 + 8 ) 2
(T^6 + 22*T^4 + 108*T^2 + 8)^2
31 31 3 1
( T 6 + 4 T 5 + 8 T 4 + ⋯ + 32 ) 2 (T^{6} + 4 T^{5} + 8 T^{4} + \cdots + 32)^{2} ( T 6 + 4 T 5 + 8 T 4 + ⋯ + 3 2 ) 2
(T^6 + 4*T^5 + 8*T^4 - 184*T^3 + 1936*T^2 - 352*T + 32)^2
37 37 3 7
( T 6 − 14 T 5 + ⋯ + 14792 ) 2 (T^{6} - 14 T^{5} + \cdots + 14792)^{2} ( T 6 − 1 4 T 5 + ⋯ + 1 4 7 9 2 ) 2
(T^6 - 14*T^5 + 98*T^4 - 32*T^3 + 100*T^2 - 1720*T + 14792)^2
41 41 4 1
T 12 + ⋯ + 181063936 T^{12} + \cdots + 181063936 T 1 2 + ⋯ + 1 8 1 0 6 3 9 3 6
T^12 + 1760*T^8 + 993280*T^4 + 181063936
43 43 4 3
( T 6 + 112 T 4 + ⋯ + 6400 ) 2 (T^{6} + 112 T^{4} + \cdots + 6400)^{2} ( T 6 + 1 1 2 T 4 + ⋯ + 6 4 0 0 ) 2
(T^6 + 112*T^4 + 2624*T^2 + 6400)^2
47 47 4 7
T 12 + ⋯ + 5158686976 T^{12} + \cdots + 5158686976 T 1 2 + ⋯ + 5 1 5 8 6 8 6 9 7 6
T^12 + 20560*T^8 + 27635840*T^4 + 5158686976
53 53 5 3
( T 6 + 70 T 4 + 652 T 2 + 8 ) 2 (T^{6} + 70 T^{4} + 652 T^{2} + 8)^{2} ( T 6 + 7 0 T 4 + 6 5 2 T 2 + 8 ) 2
(T^6 + 70*T^4 + 652*T^2 + 8)^2
59 59 5 9
T 12 + 40112 T 8 + ⋯ + 71639296 T^{12} + 40112 T^{8} + \cdots + 71639296 T 1 2 + 4 0 1 1 2 T 8 + ⋯ + 7 1 6 3 9 2 9 6
T^12 + 40112*T^8 + 31376512*T^4 + 71639296
61 61 6 1
( T 3 − 14 T 2 + ⋯ + 472 ) 4 (T^{3} - 14 T^{2} + \cdots + 472)^{4} ( T 3 − 1 4 T 2 + ⋯ + 4 7 2 ) 4
(T^3 - 14*T^2 - 28*T + 472)^4
67 67 6 7
( T 6 − 4 T 5 + ⋯ + 800 ) 2 (T^{6} - 4 T^{5} + \cdots + 800)^{2} ( T 6 − 4 T 5 + ⋯ + 8 0 0 ) 2
(T^6 - 4*T^5 + 8*T^4 + 136*T^3 + 576*T^2 + 960*T + 800)^2
71 71 7 1
T 12 + ⋯ + 3797883801856 T^{12} + \cdots + 3797883801856 T 1 2 + ⋯ + 3 7 9 7 8 8 3 8 0 1 8 5 6
T^12 + 100208*T^8 + 1705218688*T^4 + 3797883801856
73 73 7 3
( T 6 + 6 T 5 + ⋯ + 5832 ) 2 (T^{6} + 6 T^{5} + \cdots + 5832)^{2} ( T 6 + 6 T 5 + ⋯ + 5 8 3 2 ) 2
(T^6 + 6*T^5 + 18*T^4 - 432*T^3 + 8100*T^2 + 9720*T + 5832)^2
79 79 7 9
( T 3 + 16 T 2 + ⋯ + 32 ) 4 (T^{3} + 16 T^{2} + \cdots + 32)^{4} ( T 3 + 1 6 T 2 + ⋯ + 3 2 ) 4
(T^3 + 16*T^2 + 48*T + 32)^4
83 83 8 3
T 12 + 16496 T 8 + ⋯ + 160000 T^{12} + 16496 T^{8} + \cdots + 160000 T 1 2 + 1 6 4 9 6 T 8 + ⋯ + 1 6 0 0 0 0
T^12 + 16496*T^8 + 109696*T^4 + 160000
89 89 8 9
T 12 + ⋯ + 41740124416 T^{12} + \cdots + 41740124416 T 1 2 + ⋯ + 4 1 7 4 0 1 2 4 4 1 6
T^12 + 45040*T^8 + 494756480*T^4 + 41740124416
97 97 9 7
( T 6 − 30 T 5 + 450 T 4 + ⋯ + 8 ) 2 (T^{6} - 30 T^{5} + 450 T^{4} + \cdots + 8)^{2} ( T 6 − 3 0 T 5 + 4 5 0 T 4 + ⋯ + 8 ) 2
(T^6 - 30*T^5 + 450*T^4 - 2096*T^3 + 4900*T^2 - 280*T + 8)^2
show more
show less