Properties

Label 936.2.dg.b.829.2
Level $936$
Weight $2$
Character 936.829
Analytic conductor $7.474$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [936,2,Mod(829,936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(936, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("936.829");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.dg (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 829.2
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 936.829
Dual form 936.2.dg.b.901.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.00000i) q^{2} +2.00000i q^{4} +3.73205 q^{5} +(-3.00000 - 1.73205i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(3.73205 + 3.73205i) q^{10} +(1.00000 + 1.73205i) q^{11} +(2.59808 + 2.50000i) q^{13} +(-1.26795 - 4.73205i) q^{14} -4.00000 q^{16} +(-0.232051 + 0.401924i) q^{17} +(-0.633975 + 1.09808i) q^{19} +7.46410i q^{20} +(-0.732051 + 2.73205i) q^{22} +(4.09808 + 7.09808i) q^{23} +8.92820 q^{25} +(0.0980762 + 5.09808i) q^{26} +(3.46410 - 6.00000i) q^{28} +(2.59808 - 1.50000i) q^{29} +4.73205i q^{31} +(-4.00000 - 4.00000i) q^{32} +(-0.633975 + 0.169873i) q^{34} +(-11.1962 - 6.46410i) q^{35} +(-2.13397 - 3.69615i) q^{37} +(-1.73205 + 0.464102i) q^{38} +(-7.46410 + 7.46410i) q^{40} +(7.96410 - 4.59808i) q^{41} +(-2.19615 - 1.26795i) q^{43} +(-3.46410 + 2.00000i) q^{44} +(-3.00000 + 11.1962i) q^{46} -6.73205i q^{47} +(2.50000 + 4.33013i) q^{49} +(8.92820 + 8.92820i) q^{50} +(-5.00000 + 5.19615i) q^{52} -3.92820i q^{53} +(3.73205 + 6.46410i) q^{55} +(9.46410 - 2.53590i) q^{56} +(4.09808 + 1.09808i) q^{58} +(0.267949 - 0.464102i) q^{59} +(-0.866025 - 0.500000i) q^{61} +(-4.73205 + 4.73205i) q^{62} -8.00000i q^{64} +(9.69615 + 9.33013i) q^{65} +(-3.63397 - 6.29423i) q^{67} +(-0.803848 - 0.464102i) q^{68} +(-4.73205 - 17.6603i) q^{70} +(-8.02628 - 4.63397i) q^{71} -1.73205i q^{73} +(1.56218 - 5.83013i) q^{74} +(-2.19615 - 1.26795i) q^{76} -6.92820i q^{77} -10.3923 q^{79} -14.9282 q^{80} +(12.5622 + 3.36603i) q^{82} +1.46410 q^{83} +(-0.866025 + 1.50000i) q^{85} +(-0.928203 - 3.46410i) q^{86} +(-5.46410 - 1.46410i) q^{88} +(-6.46410 + 3.73205i) q^{89} +(-3.46410 - 12.0000i) q^{91} +(-14.1962 + 8.19615i) q^{92} +(6.73205 - 6.73205i) q^{94} +(-2.36603 + 4.09808i) q^{95} +(-5.19615 - 3.00000i) q^{97} +(-1.83013 + 6.83013i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 8 q^{5} - 12 q^{7} - 8 q^{8} + 8 q^{10} + 4 q^{11} - 12 q^{14} - 16 q^{16} + 6 q^{17} - 6 q^{19} + 4 q^{22} + 6 q^{23} + 8 q^{25} - 10 q^{26} - 16 q^{32} - 6 q^{34} - 24 q^{35} - 12 q^{37}+ \cdots + 10 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 + 1.00000i 0.707107 + 0.707107i
\(3\) 0 0
\(4\) 2.00000i 1.00000i
\(5\) 3.73205 1.66902 0.834512 0.550990i \(-0.185750\pi\)
0.834512 + 0.550990i \(0.185750\pi\)
\(6\) 0 0
\(7\) −3.00000 1.73205i −1.13389 0.654654i −0.188982 0.981981i \(-0.560519\pi\)
−0.944911 + 0.327327i \(0.893852\pi\)
\(8\) −2.00000 + 2.00000i −0.707107 + 0.707107i
\(9\) 0 0
\(10\) 3.73205 + 3.73205i 1.18018 + 1.18018i
\(11\) 1.00000 + 1.73205i 0.301511 + 0.522233i 0.976478 0.215615i \(-0.0691756\pi\)
−0.674967 + 0.737848i \(0.735842\pi\)
\(12\) 0 0
\(13\) 2.59808 + 2.50000i 0.720577 + 0.693375i
\(14\) −1.26795 4.73205i −0.338874 1.26469i
\(15\) 0 0
\(16\) −4.00000 −1.00000
\(17\) −0.232051 + 0.401924i −0.0562806 + 0.0974808i −0.892793 0.450467i \(-0.851257\pi\)
0.836512 + 0.547948i \(0.184591\pi\)
\(18\) 0 0
\(19\) −0.633975 + 1.09808i −0.145444 + 0.251916i −0.929538 0.368725i \(-0.879794\pi\)
0.784095 + 0.620641i \(0.213128\pi\)
\(20\) 7.46410i 1.66902i
\(21\) 0 0
\(22\) −0.732051 + 2.73205i −0.156074 + 0.582475i
\(23\) 4.09808 + 7.09808i 0.854508 + 1.48005i 0.877101 + 0.480306i \(0.159475\pi\)
−0.0225928 + 0.999745i \(0.507192\pi\)
\(24\) 0 0
\(25\) 8.92820 1.78564
\(26\) 0.0980762 + 5.09808i 0.0192343 + 0.999815i
\(27\) 0 0
\(28\) 3.46410 6.00000i 0.654654 1.13389i
\(29\) 2.59808 1.50000i 0.482451 0.278543i −0.238987 0.971023i \(-0.576815\pi\)
0.721437 + 0.692480i \(0.243482\pi\)
\(30\) 0 0
\(31\) 4.73205i 0.849901i 0.905216 + 0.424951i \(0.139709\pi\)
−0.905216 + 0.424951i \(0.860291\pi\)
\(32\) −4.00000 4.00000i −0.707107 0.707107i
\(33\) 0 0
\(34\) −0.633975 + 0.169873i −0.108726 + 0.0291330i
\(35\) −11.1962 6.46410i −1.89250 1.09263i
\(36\) 0 0
\(37\) −2.13397 3.69615i −0.350823 0.607644i 0.635571 0.772043i \(-0.280765\pi\)
−0.986394 + 0.164399i \(0.947432\pi\)
\(38\) −1.73205 + 0.464102i −0.280976 + 0.0752872i
\(39\) 0 0
\(40\) −7.46410 + 7.46410i −1.18018 + 1.18018i
\(41\) 7.96410 4.59808i 1.24378 0.718099i 0.273921 0.961752i \(-0.411679\pi\)
0.969862 + 0.243653i \(0.0783459\pi\)
\(42\) 0 0
\(43\) −2.19615 1.26795i −0.334910 0.193360i 0.323109 0.946362i \(-0.395272\pi\)
−0.658019 + 0.753001i \(0.728605\pi\)
\(44\) −3.46410 + 2.00000i −0.522233 + 0.301511i
\(45\) 0 0
\(46\) −3.00000 + 11.1962i −0.442326 + 1.65078i
\(47\) 6.73205i 0.981971i −0.871168 0.490985i \(-0.836637\pi\)
0.871168 0.490985i \(-0.163363\pi\)
\(48\) 0 0
\(49\) 2.50000 + 4.33013i 0.357143 + 0.618590i
\(50\) 8.92820 + 8.92820i 1.26264 + 1.26264i
\(51\) 0 0
\(52\) −5.00000 + 5.19615i −0.693375 + 0.720577i
\(53\) 3.92820i 0.539580i −0.962919 0.269790i \(-0.913046\pi\)
0.962919 0.269790i \(-0.0869543\pi\)
\(54\) 0 0
\(55\) 3.73205 + 6.46410i 0.503230 + 0.871619i
\(56\) 9.46410 2.53590i 1.26469 0.338874i
\(57\) 0 0
\(58\) 4.09808 + 1.09808i 0.538104 + 0.144184i
\(59\) 0.267949 0.464102i 0.0348840 0.0604209i −0.848056 0.529906i \(-0.822227\pi\)
0.882940 + 0.469485i \(0.155560\pi\)
\(60\) 0 0
\(61\) −0.866025 0.500000i −0.110883 0.0640184i 0.443533 0.896258i \(-0.353725\pi\)
−0.554416 + 0.832240i \(0.687058\pi\)
\(62\) −4.73205 + 4.73205i −0.600971 + 0.600971i
\(63\) 0 0
\(64\) 8.00000i 1.00000i
\(65\) 9.69615 + 9.33013i 1.20266 + 1.15726i
\(66\) 0 0
\(67\) −3.63397 6.29423i −0.443961 0.768962i 0.554019 0.832504i \(-0.313094\pi\)
−0.997979 + 0.0635419i \(0.979760\pi\)
\(68\) −0.803848 0.464102i −0.0974808 0.0562806i
\(69\) 0 0
\(70\) −4.73205 17.6603i −0.565588 2.11080i
\(71\) −8.02628 4.63397i −0.952544 0.549952i −0.0586738 0.998277i \(-0.518687\pi\)
−0.893870 + 0.448326i \(0.852021\pi\)
\(72\) 0 0
\(73\) 1.73205i 0.202721i −0.994850 0.101361i \(-0.967680\pi\)
0.994850 0.101361i \(-0.0323196\pi\)
\(74\) 1.56218 5.83013i 0.181599 0.677738i
\(75\) 0 0
\(76\) −2.19615 1.26795i −0.251916 0.145444i
\(77\) 6.92820i 0.789542i
\(78\) 0 0
\(79\) −10.3923 −1.16923 −0.584613 0.811312i \(-0.698754\pi\)
−0.584613 + 0.811312i \(0.698754\pi\)
\(80\) −14.9282 −1.66902
\(81\) 0 0
\(82\) 12.5622 + 3.36603i 1.38726 + 0.371715i
\(83\) 1.46410 0.160706 0.0803530 0.996766i \(-0.474395\pi\)
0.0803530 + 0.996766i \(0.474395\pi\)
\(84\) 0 0
\(85\) −0.866025 + 1.50000i −0.0939336 + 0.162698i
\(86\) −0.928203 3.46410i −0.100091 0.373544i
\(87\) 0 0
\(88\) −5.46410 1.46410i −0.582475 0.156074i
\(89\) −6.46410 + 3.73205i −0.685193 + 0.395597i −0.801809 0.597581i \(-0.796129\pi\)
0.116615 + 0.993177i \(0.462795\pi\)
\(90\) 0 0
\(91\) −3.46410 12.0000i −0.363137 1.25794i
\(92\) −14.1962 + 8.19615i −1.48005 + 0.854508i
\(93\) 0 0
\(94\) 6.73205 6.73205i 0.694358 0.694358i
\(95\) −2.36603 + 4.09808i −0.242749 + 0.420454i
\(96\) 0 0
\(97\) −5.19615 3.00000i −0.527589 0.304604i 0.212445 0.977173i \(-0.431857\pi\)
−0.740034 + 0.672569i \(0.765191\pi\)
\(98\) −1.83013 + 6.83013i −0.184871 + 0.689947i
\(99\) 0 0
\(100\) 17.8564i 1.78564i
\(101\) −9.99038 + 5.76795i −0.994080 + 0.573932i −0.906491 0.422224i \(-0.861249\pi\)
−0.0875887 + 0.996157i \(0.527916\pi\)
\(102\) 0 0
\(103\) 6.19615 0.610525 0.305263 0.952268i \(-0.401256\pi\)
0.305263 + 0.952268i \(0.401256\pi\)
\(104\) −10.1962 + 0.196152i −0.999815 + 0.0192343i
\(105\) 0 0
\(106\) 3.92820 3.92820i 0.381541 0.381541i
\(107\) 15.2942 8.83013i 1.47855 0.853641i 0.478843 0.877900i \(-0.341056\pi\)
0.999706 + 0.0242598i \(0.00772291\pi\)
\(108\) 0 0
\(109\) −6.00000 −0.574696 −0.287348 0.957826i \(-0.592774\pi\)
−0.287348 + 0.957826i \(0.592774\pi\)
\(110\) −2.73205 + 10.1962i −0.260491 + 0.972165i
\(111\) 0 0
\(112\) 12.0000 + 6.92820i 1.13389 + 0.654654i
\(113\) −1.50000 + 2.59808i −0.141108 + 0.244406i −0.927914 0.372794i \(-0.878400\pi\)
0.786806 + 0.617200i \(0.211733\pi\)
\(114\) 0 0
\(115\) 15.2942 + 26.4904i 1.42619 + 2.47024i
\(116\) 3.00000 + 5.19615i 0.278543 + 0.482451i
\(117\) 0 0
\(118\) 0.732051 0.196152i 0.0673907 0.0180573i
\(119\) 1.39230 0.803848i 0.127632 0.0736886i
\(120\) 0 0
\(121\) 3.50000 6.06218i 0.318182 0.551107i
\(122\) −0.366025 1.36603i −0.0331384 0.123674i
\(123\) 0 0
\(124\) −9.46410 −0.849901
\(125\) 14.6603 1.31125
\(126\) 0 0
\(127\) −0.169873 0.294229i −0.0150738 0.0261086i 0.858390 0.512997i \(-0.171465\pi\)
−0.873464 + 0.486889i \(0.838132\pi\)
\(128\) 8.00000 8.00000i 0.707107 0.707107i
\(129\) 0 0
\(130\) 0.366025 + 19.0263i 0.0321026 + 1.66872i
\(131\) 10.7321i 0.937664i −0.883287 0.468832i \(-0.844675\pi\)
0.883287 0.468832i \(-0.155325\pi\)
\(132\) 0 0
\(133\) 3.80385 2.19615i 0.329835 0.190431i
\(134\) 2.66025 9.92820i 0.229811 0.857666i
\(135\) 0 0
\(136\) −0.339746 1.26795i −0.0291330 0.108726i
\(137\) 11.7679 + 6.79423i 1.00540 + 0.580470i 0.909843 0.414953i \(-0.136202\pi\)
0.0955611 + 0.995424i \(0.469535\pi\)
\(138\) 0 0
\(139\) −8.19615 4.73205i −0.695189 0.401367i 0.110364 0.993891i \(-0.464798\pi\)
−0.805553 + 0.592524i \(0.798132\pi\)
\(140\) 12.9282 22.3923i 1.09263 1.89250i
\(141\) 0 0
\(142\) −3.39230 12.6603i −0.284676 1.06242i
\(143\) −1.73205 + 7.00000i −0.144841 + 0.585369i
\(144\) 0 0
\(145\) 9.69615 5.59808i 0.805222 0.464895i
\(146\) 1.73205 1.73205i 0.143346 0.143346i
\(147\) 0 0
\(148\) 7.39230 4.26795i 0.607644 0.350823i
\(149\) −5.86603 + 10.1603i −0.480564 + 0.832360i −0.999751 0.0222997i \(-0.992901\pi\)
0.519188 + 0.854660i \(0.326235\pi\)
\(150\) 0 0
\(151\) 2.19615i 0.178720i 0.995999 + 0.0893602i \(0.0284822\pi\)
−0.995999 + 0.0893602i \(0.971518\pi\)
\(152\) −0.928203 3.46410i −0.0752872 0.280976i
\(153\) 0 0
\(154\) 6.92820 6.92820i 0.558291 0.558291i
\(155\) 17.6603i 1.41851i
\(156\) 0 0
\(157\) 3.92820i 0.313505i −0.987638 0.156752i \(-0.949898\pi\)
0.987638 0.156752i \(-0.0501025\pi\)
\(158\) −10.3923 10.3923i −0.826767 0.826767i
\(159\) 0 0
\(160\) −14.9282 14.9282i −1.18018 1.18018i
\(161\) 28.3923i 2.23763i
\(162\) 0 0
\(163\) 8.19615 14.1962i 0.641972 1.11193i −0.343020 0.939328i \(-0.611450\pi\)
0.984992 0.172600i \(-0.0552169\pi\)
\(164\) 9.19615 + 15.9282i 0.718099 + 1.24378i
\(165\) 0 0
\(166\) 1.46410 + 1.46410i 0.113636 + 0.113636i
\(167\) 4.26795 2.46410i 0.330264 0.190678i −0.325694 0.945475i \(-0.605598\pi\)
0.655958 + 0.754797i \(0.272265\pi\)
\(168\) 0 0
\(169\) 0.500000 + 12.9904i 0.0384615 + 0.999260i
\(170\) −2.36603 + 0.633975i −0.181466 + 0.0486236i
\(171\) 0 0
\(172\) 2.53590 4.39230i 0.193360 0.334910i
\(173\) −16.3923 9.46410i −1.24628 0.719542i −0.275918 0.961181i \(-0.588982\pi\)
−0.970366 + 0.241639i \(0.922315\pi\)
\(174\) 0 0
\(175\) −26.7846 15.4641i −2.02473 1.16898i
\(176\) −4.00000 6.92820i −0.301511 0.522233i
\(177\) 0 0
\(178\) −10.1962 2.73205i −0.764234 0.204776i
\(179\) 12.0000 6.92820i 0.896922 0.517838i 0.0207218 0.999785i \(-0.493404\pi\)
0.876200 + 0.481947i \(0.160070\pi\)
\(180\) 0 0
\(181\) 18.4641i 1.37243i 0.727401 + 0.686213i \(0.240728\pi\)
−0.727401 + 0.686213i \(0.759272\pi\)
\(182\) 8.53590 15.4641i 0.632723 1.14628i
\(183\) 0 0
\(184\) −22.3923 6.00000i −1.65078 0.442326i
\(185\) −7.96410 13.7942i −0.585532 1.01417i
\(186\) 0 0
\(187\) −0.928203 −0.0678769
\(188\) 13.4641 0.981971
\(189\) 0 0
\(190\) −6.46410 + 1.73205i −0.468955 + 0.125656i
\(191\) 1.90192 3.29423i 0.137618 0.238362i −0.788976 0.614424i \(-0.789389\pi\)
0.926595 + 0.376062i \(0.122722\pi\)
\(192\) 0 0
\(193\) 11.3038 6.52628i 0.813669 0.469772i −0.0345595 0.999403i \(-0.511003\pi\)
0.848228 + 0.529631i \(0.177670\pi\)
\(194\) −2.19615 8.19615i −0.157675 0.588449i
\(195\) 0 0
\(196\) −8.66025 + 5.00000i −0.618590 + 0.357143i
\(197\) −6.26795 10.8564i −0.446573 0.773487i 0.551587 0.834117i \(-0.314022\pi\)
−0.998160 + 0.0606302i \(0.980689\pi\)
\(198\) 0 0
\(199\) 7.56218 13.0981i 0.536069 0.928498i −0.463042 0.886336i \(-0.653242\pi\)
0.999111 0.0421618i \(-0.0134245\pi\)
\(200\) −17.8564 + 17.8564i −1.26264 + 1.26264i
\(201\) 0 0
\(202\) −15.7583 4.22243i −1.10875 0.297089i
\(203\) −10.3923 −0.729397
\(204\) 0 0
\(205\) 29.7224 17.1603i 2.07590 1.19852i
\(206\) 6.19615 + 6.19615i 0.431706 + 0.431706i
\(207\) 0 0
\(208\) −10.3923 10.0000i −0.720577 0.693375i
\(209\) −2.53590 −0.175412
\(210\) 0 0
\(211\) 24.7583 14.2942i 1.70443 0.984055i 0.763285 0.646061i \(-0.223585\pi\)
0.941148 0.337994i \(-0.109748\pi\)
\(212\) 7.85641 0.539580
\(213\) 0 0
\(214\) 24.1244 + 6.46410i 1.64911 + 0.441877i
\(215\) −8.19615 4.73205i −0.558973 0.322723i
\(216\) 0 0
\(217\) 8.19615 14.1962i 0.556391 0.963698i
\(218\) −6.00000 6.00000i −0.406371 0.406371i
\(219\) 0 0
\(220\) −12.9282 + 7.46410i −0.871619 + 0.503230i
\(221\) −1.60770 + 0.464102i −0.108145 + 0.0312189i
\(222\) 0 0
\(223\) −22.0981 + 12.7583i −1.47980 + 0.854361i −0.999738 0.0228756i \(-0.992718\pi\)
−0.480058 + 0.877237i \(0.659385\pi\)
\(224\) 5.07180 + 18.9282i 0.338874 + 1.26469i
\(225\) 0 0
\(226\) −4.09808 + 1.09808i −0.272600 + 0.0730429i
\(227\) 13.0263 22.5622i 0.864585 1.49750i −0.00287459 0.999996i \(-0.500915\pi\)
0.867459 0.497508i \(-0.165752\pi\)
\(228\) 0 0
\(229\) −12.9282 −0.854320 −0.427160 0.904176i \(-0.640486\pi\)
−0.427160 + 0.904176i \(0.640486\pi\)
\(230\) −11.1962 + 41.7846i −0.738252 + 2.75520i
\(231\) 0 0
\(232\) −2.19615 + 8.19615i −0.144184 + 0.538104i
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 25.1244i 1.63893i
\(236\) 0.928203 + 0.535898i 0.0604209 + 0.0348840i
\(237\) 0 0
\(238\) 2.19615 + 0.588457i 0.142355 + 0.0381440i
\(239\) 18.3923i 1.18970i 0.803837 + 0.594850i \(0.202788\pi\)
−0.803837 + 0.594850i \(0.797212\pi\)
\(240\) 0 0
\(241\) 9.69615 + 5.59808i 0.624584 + 0.360604i 0.778652 0.627457i \(-0.215904\pi\)
−0.154068 + 0.988060i \(0.549237\pi\)
\(242\) 9.56218 2.56218i 0.614680 0.164703i
\(243\) 0 0
\(244\) 1.00000 1.73205i 0.0640184 0.110883i
\(245\) 9.33013 + 16.1603i 0.596080 + 1.03244i
\(246\) 0 0
\(247\) −4.39230 + 1.26795i −0.279476 + 0.0806777i
\(248\) −9.46410 9.46410i −0.600971 0.600971i
\(249\) 0 0
\(250\) 14.6603 + 14.6603i 0.927196 + 0.927196i
\(251\) −7.09808 4.09808i −0.448027 0.258668i 0.258970 0.965885i \(-0.416617\pi\)
−0.706996 + 0.707217i \(0.749950\pi\)
\(252\) 0 0
\(253\) −8.19615 + 14.1962i −0.515288 + 0.892504i
\(254\) 0.124356 0.464102i 0.00780277 0.0291203i
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) 11.4282 + 19.7942i 0.712872 + 1.23473i 0.963775 + 0.266718i \(0.0859392\pi\)
−0.250903 + 0.968012i \(0.580727\pi\)
\(258\) 0 0
\(259\) 14.7846i 0.918671i
\(260\) −18.6603 + 19.3923i −1.15726 + 1.20266i
\(261\) 0 0
\(262\) 10.7321 10.7321i 0.663028 0.663028i
\(263\) 8.19615 + 14.1962i 0.505396 + 0.875372i 0.999981 + 0.00624249i \(0.00198706\pi\)
−0.494584 + 0.869130i \(0.664680\pi\)
\(264\) 0 0
\(265\) 14.6603i 0.900572i
\(266\) 6.00000 + 1.60770i 0.367884 + 0.0985741i
\(267\) 0 0
\(268\) 12.5885 7.26795i 0.768962 0.443961i
\(269\) 8.19615 + 4.73205i 0.499728 + 0.288518i 0.728601 0.684938i \(-0.240171\pi\)
−0.228873 + 0.973456i \(0.573504\pi\)
\(270\) 0 0
\(271\) −15.0000 + 8.66025i −0.911185 + 0.526073i −0.880812 0.473466i \(-0.843003\pi\)
−0.0303728 + 0.999539i \(0.509669\pi\)
\(272\) 0.928203 1.60770i 0.0562806 0.0974808i
\(273\) 0 0
\(274\) 4.97372 + 18.5622i 0.300473 + 1.12138i
\(275\) 8.92820 + 15.4641i 0.538391 + 0.932520i
\(276\) 0 0
\(277\) −12.4019 7.16025i −0.745159 0.430218i 0.0787828 0.996892i \(-0.474897\pi\)
−0.823942 + 0.566674i \(0.808230\pi\)
\(278\) −3.46410 12.9282i −0.207763 0.775382i
\(279\) 0 0
\(280\) 35.3205 9.46410i 2.11080 0.565588i
\(281\) 10.6603i 0.635937i −0.948101 0.317969i \(-0.896999\pi\)
0.948101 0.317969i \(-0.103001\pi\)
\(282\) 0 0
\(283\) −26.6603 + 15.3923i −1.58479 + 0.914978i −0.590641 + 0.806934i \(0.701125\pi\)
−0.994146 + 0.108043i \(0.965541\pi\)
\(284\) 9.26795 16.0526i 0.549952 0.952544i
\(285\) 0 0
\(286\) −8.73205 + 5.26795i −0.516337 + 0.311500i
\(287\) −31.8564 −1.88042
\(288\) 0 0
\(289\) 8.39230 + 14.5359i 0.493665 + 0.855053i
\(290\) 15.2942 + 4.09808i 0.898108 + 0.240647i
\(291\) 0 0
\(292\) 3.46410 0.202721
\(293\) 1.40192 2.42820i 0.0819013 0.141857i −0.822165 0.569249i \(-0.807234\pi\)
0.904067 + 0.427392i \(0.140567\pi\)
\(294\) 0 0
\(295\) 1.00000 1.73205i 0.0582223 0.100844i
\(296\) 11.6603 + 3.12436i 0.677738 + 0.181599i
\(297\) 0 0
\(298\) −16.0263 + 4.29423i −0.928377 + 0.248758i
\(299\) −7.09808 + 28.6865i −0.410492 + 1.65899i
\(300\) 0 0
\(301\) 4.39230 + 7.60770i 0.253168 + 0.438500i
\(302\) −2.19615 + 2.19615i −0.126374 + 0.126374i
\(303\) 0 0
\(304\) 2.53590 4.39230i 0.145444 0.251916i
\(305\) −3.23205 1.86603i −0.185067 0.106848i
\(306\) 0 0
\(307\) −2.19615 −0.125341 −0.0626705 0.998034i \(-0.519962\pi\)
−0.0626705 + 0.998034i \(0.519962\pi\)
\(308\) 13.8564 0.789542
\(309\) 0 0
\(310\) −17.6603 + 17.6603i −1.00304 + 1.00304i
\(311\) 18.5885 1.05405 0.527027 0.849848i \(-0.323307\pi\)
0.527027 + 0.849848i \(0.323307\pi\)
\(312\) 0 0
\(313\) −2.53590 −0.143337 −0.0716687 0.997428i \(-0.522832\pi\)
−0.0716687 + 0.997428i \(0.522832\pi\)
\(314\) 3.92820 3.92820i 0.221681 0.221681i
\(315\) 0 0
\(316\) 20.7846i 1.16923i
\(317\) 25.1962 1.41516 0.707578 0.706635i \(-0.249788\pi\)
0.707578 + 0.706635i \(0.249788\pi\)
\(318\) 0 0
\(319\) 5.19615 + 3.00000i 0.290929 + 0.167968i
\(320\) 29.8564i 1.66902i
\(321\) 0 0
\(322\) 28.3923 28.3923i 1.58224 1.58224i
\(323\) −0.294229 0.509619i −0.0163713 0.0283560i
\(324\) 0 0
\(325\) 23.1962 + 22.3205i 1.28669 + 1.23812i
\(326\) 22.3923 6.00000i 1.24020 0.332309i
\(327\) 0 0
\(328\) −6.73205 + 25.1244i −0.371715 + 1.38726i
\(329\) −11.6603 + 20.1962i −0.642851 + 1.11345i
\(330\) 0 0
\(331\) −6.00000 + 10.3923i −0.329790 + 0.571213i −0.982470 0.186421i \(-0.940311\pi\)
0.652680 + 0.757634i \(0.273645\pi\)
\(332\) 2.92820i 0.160706i
\(333\) 0 0
\(334\) 6.73205 + 1.80385i 0.368361 + 0.0987021i
\(335\) −13.5622 23.4904i −0.740981 1.28342i
\(336\) 0 0
\(337\) −33.2487 −1.81117 −0.905586 0.424162i \(-0.860569\pi\)
−0.905586 + 0.424162i \(0.860569\pi\)
\(338\) −12.4904 + 13.4904i −0.679387 + 0.733780i
\(339\) 0 0
\(340\) −3.00000 1.73205i −0.162698 0.0939336i
\(341\) −8.19615 + 4.73205i −0.443847 + 0.256255i
\(342\) 0 0
\(343\) 6.92820i 0.374088i
\(344\) 6.92820 1.85641i 0.373544 0.100091i
\(345\) 0 0
\(346\) −6.92820 25.8564i −0.372463 1.39005i
\(347\) −1.09808 0.633975i −0.0589478 0.0340335i 0.470236 0.882540i \(-0.344169\pi\)
−0.529184 + 0.848507i \(0.677502\pi\)
\(348\) 0 0
\(349\) −2.66025 4.60770i −0.142400 0.246644i 0.786000 0.618227i \(-0.212149\pi\)
−0.928400 + 0.371582i \(0.878815\pi\)
\(350\) −11.3205 42.2487i −0.605107 2.25829i
\(351\) 0 0
\(352\) 2.92820 10.9282i 0.156074 0.582475i
\(353\) 15.8205 9.13397i 0.842041 0.486152i −0.0159167 0.999873i \(-0.505067\pi\)
0.857957 + 0.513721i \(0.171733\pi\)
\(354\) 0 0
\(355\) −29.9545 17.2942i −1.58982 0.917882i
\(356\) −7.46410 12.9282i −0.395597 0.685193i
\(357\) 0 0
\(358\) 18.9282 + 5.07180i 1.00039 + 0.268053i
\(359\) 13.0718i 0.689903i 0.938621 + 0.344952i \(0.112105\pi\)
−0.938621 + 0.344952i \(0.887895\pi\)
\(360\) 0 0
\(361\) 8.69615 + 15.0622i 0.457692 + 0.792746i
\(362\) −18.4641 + 18.4641i −0.970452 + 0.970452i
\(363\) 0 0
\(364\) 24.0000 6.92820i 1.25794 0.363137i
\(365\) 6.46410i 0.338347i
\(366\) 0 0
\(367\) 14.0981 + 24.4186i 0.735914 + 1.27464i 0.954321 + 0.298782i \(0.0965804\pi\)
−0.218408 + 0.975858i \(0.570086\pi\)
\(368\) −16.3923 28.3923i −0.854508 1.48005i
\(369\) 0 0
\(370\) 5.83013 21.7583i 0.303094 1.13116i
\(371\) −6.80385 + 11.7846i −0.353238 + 0.611826i
\(372\) 0 0
\(373\) −22.3301 12.8923i −1.15621 0.667538i −0.205817 0.978590i \(-0.565985\pi\)
−0.950393 + 0.311052i \(0.899319\pi\)
\(374\) −0.928203 0.928203i −0.0479962 0.0479962i
\(375\) 0 0
\(376\) 13.4641 + 13.4641i 0.694358 + 0.694358i
\(377\) 10.5000 + 2.59808i 0.540778 + 0.133808i
\(378\) 0 0
\(379\) 11.0263 + 19.0981i 0.566382 + 0.981002i 0.996920 + 0.0784297i \(0.0249906\pi\)
−0.430538 + 0.902573i \(0.641676\pi\)
\(380\) −8.19615 4.73205i −0.420454 0.242749i
\(381\) 0 0
\(382\) 5.19615 1.39230i 0.265858 0.0712365i
\(383\) −17.3205 10.0000i −0.885037 0.510976i −0.0127209 0.999919i \(-0.504049\pi\)
−0.872316 + 0.488943i \(0.837383\pi\)
\(384\) 0 0
\(385\) 25.8564i 1.31776i
\(386\) 17.8301 + 4.77757i 0.907530 + 0.243172i
\(387\) 0 0
\(388\) 6.00000 10.3923i 0.304604 0.527589i
\(389\) 18.7128i 0.948777i 0.880316 + 0.474389i \(0.157331\pi\)
−0.880316 + 0.474389i \(0.842669\pi\)
\(390\) 0 0
\(391\) −3.80385 −0.192369
\(392\) −13.6603 3.66025i −0.689947 0.184871i
\(393\) 0 0
\(394\) 4.58846 17.1244i 0.231163 0.862713i
\(395\) −38.7846 −1.95147
\(396\) 0 0
\(397\) 12.1244 21.0000i 0.608504 1.05396i −0.382983 0.923755i \(-0.625103\pi\)
0.991487 0.130204i \(-0.0415634\pi\)
\(398\) 20.6603 5.53590i 1.03560 0.277490i
\(399\) 0 0
\(400\) −35.7128 −1.78564
\(401\) −8.42820 + 4.86603i −0.420884 + 0.242998i −0.695456 0.718569i \(-0.744797\pi\)
0.274571 + 0.961567i \(0.411464\pi\)
\(402\) 0 0
\(403\) −11.8301 + 12.2942i −0.589301 + 0.612419i
\(404\) −11.5359 19.9808i −0.573932 0.994080i
\(405\) 0 0
\(406\) −10.3923 10.3923i −0.515761 0.515761i
\(407\) 4.26795 7.39230i 0.211554 0.366423i
\(408\) 0 0
\(409\) 0.696152 + 0.401924i 0.0344225 + 0.0198739i 0.517113 0.855917i \(-0.327007\pi\)
−0.482690 + 0.875791i \(0.660340\pi\)
\(410\) 46.8827 + 12.5622i 2.31537 + 0.620402i
\(411\) 0 0
\(412\) 12.3923i 0.610525i
\(413\) −1.60770 + 0.928203i −0.0791095 + 0.0456739i
\(414\) 0 0
\(415\) 5.46410 0.268222
\(416\) −0.392305 20.3923i −0.0192343 0.999815i
\(417\) 0 0
\(418\) −2.53590 2.53590i −0.124035 0.124035i
\(419\) −16.9019 + 9.75833i −0.825713 + 0.476726i −0.852383 0.522919i \(-0.824843\pi\)
0.0266696 + 0.999644i \(0.491510\pi\)
\(420\) 0 0
\(421\) 30.1244 1.46817 0.734086 0.679057i \(-0.237611\pi\)
0.734086 + 0.679057i \(0.237611\pi\)
\(422\) 39.0526 + 10.4641i 1.90105 + 0.509384i
\(423\) 0 0
\(424\) 7.85641 + 7.85641i 0.381541 + 0.381541i
\(425\) −2.07180 + 3.58846i −0.100497 + 0.174066i
\(426\) 0 0
\(427\) 1.73205 + 3.00000i 0.0838198 + 0.145180i
\(428\) 17.6603 + 30.5885i 0.853641 + 1.47855i
\(429\) 0 0
\(430\) −3.46410 12.9282i −0.167054 0.623453i
\(431\) −15.4641 + 8.92820i −0.744880 + 0.430056i −0.823841 0.566821i \(-0.808173\pi\)
0.0789612 + 0.996878i \(0.474840\pi\)
\(432\) 0 0
\(433\) −10.5000 + 18.1865i −0.504598 + 0.873989i 0.495388 + 0.868672i \(0.335026\pi\)
−0.999986 + 0.00531724i \(0.998307\pi\)
\(434\) 22.3923 6.00000i 1.07487 0.288009i
\(435\) 0 0
\(436\) 12.0000i 0.574696i
\(437\) −10.3923 −0.497131
\(438\) 0 0
\(439\) −7.80385 13.5167i −0.372457 0.645115i 0.617486 0.786582i \(-0.288151\pi\)
−0.989943 + 0.141467i \(0.954818\pi\)
\(440\) −20.3923 5.46410i −0.972165 0.260491i
\(441\) 0 0
\(442\) −2.07180 1.14359i −0.0985453 0.0543952i
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) −24.1244 + 13.9282i −1.14360 + 0.660260i
\(446\) −34.8564 9.33975i −1.65050 0.442250i
\(447\) 0 0
\(448\) −13.8564 + 24.0000i −0.654654 + 1.13389i
\(449\) −18.4641 10.6603i −0.871375 0.503088i −0.00356996 0.999994i \(-0.501136\pi\)
−0.867805 + 0.496905i \(0.834470\pi\)
\(450\) 0 0
\(451\) 15.9282 + 9.19615i 0.750030 + 0.433030i
\(452\) −5.19615 3.00000i −0.244406 0.141108i
\(453\) 0 0
\(454\) 35.5885 9.53590i 1.67025 0.447542i
\(455\) −12.9282 44.7846i −0.606084 2.09953i
\(456\) 0 0
\(457\) 6.69615 3.86603i 0.313233 0.180845i −0.335139 0.942169i \(-0.608783\pi\)
0.648372 + 0.761324i \(0.275450\pi\)
\(458\) −12.9282 12.9282i −0.604095 0.604095i
\(459\) 0 0
\(460\) −52.9808 + 30.5885i −2.47024 + 1.42619i
\(461\) −14.3301 + 24.8205i −0.667421 + 1.15601i 0.311202 + 0.950344i \(0.399268\pi\)
−0.978623 + 0.205663i \(0.934065\pi\)
\(462\) 0 0
\(463\) 16.3923i 0.761815i −0.924613 0.380908i \(-0.875612\pi\)
0.924613 0.380908i \(-0.124388\pi\)
\(464\) −10.3923 + 6.00000i −0.482451 + 0.278543i
\(465\) 0 0
\(466\) 0 0
\(467\) 20.5359i 0.950288i 0.879908 + 0.475144i \(0.157604\pi\)
−0.879908 + 0.475144i \(0.842396\pi\)
\(468\) 0 0
\(469\) 25.1769i 1.16256i
\(470\) 25.1244 25.1244i 1.15890 1.15890i
\(471\) 0 0
\(472\) 0.392305 + 1.46410i 0.0180573 + 0.0673907i
\(473\) 5.07180i 0.233201i
\(474\) 0 0
\(475\) −5.66025 + 9.80385i −0.259710 + 0.449831i
\(476\) 1.60770 + 2.78461i 0.0736886 + 0.127632i
\(477\) 0 0
\(478\) −18.3923 + 18.3923i −0.841244 + 0.841244i
\(479\) 25.3468 14.6340i 1.15812 0.668643i 0.207271 0.978284i \(-0.433542\pi\)
0.950854 + 0.309640i \(0.100209\pi\)
\(480\) 0 0
\(481\) 3.69615 14.9378i 0.168530 0.681106i
\(482\) 4.09808 + 15.2942i 0.186662 + 0.696633i
\(483\) 0 0
\(484\) 12.1244 + 7.00000i 0.551107 + 0.318182i
\(485\) −19.3923 11.1962i −0.880559 0.508391i
\(486\) 0 0
\(487\) 20.1962 + 11.6603i 0.915175 + 0.528377i 0.882093 0.471076i \(-0.156134\pi\)
0.0330824 + 0.999453i \(0.489468\pi\)
\(488\) 2.73205 0.732051i 0.123674 0.0331384i
\(489\) 0 0
\(490\) −6.83013 + 25.4904i −0.308554 + 1.15154i
\(491\) −6.58846 + 3.80385i −0.297333 + 0.171665i −0.641244 0.767337i \(-0.721581\pi\)
0.343911 + 0.939002i \(0.388248\pi\)
\(492\) 0 0
\(493\) 1.39230i 0.0627063i
\(494\) −5.66025 3.12436i −0.254667 0.140571i
\(495\) 0 0
\(496\) 18.9282i 0.849901i
\(497\) 16.0526 + 27.8038i 0.720056 + 1.24717i
\(498\) 0 0
\(499\) −8.87564 −0.397328 −0.198664 0.980068i \(-0.563660\pi\)
−0.198664 + 0.980068i \(0.563660\pi\)
\(500\) 29.3205i 1.31125i
\(501\) 0 0
\(502\) −3.00000 11.1962i −0.133897 0.499709i
\(503\) 4.39230 7.60770i 0.195843 0.339210i −0.751333 0.659923i \(-0.770589\pi\)
0.947177 + 0.320712i \(0.103922\pi\)
\(504\) 0 0
\(505\) −37.2846 + 21.5263i −1.65914 + 0.957907i
\(506\) −22.3923 + 6.00000i −0.995459 + 0.266733i
\(507\) 0 0
\(508\) 0.588457 0.339746i 0.0261086 0.0150738i
\(509\) 3.93782 + 6.82051i 0.174541 + 0.302314i 0.940002 0.341168i \(-0.110823\pi\)
−0.765461 + 0.643482i \(0.777489\pi\)
\(510\) 0 0
\(511\) −3.00000 + 5.19615i −0.132712 + 0.229864i
\(512\) 16.0000 + 16.0000i 0.707107 + 0.707107i
\(513\) 0 0
\(514\) −8.36603 + 31.2224i −0.369010 + 1.37716i
\(515\) 23.1244 1.01898
\(516\) 0 0
\(517\) 11.6603 6.73205i 0.512817 0.296075i
\(518\) −14.7846 + 14.7846i −0.649598 + 0.649598i
\(519\) 0 0
\(520\) −38.0526 + 0.732051i −1.66872 + 0.0321026i
\(521\) −9.24871 −0.405193 −0.202597 0.979262i \(-0.564938\pi\)
−0.202597 + 0.979262i \(0.564938\pi\)
\(522\) 0 0
\(523\) 0.803848 0.464102i 0.0351498 0.0202937i −0.482322 0.875994i \(-0.660207\pi\)
0.517472 + 0.855700i \(0.326873\pi\)
\(524\) 21.4641 0.937664
\(525\) 0 0
\(526\) −6.00000 + 22.3923i −0.261612 + 0.976351i
\(527\) −1.90192 1.09808i −0.0828491 0.0478330i
\(528\) 0 0
\(529\) −22.0885 + 38.2583i −0.960368 + 1.66341i
\(530\) 14.6603 14.6603i 0.636801 0.636801i
\(531\) 0 0
\(532\) 4.39230 + 7.60770i 0.190431 + 0.329835i
\(533\) 32.1865 + 7.96410i 1.39415 + 0.344964i
\(534\) 0 0
\(535\) 57.0788 32.9545i 2.46773 1.42475i
\(536\) 19.8564 + 5.32051i 0.857666 + 0.229811i
\(537\) 0 0
\(538\) 3.46410 + 12.9282i 0.149348 + 0.557374i
\(539\) −5.00000 + 8.66025i −0.215365 + 0.373024i
\(540\) 0 0
\(541\) −35.4449 −1.52389 −0.761947 0.647640i \(-0.775756\pi\)
−0.761947 + 0.647640i \(0.775756\pi\)
\(542\) −23.6603 6.33975i −1.01629 0.272315i
\(543\) 0 0
\(544\) 2.53590 0.679492i 0.108726 0.0291330i
\(545\) −22.3923 −0.959181
\(546\) 0 0
\(547\) 18.5885i 0.794785i 0.917649 + 0.397393i \(0.130085\pi\)
−0.917649 + 0.397393i \(0.869915\pi\)
\(548\) −13.5885 + 23.5359i −0.580470 + 1.00540i
\(549\) 0 0
\(550\) −6.53590 + 24.3923i −0.278692 + 1.04009i
\(551\) 3.80385i 0.162049i
\(552\) 0 0
\(553\) 31.1769 + 18.0000i 1.32578 + 0.765438i
\(554\) −5.24167 19.5622i −0.222697 0.831117i
\(555\) 0 0
\(556\) 9.46410 16.3923i 0.401367 0.695189i
\(557\) −2.40192 4.16025i −0.101773 0.176276i 0.810642 0.585542i \(-0.199118\pi\)
−0.912415 + 0.409266i \(0.865785\pi\)
\(558\) 0 0
\(559\) −2.53590 8.78461i −0.107257 0.371549i
\(560\) 44.7846 + 25.8564i 1.89250 + 1.09263i
\(561\) 0 0
\(562\) 10.6603 10.6603i 0.449676 0.449676i
\(563\) 13.9808 + 8.07180i 0.589219 + 0.340186i 0.764789 0.644281i \(-0.222843\pi\)
−0.175570 + 0.984467i \(0.556177\pi\)
\(564\) 0 0
\(565\) −5.59808 + 9.69615i −0.235513 + 0.407920i
\(566\) −42.0526 11.2679i −1.76760 0.473627i
\(567\) 0 0
\(568\) 25.3205 6.78461i 1.06242 0.284676i
\(569\) −12.0000 20.7846i −0.503066 0.871336i −0.999994 0.00354413i \(-0.998872\pi\)
0.496928 0.867792i \(-0.334461\pi\)
\(570\) 0 0
\(571\) 2.39230i 0.100115i −0.998746 0.0500574i \(-0.984060\pi\)
0.998746 0.0500574i \(-0.0159404\pi\)
\(572\) −14.0000 3.46410i −0.585369 0.144841i
\(573\) 0 0
\(574\) −31.8564 31.8564i −1.32966 1.32966i
\(575\) 36.5885 + 63.3731i 1.52584 + 2.64284i
\(576\) 0 0
\(577\) 34.2679i 1.42659i −0.700862 0.713297i \(-0.747201\pi\)
0.700862 0.713297i \(-0.252799\pi\)
\(578\) −6.14359 + 22.9282i −0.255540 + 0.953688i
\(579\) 0 0
\(580\) 11.1962 + 19.3923i 0.464895 + 0.805222i
\(581\) −4.39230 2.53590i −0.182224 0.105207i
\(582\) 0 0
\(583\) 6.80385 3.92820i 0.281787 0.162690i
\(584\) 3.46410 + 3.46410i 0.143346 + 0.143346i
\(585\) 0 0
\(586\) 3.83013 1.02628i 0.158221 0.0423952i
\(587\) −22.5885 39.1244i −0.932325 1.61483i −0.779335 0.626607i \(-0.784443\pi\)
−0.152990 0.988228i \(-0.548890\pi\)
\(588\) 0 0
\(589\) −5.19615 3.00000i −0.214104 0.123613i
\(590\) 2.73205 0.732051i 0.112477 0.0301381i
\(591\) 0 0
\(592\) 8.53590 + 14.7846i 0.350823 + 0.607644i
\(593\) 1.58846i 0.0652301i −0.999468 0.0326151i \(-0.989616\pi\)
0.999468 0.0326151i \(-0.0103835\pi\)
\(594\) 0 0
\(595\) 5.19615 3.00000i 0.213021 0.122988i
\(596\) −20.3205 11.7321i −0.832360 0.480564i
\(597\) 0 0
\(598\) −35.7846 + 21.5885i −1.46334 + 0.882818i
\(599\) 13.2679 0.542114 0.271057 0.962563i \(-0.412627\pi\)
0.271057 + 0.962563i \(0.412627\pi\)
\(600\) 0 0
\(601\) −13.0359 22.5788i −0.531745 0.921010i −0.999313 0.0370529i \(-0.988203\pi\)
0.467568 0.883957i \(-0.345130\pi\)
\(602\) −3.21539 + 12.0000i −0.131050 + 0.489083i
\(603\) 0 0
\(604\) −4.39230 −0.178720
\(605\) 13.0622 22.6244i 0.531053 0.919811i
\(606\) 0 0
\(607\) −1.29423 + 2.24167i −0.0525311 + 0.0909866i −0.891095 0.453816i \(-0.850062\pi\)
0.838564 + 0.544803i \(0.183396\pi\)
\(608\) 6.92820 1.85641i 0.280976 0.0752872i
\(609\) 0 0
\(610\) −1.36603 5.09808i −0.0553088 0.206415i
\(611\) 16.8301 17.4904i 0.680874 0.707585i
\(612\) 0 0
\(613\) −20.2583 35.0885i −0.818226 1.41721i −0.906988 0.421157i \(-0.861624\pi\)
0.0887617 0.996053i \(-0.471709\pi\)
\(614\) −2.19615 2.19615i −0.0886295 0.0886295i
\(615\) 0 0
\(616\) 13.8564 + 13.8564i 0.558291 + 0.558291i
\(617\) −15.3564 8.86603i −0.618226 0.356933i 0.157952 0.987447i \(-0.449511\pi\)
−0.776178 + 0.630514i \(0.782844\pi\)
\(618\) 0 0
\(619\) 24.2487 0.974638 0.487319 0.873224i \(-0.337975\pi\)
0.487319 + 0.873224i \(0.337975\pi\)
\(620\) −35.3205 −1.41851
\(621\) 0 0
\(622\) 18.5885 + 18.5885i 0.745329 + 0.745329i
\(623\) 25.8564 1.03592
\(624\) 0 0
\(625\) 10.0718 0.402872
\(626\) −2.53590 2.53590i −0.101355 0.101355i
\(627\) 0 0
\(628\) 7.85641 0.313505
\(629\) 1.98076 0.0789782
\(630\) 0 0
\(631\) −14.7846 8.53590i −0.588566 0.339809i 0.175964 0.984397i \(-0.443696\pi\)
−0.764530 + 0.644588i \(0.777029\pi\)
\(632\) 20.7846 20.7846i 0.826767 0.826767i
\(633\) 0 0
\(634\) 25.1962 + 25.1962i 1.00067 + 1.00067i
\(635\) −0.633975 1.09808i −0.0251585 0.0435758i
\(636\) 0 0
\(637\) −4.33013 + 17.5000i −0.171566 + 0.693375i
\(638\) 2.19615 + 8.19615i 0.0869465 + 0.324489i
\(639\) 0 0
\(640\) 29.8564 29.8564i 1.18018 1.18018i
\(641\) −7.03590 + 12.1865i −0.277901 + 0.481339i −0.970863 0.239635i \(-0.922972\pi\)
0.692962 + 0.720974i \(0.256305\pi\)
\(642\) 0 0
\(643\) 19.3923 33.5885i 0.764758 1.32460i −0.175617 0.984459i \(-0.556192\pi\)
0.940375 0.340141i \(-0.110475\pi\)
\(644\) 56.7846 2.23763
\(645\) 0 0
\(646\) 0.215390 0.803848i 0.00847442 0.0316270i
\(647\) 14.8301 + 25.6865i 0.583032 + 1.00984i 0.995118 + 0.0986965i \(0.0314673\pi\)
−0.412085 + 0.911145i \(0.635199\pi\)
\(648\) 0 0
\(649\) 1.07180 0.0420717
\(650\) 0.875644 + 45.5167i 0.0343456 + 1.78531i
\(651\) 0 0
\(652\) 28.3923 + 16.3923i 1.11193 + 0.641972i
\(653\) −31.1769 + 18.0000i −1.22005 + 0.704394i −0.964928 0.262515i \(-0.915448\pi\)
−0.255119 + 0.966910i \(0.582115\pi\)
\(654\) 0 0
\(655\) 40.0526i 1.56498i
\(656\) −31.8564 + 18.3923i −1.24378 + 0.718099i
\(657\) 0 0
\(658\) −31.8564 + 8.53590i −1.24189 + 0.332764i
\(659\) 26.7846 + 15.4641i 1.04338 + 0.602396i 0.920789 0.390061i \(-0.127546\pi\)
0.122591 + 0.992457i \(0.460880\pi\)
\(660\) 0 0
\(661\) −6.06218 10.5000i −0.235791 0.408403i 0.723711 0.690103i \(-0.242435\pi\)
−0.959502 + 0.281701i \(0.909102\pi\)
\(662\) −16.3923 + 4.39230i −0.637105 + 0.170712i
\(663\) 0 0
\(664\) −2.92820 + 2.92820i −0.113636 + 0.113636i
\(665\) 14.1962 8.19615i 0.550503 0.317833i
\(666\) 0 0
\(667\) 21.2942 + 12.2942i 0.824516 + 0.476034i
\(668\) 4.92820 + 8.53590i 0.190678 + 0.330264i
\(669\) 0 0
\(670\) 9.92820 37.0526i 0.383560 1.43147i
\(671\) 2.00000i 0.0772091i
\(672\) 0 0
\(673\) 5.50000 + 9.52628i 0.212009 + 0.367211i 0.952343 0.305028i \(-0.0986659\pi\)
−0.740334 + 0.672239i \(0.765333\pi\)
\(674\) −33.2487 33.2487i −1.28069 1.28069i
\(675\) 0 0
\(676\) −25.9808 + 1.00000i −0.999260 + 0.0384615i
\(677\) 7.85641i 0.301946i 0.988538 + 0.150973i \(0.0482407\pi\)
−0.988538 + 0.150973i \(0.951759\pi\)
\(678\) 0 0
\(679\) 10.3923 + 18.0000i 0.398820 + 0.690777i
\(680\) −1.26795 4.73205i −0.0486236 0.181466i
\(681\) 0 0
\(682\) −12.9282 3.46410i −0.495046 0.132647i
\(683\) 5.63397 9.75833i 0.215578 0.373392i −0.737873 0.674939i \(-0.764170\pi\)
0.953451 + 0.301547i \(0.0975031\pi\)
\(684\) 0 0
\(685\) 43.9186 + 25.3564i 1.67804 + 0.968818i
\(686\) −6.92820 + 6.92820i −0.264520 + 0.264520i
\(687\) 0 0
\(688\) 8.78461 + 5.07180i 0.334910 + 0.193360i
\(689\) 9.82051 10.2058i 0.374132 0.388809i
\(690\) 0 0
\(691\) −9.00000 15.5885i −0.342376 0.593013i 0.642497 0.766288i \(-0.277898\pi\)
−0.984873 + 0.173275i \(0.944565\pi\)
\(692\) 18.9282 32.7846i 0.719542 1.24628i
\(693\) 0 0
\(694\) −0.464102 1.73205i −0.0176171 0.0657477i
\(695\) −30.5885 17.6603i −1.16029 0.669892i
\(696\) 0 0
\(697\) 4.26795i 0.161660i
\(698\) 1.94744 7.26795i 0.0737117 0.275096i
\(699\) 0 0
\(700\) 30.9282 53.5692i 1.16898 2.02473i
\(701\) 8.78461i 0.331790i −0.986143 0.165895i \(-0.946949\pi\)
0.986143 0.165895i \(-0.0530513\pi\)
\(702\) 0 0
\(703\) 5.41154 0.204100
\(704\) 13.8564 8.00000i 0.522233 0.301511i
\(705\) 0 0
\(706\) 24.9545 + 6.68653i 0.939174 + 0.251651i
\(707\) 39.9615 1.50291
\(708\) 0 0
\(709\) −20.5981 + 35.6769i −0.773577 + 1.33987i 0.162014 + 0.986788i \(0.448201\pi\)
−0.935591 + 0.353086i \(0.885132\pi\)
\(710\) −12.6603 47.2487i −0.475131 1.77321i
\(711\) 0 0
\(712\) 5.46410 20.3923i 0.204776 0.764234i
\(713\) −33.5885 + 19.3923i −1.25790 + 0.726248i
\(714\) 0 0
\(715\) −6.46410 + 26.1244i −0.241744 + 0.976996i
\(716\) 13.8564 + 24.0000i 0.517838 + 0.896922i
\(717\) 0 0
\(718\) −13.0718 + 13.0718i −0.487835 + 0.487835i
\(719\) −16.8564 + 29.1962i −0.628638 + 1.08883i 0.359187 + 0.933265i \(0.383054\pi\)
−0.987825 + 0.155567i \(0.950279\pi\)
\(720\) 0 0
\(721\) −18.5885 10.7321i −0.692270 0.399682i
\(722\) −6.36603 + 23.7583i −0.236919 + 0.884193i
\(723\) 0 0
\(724\) −36.9282 −1.37243
\(725\) 23.1962 13.3923i 0.861483 0.497378i
\(726\) 0 0
\(727\) −13.6077 −0.504681 −0.252341 0.967638i \(-0.581200\pi\)
−0.252341 + 0.967638i \(0.581200\pi\)
\(728\) 30.9282 + 17.0718i 1.14628 + 0.632723i
\(729\) 0 0
\(730\) 6.46410 6.46410i 0.239247 0.239247i
\(731\) 1.01924 0.588457i 0.0376979 0.0217649i
\(732\) 0 0
\(733\) −4.94744 −0.182738 −0.0913690 0.995817i \(-0.529124\pi\)
−0.0913690 + 0.995817i \(0.529124\pi\)
\(734\) −10.3205 + 38.5167i −0.380937 + 1.42168i
\(735\) 0 0
\(736\) 12.0000 44.7846i 0.442326 1.65078i
\(737\) 7.26795 12.5885i 0.267718 0.463702i
\(738\) 0 0
\(739\) −9.46410 16.3923i −0.348143 0.603001i 0.637777 0.770221i \(-0.279854\pi\)
−0.985920 + 0.167220i \(0.946521\pi\)
\(740\) 27.5885 15.9282i 1.01417 0.585532i
\(741\) 0 0
\(742\) −18.5885 + 4.98076i −0.682404 + 0.182850i
\(743\) −4.73205 + 2.73205i −0.173602 + 0.100229i −0.584283 0.811550i \(-0.698624\pi\)
0.410681 + 0.911779i \(0.365291\pi\)
\(744\) 0 0
\(745\) −21.8923 + 37.9186i −0.802072 + 1.38923i
\(746\) −9.43782 35.2224i −0.345543 1.28958i
\(747\) 0 0
\(748\) 1.85641i 0.0678769i
\(749\) −61.1769 −2.23536
\(750\) 0 0
\(751\) 18.1962 + 31.5167i 0.663987 + 1.15006i 0.979559 + 0.201158i \(0.0644703\pi\)
−0.315572 + 0.948902i \(0.602196\pi\)
\(752\) 26.9282i 0.981971i
\(753\) 0 0
\(754\) 7.90192 + 13.0981i 0.287771 + 0.477004i
\(755\) 8.19615i 0.298289i
\(756\) 0 0
\(757\) 18.3397 10.5885i 0.666569 0.384844i −0.128206 0.991748i \(-0.540922\pi\)
0.794776 + 0.606904i \(0.207589\pi\)
\(758\) −8.07180 + 30.1244i −0.293181 + 1.09417i
\(759\) 0 0
\(760\) −3.46410 12.9282i −0.125656 0.468955i
\(761\) 10.8564 + 6.26795i 0.393544 + 0.227213i 0.683695 0.729768i \(-0.260372\pi\)
−0.290150 + 0.956981i \(0.593705\pi\)
\(762\) 0 0
\(763\) 18.0000 + 10.3923i 0.651644 + 0.376227i
\(764\) 6.58846 + 3.80385i 0.238362 + 0.137618i
\(765\) 0 0
\(766\) −7.32051 27.3205i −0.264501 0.987130i
\(767\) 1.85641 0.535898i 0.0670310 0.0193502i
\(768\) 0 0
\(769\) 19.3923 11.1962i 0.699304 0.403744i −0.107784 0.994174i \(-0.534375\pi\)
0.807088 + 0.590431i \(0.201042\pi\)
\(770\) 25.8564 25.8564i 0.931800 0.931800i
\(771\) 0 0
\(772\) 13.0526 + 22.6077i 0.469772 + 0.813669i
\(773\) 26.2487 45.4641i 0.944101 1.63523i 0.186558 0.982444i \(-0.440267\pi\)
0.757542 0.652786i \(-0.226400\pi\)
\(774\) 0 0
\(775\) 42.2487i 1.51762i
\(776\) 16.3923 4.39230i 0.588449 0.157675i
\(777\) 0 0
\(778\) −18.7128 + 18.7128i −0.670887 + 0.670887i
\(779\) 11.6603i 0.417772i
\(780\) 0 0
\(781\) 18.5359i 0.663267i
\(782\) −3.80385 3.80385i −0.136025 0.136025i
\(783\) 0 0
\(784\) −10.0000 17.3205i −0.357143 0.618590i
\(785\) 14.6603i 0.523247i
\(786\) 0 0
\(787\) 20.3660 35.2750i 0.725970 1.25742i −0.232603 0.972572i \(-0.574724\pi\)
0.958573 0.284846i \(-0.0919424\pi\)
\(788\) 21.7128 12.5359i 0.773487 0.446573i
\(789\) 0 0
\(790\) −38.7846 38.7846i −1.37989 1.37989i
\(791\) 9.00000 5.19615i 0.320003 0.184754i
\(792\) 0 0
\(793\) −1.00000 3.46410i −0.0355110 0.123014i
\(794\) 33.1244 8.87564i 1.17554 0.314985i
\(795\) 0 0
\(796\) 26.1962 + 15.1244i 0.928498 + 0.536069i
\(797\) 15.8038 + 9.12436i 0.559801 + 0.323201i 0.753066 0.657945i \(-0.228574\pi\)
−0.193265 + 0.981147i \(0.561908\pi\)
\(798\) 0 0
\(799\) 2.70577 + 1.56218i 0.0957233 + 0.0552659i
\(800\) −35.7128 35.7128i −1.26264 1.26264i
\(801\) 0 0
\(802\) −13.2942 3.56218i −0.469436 0.125785i
\(803\) 3.00000 1.73205i 0.105868 0.0611227i
\(804\) 0 0
\(805\) 105.962i 3.73465i
\(806\) −24.1244 + 0.464102i −0.849744 + 0.0163473i
\(807\) 0 0
\(808\) 8.44486 31.5167i 0.297089 1.10875i
\(809\) 3.35641 + 5.81347i 0.118005 + 0.204391i 0.918977 0.394311i \(-0.129017\pi\)
−0.800972 + 0.598702i \(0.795683\pi\)
\(810\) 0 0
\(811\) −32.4449 −1.13929 −0.569647 0.821890i \(-0.692920\pi\)
−0.569647 + 0.821890i \(0.692920\pi\)
\(812\) 20.7846i 0.729397i
\(813\) 0 0
\(814\) 11.6603 3.12436i 0.408692 0.109509i
\(815\) 30.5885 52.9808i 1.07147 1.85584i
\(816\) 0 0
\(817\) 2.78461 1.60770i 0.0974212 0.0562461i
\(818\) 0.294229 + 1.09808i 0.0102875 + 0.0383933i
\(819\) 0 0
\(820\) 34.3205 + 59.4449i 1.19852 + 2.07590i
\(821\) −17.0000 29.4449i −0.593304 1.02763i −0.993784 0.111327i \(-0.964490\pi\)
0.400480 0.916306i \(-0.368843\pi\)
\(822\) 0 0
\(823\) −15.7846 + 27.3397i −0.550217 + 0.953004i 0.448042 + 0.894013i \(0.352122\pi\)
−0.998259 + 0.0589909i \(0.981212\pi\)
\(824\) −12.3923 + 12.3923i −0.431706 + 0.431706i
\(825\) 0 0
\(826\) −2.53590 0.679492i −0.0882352 0.0236425i
\(827\) −27.5692 −0.958676 −0.479338 0.877630i \(-0.659123\pi\)
−0.479338 + 0.877630i \(0.659123\pi\)
\(828\) 0 0
\(829\) −16.4545 + 9.50000i −0.571488 + 0.329949i −0.757743 0.652553i \(-0.773698\pi\)
0.186256 + 0.982501i \(0.440365\pi\)
\(830\) 5.46410 + 5.46410i 0.189662 + 0.189662i
\(831\) 0 0
\(832\) 20.0000 20.7846i 0.693375 0.720577i
\(833\) −2.32051 −0.0804008
\(834\) 0 0
\(835\) 15.9282 9.19615i 0.551218 0.318246i
\(836\) 5.07180i 0.175412i
\(837\) 0 0
\(838\) −26.6603 7.14359i −0.920963 0.246771i
\(839\) 29.8301 + 17.2224i 1.02985 + 0.594584i 0.916942 0.399021i \(-0.130650\pi\)
0.112909 + 0.993605i \(0.463983\pi\)
\(840\) 0 0
\(841\) −10.0000 + 17.3205i −0.344828 + 0.597259i
\(842\) 30.1244 + 30.1244i 1.03815 + 1.03815i
\(843\) 0 0
\(844\) 28.5885 + 49.5167i 0.984055 + 1.70443i
\(845\) 1.86603 + 48.4808i 0.0641932 + 1.66779i
\(846\) 0 0
\(847\) −21.0000 + 12.1244i −0.721569 + 0.416598i
\(848\) 15.7128i 0.539580i
\(849\) 0 0
\(850\) −5.66025 + 1.51666i −0.194145 + 0.0520210i
\(851\) 17.4904 30.2942i 0.599563 1.03847i
\(852\) 0 0
\(853\) 23.1962 0.794221 0.397111 0.917771i \(-0.370013\pi\)
0.397111 + 0.917771i \(0.370013\pi\)
\(854\) −1.26795 + 4.73205i −0.0433883 + 0.161927i
\(855\) 0 0
\(856\) −12.9282 + 48.2487i −0.441877 + 1.64911i
\(857\) 9.67949 0.330645 0.165323 0.986240i \(-0.447133\pi\)
0.165323 + 0.986240i \(0.447133\pi\)
\(858\) 0 0
\(859\) 19.8038i 0.675699i 0.941200 + 0.337849i \(0.109699\pi\)
−0.941200 + 0.337849i \(0.890301\pi\)
\(860\) 9.46410 16.3923i 0.322723 0.558973i
\(861\) 0 0
\(862\) −24.3923 6.53590i −0.830805 0.222614i
\(863\) 9.32051i 0.317274i 0.987337 + 0.158637i \(0.0507099\pi\)
−0.987337 + 0.158637i \(0.949290\pi\)
\(864\) 0 0
\(865\) −61.1769 35.3205i −2.08008 1.20093i
\(866\) −28.6865 + 7.68653i −0.974808 + 0.261199i
\(867\) 0 0
\(868\) 28.3923 + 16.3923i 0.963698 + 0.556391i
\(869\) −10.3923 18.0000i −0.352535 0.610608i
\(870\) 0 0
\(871\) 6.29423 25.4378i 0.213272 0.861928i
\(872\) 12.0000 12.0000i 0.406371 0.406371i
\(873\) 0 0
\(874\) −10.3923 10.3923i −0.351525 0.351525i
\(875\) −43.9808 25.3923i −1.48682 0.858417i
\(876\) 0 0
\(877\) −2.59808 + 4.50000i −0.0877308 + 0.151954i −0.906552 0.422095i \(-0.861295\pi\)
0.818821 + 0.574049i \(0.194628\pi\)
\(878\) 5.71281 21.3205i 0.192798 0.719532i
\(879\) 0 0
\(880\) −14.9282 25.8564i −0.503230 0.871619i
\(881\) 14.3038 + 24.7750i 0.481909 + 0.834691i 0.999784 0.0207653i \(-0.00661029\pi\)
−0.517876 + 0.855456i \(0.673277\pi\)
\(882\) 0 0
\(883\) 42.1962i 1.42001i 0.704195 + 0.710007i \(0.251308\pi\)
−0.704195 + 0.710007i \(0.748692\pi\)
\(884\) −0.928203 3.21539i −0.0312189 0.108145i
\(885\) 0 0
\(886\) 0 0
\(887\) −17.1962 29.7846i −0.577390 1.00007i −0.995777 0.0918005i \(-0.970738\pi\)
0.418387 0.908269i \(-0.362596\pi\)
\(888\) 0 0
\(889\) 1.17691i 0.0394724i
\(890\) −38.0526 10.1962i −1.27552 0.341776i
\(891\) 0 0
\(892\) −25.5167 44.1962i −0.854361 1.47980i
\(893\) 7.39230 + 4.26795i 0.247374 + 0.142821i
\(894\) 0 0
\(895\) 44.7846 25.8564i 1.49698 0.864284i
\(896\) −37.8564 + 10.1436i −1.26469 + 0.338874i
\(897\) 0 0
\(898\) −7.80385 29.1244i −0.260418 0.971892i
\(899\) 7.09808 + 12.2942i 0.236734 + 0.410035i
\(900\) 0 0
\(901\) 1.57884 + 0.911543i 0.0525987 + 0.0303679i
\(902\) 6.73205 + 25.1244i 0.224153 + 0.836550i
\(903\) 0 0
\(904\) −2.19615 8.19615i −0.0730429 0.272600i
\(905\) 68.9090i 2.29061i
\(906\) 0 0
\(907\) 4.48334 2.58846i 0.148867 0.0859483i −0.423716 0.905795i \(-0.639275\pi\)
0.572583 + 0.819847i \(0.305941\pi\)
\(908\) 45.1244 + 26.0526i 1.49750 + 0.864585i
\(909\) 0 0
\(910\) 31.8564 57.7128i 1.05603 1.91316i
\(911\) −42.4974 −1.40800 −0.704001 0.710199i \(-0.748605\pi\)
−0.704001 + 0.710199i \(0.748605\pi\)
\(912\) 0 0
\(913\) 1.46410 + 2.53590i 0.0484547 + 0.0839260i
\(914\) 10.5622 + 2.83013i 0.349366 + 0.0936123i
\(915\) 0 0
\(916\) 25.8564i 0.854320i
\(917\) −18.5885 + 32.1962i −0.613845 + 1.06321i
\(918\) 0 0
\(919\) 12.7583 22.0981i 0.420858 0.728948i −0.575165 0.818037i \(-0.695062\pi\)
0.996024 + 0.0890890i \(0.0283956\pi\)
\(920\) −83.5692 22.3923i −2.75520 0.738252i
\(921\) 0 0
\(922\) −39.1506 + 10.4904i −1.28936 + 0.345482i
\(923\) −9.26795 32.1051i −0.305058 1.05675i
\(924\) 0 0
\(925\) −19.0526 33.0000i −0.626444 1.08503i
\(926\) 16.3923 16.3923i 0.538685 0.538685i
\(927\) 0 0
\(928\) −16.3923 4.39230i −0.538104 0.144184i
\(929\) −23.2128 13.4019i −0.761588 0.439703i 0.0682778 0.997666i \(-0.478250\pi\)
−0.829865 + 0.557963i \(0.811583\pi\)
\(930\) 0 0
\(931\) −6.33975 −0.207777
\(932\) 0 0
\(933\) 0 0
\(934\) −20.5359 + 20.5359i −0.671955 + 0.671955i
\(935\) −3.46410 −0.113288
\(936\) 0 0
\(937\) −43.6410 −1.42569 −0.712845 0.701322i \(-0.752594\pi\)
−0.712845 + 0.701322i \(0.752594\pi\)
\(938\) −25.1769 + 25.1769i −0.822055 + 0.822055i
\(939\) 0 0
\(940\) 50.2487 1.63893
\(941\) 7.21539 0.235215 0.117608 0.993060i \(-0.462478\pi\)
0.117608 + 0.993060i \(0.462478\pi\)
\(942\) 0 0
\(943\) 65.2750 + 37.6865i 2.12565 + 1.22724i
\(944\) −1.07180 + 1.85641i −0.0348840 + 0.0604209i
\(945\) 0 0
\(946\) 5.07180 5.07180i 0.164898 0.164898i
\(947\) 24.3468 + 42.1699i 0.791164 + 1.37034i 0.925246 + 0.379367i \(0.123858\pi\)
−0.134082 + 0.990970i \(0.542809\pi\)
\(948\) 0 0
\(949\) 4.33013 4.50000i 0.140562 0.146076i
\(950\) −15.4641 + 4.14359i −0.501722 + 0.134436i
\(951\) 0 0
\(952\) −1.17691 + 4.39230i −0.0381440 + 0.142355i
\(953\) 12.4641 21.5885i 0.403752 0.699319i −0.590423 0.807094i \(-0.701039\pi\)
0.994175 + 0.107775i \(0.0343726\pi\)
\(954\) 0 0
\(955\) 7.09808 12.2942i 0.229688 0.397832i
\(956\) −36.7846 −1.18970
\(957\) 0 0
\(958\) 39.9808 + 10.7128i 1.29172 + 0.346115i
\(959\) −23.5359 40.7654i −0.760014 1.31638i
\(960\) 0 0
\(961\) 8.60770 0.277668
\(962\) 18.6340 11.2417i 0.600783 0.362446i
\(963\) 0 0
\(964\) −11.1962 + 19.3923i −0.360604 + 0.624584i
\(965\) 42.1865 24.3564i 1.35803 0.784060i
\(966\) 0 0
\(967\) 8.87564i 0.285421i −0.989764 0.142711i \(-0.954418\pi\)
0.989764 0.142711i \(-0.0455819\pi\)
\(968\) 5.12436 + 19.1244i 0.164703 + 0.614680i
\(969\) 0 0
\(970\) −8.19615 30.5885i −0.263163 0.982136i
\(971\) 5.70577 + 3.29423i 0.183107 + 0.105717i 0.588752 0.808314i \(-0.299620\pi\)
−0.405645 + 0.914031i \(0.632953\pi\)
\(972\) 0 0
\(973\) 16.3923 + 28.3923i 0.525513 + 0.910216i
\(974\) 8.53590 + 31.8564i 0.273508 + 1.02075i
\(975\) 0 0
\(976\) 3.46410 + 2.00000i 0.110883 + 0.0640184i
\(977\) −28.1603 + 16.2583i −0.900926 + 0.520150i −0.877501 0.479576i \(-0.840791\pi\)
−0.0234257 + 0.999726i \(0.507457\pi\)
\(978\) 0 0
\(979\) −12.9282 7.46410i −0.413187 0.238554i
\(980\) −32.3205 + 18.6603i −1.03244 + 0.596080i
\(981\) 0 0
\(982\) −10.3923 2.78461i −0.331632 0.0888605i
\(983\) 59.7654i 1.90622i 0.302625 + 0.953110i \(0.402137\pi\)
−0.302625 + 0.953110i \(0.597863\pi\)
\(984\) 0 0
\(985\) −23.3923 40.5167i −0.745341 1.29097i
\(986\) −1.39230 + 1.39230i −0.0443400 + 0.0443400i
\(987\) 0 0
\(988\) −2.53590 8.78461i −0.0806777 0.279476i
\(989\) 20.7846i 0.660912i
\(990\) 0 0
\(991\) −11.2942 19.5622i −0.358773 0.621413i 0.628983 0.777419i \(-0.283471\pi\)
−0.987756 + 0.156006i \(0.950138\pi\)
\(992\) 18.9282 18.9282i 0.600971 0.600971i
\(993\) 0 0
\(994\) −11.7513 + 43.8564i −0.372728 + 1.39104i
\(995\) 28.2224 48.8827i 0.894711 1.54969i
\(996\) 0 0
\(997\) 45.9904 + 26.5526i 1.45653 + 0.840928i 0.998839 0.0481831i \(-0.0153431\pi\)
0.457691 + 0.889111i \(0.348676\pi\)
\(998\) −8.87564 8.87564i −0.280954 0.280954i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.dg.b.829.2 4
3.2 odd 2 104.2.s.a.101.1 yes 4
8.5 even 2 936.2.dg.a.829.1 4
12.11 even 2 416.2.ba.b.49.1 4
13.4 even 6 936.2.dg.a.901.1 4
24.5 odd 2 104.2.s.b.101.2 yes 4
24.11 even 2 416.2.ba.a.49.2 4
39.17 odd 6 104.2.s.b.69.2 yes 4
104.69 even 6 inner 936.2.dg.b.901.1 4
156.95 even 6 416.2.ba.a.17.2 4
312.173 odd 6 104.2.s.a.69.2 4
312.251 even 6 416.2.ba.b.17.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.s.a.69.2 4 312.173 odd 6
104.2.s.a.101.1 yes 4 3.2 odd 2
104.2.s.b.69.2 yes 4 39.17 odd 6
104.2.s.b.101.2 yes 4 24.5 odd 2
416.2.ba.a.17.2 4 156.95 even 6
416.2.ba.a.49.2 4 24.11 even 2
416.2.ba.b.17.1 4 312.251 even 6
416.2.ba.b.49.1 4 12.11 even 2
936.2.dg.a.829.1 4 8.5 even 2
936.2.dg.a.901.1 4 13.4 even 6
936.2.dg.b.829.2 4 1.1 even 1 trivial
936.2.dg.b.901.1 4 104.69 even 6 inner