Properties

Label 936.2.g.f.469.10
Level $936$
Weight $2$
Character 936.469
Analytic conductor $7.474$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [936,2,Mod(469,936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(936, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("936.469");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 469.10
Character \(\chi\) \(=\) 936.469
Dual form 936.2.g.f.469.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.900006 + 1.09087i) q^{2} +(-0.379977 - 1.96357i) q^{4} -3.06504i q^{5} -1.53955 q^{7} +(2.48398 + 1.35272i) q^{8} +(3.34355 + 2.75856i) q^{10} -4.08464i q^{11} +1.00000i q^{13} +(1.38560 - 1.67944i) q^{14} +(-3.71123 + 1.49222i) q^{16} +4.47763 q^{17} +2.68495i q^{19} +(-6.01843 + 1.16465i) q^{20} +(4.45580 + 3.67620i) q^{22} -3.24471 q^{23} -4.39448 q^{25} +(-1.09087 - 0.900006i) q^{26} +(0.584993 + 3.02301i) q^{28} -8.41043i q^{29} -5.14476 q^{31} +(1.71232 - 5.39147i) q^{32} +(-4.02990 + 4.88449i) q^{34} +4.71878i q^{35} +5.60521i q^{37} +(-2.92892 - 2.41647i) q^{38} +(4.14616 - 7.61349i) q^{40} -5.34539 q^{41} -8.91439i q^{43} +(-8.02049 + 1.55207i) q^{44} +(2.92026 - 3.53955i) q^{46} -10.6143 q^{47} -4.62979 q^{49} +(3.95506 - 4.79379i) q^{50} +(1.96357 - 0.379977i) q^{52} -2.48127i q^{53} -12.5196 q^{55} +(-3.82420 - 2.08258i) q^{56} +(9.17465 + 7.56944i) q^{58} +3.09287i q^{59} +8.47358i q^{61} +(4.63032 - 5.61224i) q^{62} +(4.34028 + 6.72027i) q^{64} +3.06504 q^{65} -9.32998i q^{67} +(-1.70140 - 8.79215i) q^{68} +(-5.14755 - 4.24693i) q^{70} -7.52766 q^{71} -5.60521 q^{73} +(-6.11453 - 5.04473i) q^{74} +(5.27209 - 1.02022i) q^{76} +6.28850i q^{77} -11.3742 q^{79} +(4.57373 + 11.3751i) q^{80} +(4.81089 - 5.83110i) q^{82} +4.46652i q^{83} -13.7241i q^{85} +(9.72440 + 8.02301i) q^{86} +(5.52539 - 10.1462i) q^{88} +5.90303 q^{89} -1.53955i q^{91} +(1.23292 + 6.37123i) q^{92} +(9.55293 - 11.5788i) q^{94} +8.22948 q^{95} +14.0149 q^{97} +(4.16684 - 5.05049i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 8 q^{4} - 8 q^{7} + 12 q^{10} - 4 q^{16} + 4 q^{22} - 24 q^{25} + 8 q^{28} + 40 q^{31} - 16 q^{34} - 36 q^{40} - 24 q^{46} + 24 q^{49} - 4 q^{52} - 16 q^{55} - 24 q^{58} + 8 q^{64} - 16 q^{70} - 16 q^{76}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.900006 + 1.09087i −0.636401 + 0.771359i
\(3\) 0 0
\(4\) −0.379977 1.96357i −0.189989 0.981786i
\(5\) 3.06504i 1.37073i −0.728200 0.685364i \(-0.759643\pi\)
0.728200 0.685364i \(-0.240357\pi\)
\(6\) 0 0
\(7\) −1.53955 −0.581894 −0.290947 0.956739i \(-0.593970\pi\)
−0.290947 + 0.956739i \(0.593970\pi\)
\(8\) 2.48398 + 1.35272i 0.878218 + 0.478260i
\(9\) 0 0
\(10\) 3.34355 + 2.75856i 1.05732 + 0.872332i
\(11\) 4.08464i 1.23157i −0.787916 0.615783i \(-0.788840\pi\)
0.787916 0.615783i \(-0.211160\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) 1.38560 1.67944i 0.370318 0.448849i
\(15\) 0 0
\(16\) −3.71123 + 1.49222i −0.927809 + 0.373056i
\(17\) 4.47763 1.08598 0.542992 0.839738i \(-0.317291\pi\)
0.542992 + 0.839738i \(0.317291\pi\)
\(18\) 0 0
\(19\) 2.68495i 0.615969i 0.951391 + 0.307985i \(0.0996546\pi\)
−0.951391 + 0.307985i \(0.900345\pi\)
\(20\) −6.01843 + 1.16465i −1.34576 + 0.260423i
\(21\) 0 0
\(22\) 4.45580 + 3.67620i 0.949979 + 0.783769i
\(23\) −3.24471 −0.676569 −0.338285 0.941044i \(-0.609847\pi\)
−0.338285 + 0.941044i \(0.609847\pi\)
\(24\) 0 0
\(25\) −4.39448 −0.878896
\(26\) −1.09087 0.900006i −0.213936 0.176506i
\(27\) 0 0
\(28\) 0.584993 + 3.02301i 0.110553 + 0.571296i
\(29\) 8.41043i 1.56178i −0.624670 0.780889i \(-0.714766\pi\)
0.624670 0.780889i \(-0.285234\pi\)
\(30\) 0 0
\(31\) −5.14476 −0.924026 −0.462013 0.886873i \(-0.652873\pi\)
−0.462013 + 0.886873i \(0.652873\pi\)
\(32\) 1.71232 5.39147i 0.302698 0.953087i
\(33\) 0 0
\(34\) −4.02990 + 4.88449i −0.691121 + 0.837684i
\(35\) 4.71878i 0.797619i
\(36\) 0 0
\(37\) 5.60521i 0.921491i 0.887532 + 0.460746i \(0.152418\pi\)
−0.887532 + 0.460746i \(0.847582\pi\)
\(38\) −2.92892 2.41647i −0.475133 0.392003i
\(39\) 0 0
\(40\) 4.14616 7.61349i 0.655565 1.20380i
\(41\) −5.34539 −0.834810 −0.417405 0.908721i \(-0.637060\pi\)
−0.417405 + 0.908721i \(0.637060\pi\)
\(42\) 0 0
\(43\) 8.91439i 1.35943i −0.733476 0.679716i \(-0.762103\pi\)
0.733476 0.679716i \(-0.237897\pi\)
\(44\) −8.02049 + 1.55207i −1.20913 + 0.233983i
\(45\) 0 0
\(46\) 2.92026 3.53955i 0.430569 0.521878i
\(47\) −10.6143 −1.54825 −0.774127 0.633031i \(-0.781811\pi\)
−0.774127 + 0.633031i \(0.781811\pi\)
\(48\) 0 0
\(49\) −4.62979 −0.661399
\(50\) 3.95506 4.79379i 0.559330 0.677944i
\(51\) 0 0
\(52\) 1.96357 0.379977i 0.272299 0.0526933i
\(53\) 2.48127i 0.340829i −0.985372 0.170415i \(-0.945489\pi\)
0.985372 0.170415i \(-0.0545107\pi\)
\(54\) 0 0
\(55\) −12.5196 −1.68814
\(56\) −3.82420 2.08258i −0.511030 0.278297i
\(57\) 0 0
\(58\) 9.17465 + 7.56944i 1.20469 + 0.993916i
\(59\) 3.09287i 0.402658i 0.979524 + 0.201329i \(0.0645260\pi\)
−0.979524 + 0.201329i \(0.935474\pi\)
\(60\) 0 0
\(61\) 8.47358i 1.08493i 0.840078 + 0.542465i \(0.182509\pi\)
−0.840078 + 0.542465i \(0.817491\pi\)
\(62\) 4.63032 5.61224i 0.588051 0.712755i
\(63\) 0 0
\(64\) 4.34028 + 6.72027i 0.542534 + 0.840034i
\(65\) 3.06504 0.380172
\(66\) 0 0
\(67\) 9.32998i 1.13984i −0.821701 0.569919i \(-0.806975\pi\)
0.821701 0.569919i \(-0.193025\pi\)
\(68\) −1.70140 8.79215i −0.206325 1.06620i
\(69\) 0 0
\(70\) −5.14755 4.24693i −0.615250 0.507605i
\(71\) −7.52766 −0.893368 −0.446684 0.894692i \(-0.647395\pi\)
−0.446684 + 0.894692i \(0.647395\pi\)
\(72\) 0 0
\(73\) −5.60521 −0.656040 −0.328020 0.944671i \(-0.606381\pi\)
−0.328020 + 0.944671i \(0.606381\pi\)
\(74\) −6.11453 5.04473i −0.710800 0.586437i
\(75\) 0 0
\(76\) 5.27209 1.02022i 0.604750 0.117027i
\(77\) 6.28850i 0.716641i
\(78\) 0 0
\(79\) −11.3742 −1.27970 −0.639849 0.768501i \(-0.721003\pi\)
−0.639849 + 0.768501i \(0.721003\pi\)
\(80\) 4.57373 + 11.3751i 0.511359 + 1.27177i
\(81\) 0 0
\(82\) 4.81089 5.83110i 0.531273 0.643938i
\(83\) 4.46652i 0.490264i 0.969490 + 0.245132i \(0.0788314\pi\)
−0.969490 + 0.245132i \(0.921169\pi\)
\(84\) 0 0
\(85\) 13.7241i 1.48859i
\(86\) 9.72440 + 8.02301i 1.04861 + 0.865143i
\(87\) 0 0
\(88\) 5.52539 10.1462i 0.589009 1.08158i
\(89\) 5.90303 0.625720 0.312860 0.949799i \(-0.398713\pi\)
0.312860 + 0.949799i \(0.398713\pi\)
\(90\) 0 0
\(91\) 1.53955i 0.161388i
\(92\) 1.23292 + 6.37123i 0.128540 + 0.664247i
\(93\) 0 0
\(94\) 9.55293 11.5788i 0.985309 1.19426i
\(95\) 8.22948 0.844327
\(96\) 0 0
\(97\) 14.0149 1.42300 0.711500 0.702686i \(-0.248016\pi\)
0.711500 + 0.702686i \(0.248016\pi\)
\(98\) 4.16684 5.05049i 0.420915 0.510176i
\(99\) 0 0
\(100\) 1.66980 + 8.62888i 0.166980 + 0.862888i
\(101\) 5.30645i 0.528012i −0.964521 0.264006i \(-0.914956\pi\)
0.964521 0.264006i \(-0.0850438\pi\)
\(102\) 0 0
\(103\) 12.6342 1.24489 0.622443 0.782665i \(-0.286140\pi\)
0.622443 + 0.782665i \(0.286140\pi\)
\(104\) −1.35272 + 2.48398i −0.132645 + 0.243574i
\(105\) 0 0
\(106\) 2.70674 + 2.23316i 0.262902 + 0.216904i
\(107\) 5.45968i 0.527807i −0.964549 0.263904i \(-0.914990\pi\)
0.964549 0.263904i \(-0.0850101\pi\)
\(108\) 0 0
\(109\) 16.3549i 1.56651i −0.621698 0.783257i \(-0.713557\pi\)
0.621698 0.783257i \(-0.286443\pi\)
\(110\) 11.2677 13.6572i 1.07433 1.30216i
\(111\) 0 0
\(112\) 5.71362 2.29735i 0.539886 0.217079i
\(113\) 20.0002 1.88146 0.940730 0.339156i \(-0.110142\pi\)
0.940730 + 0.339156i \(0.110142\pi\)
\(114\) 0 0
\(115\) 9.94518i 0.927393i
\(116\) −16.5145 + 3.19577i −1.53333 + 0.296720i
\(117\) 0 0
\(118\) −3.37391 2.78361i −0.310594 0.256252i
\(119\) −6.89352 −0.631928
\(120\) 0 0
\(121\) −5.68431 −0.516755
\(122\) −9.24353 7.62627i −0.836870 0.690450i
\(123\) 0 0
\(124\) 1.95489 + 10.1021i 0.175554 + 0.907196i
\(125\) 1.85594i 0.166000i
\(126\) 0 0
\(127\) 9.95513 0.883375 0.441688 0.897169i \(-0.354380\pi\)
0.441688 + 0.897169i \(0.354380\pi\)
\(128\) −11.2372 1.31363i −0.993236 0.116109i
\(129\) 0 0
\(130\) −2.75856 + 3.34355i −0.241941 + 0.293249i
\(131\) 12.8881i 1.12604i 0.826445 + 0.563018i \(0.190360\pi\)
−0.826445 + 0.563018i \(0.809640\pi\)
\(132\) 0 0
\(133\) 4.13361i 0.358429i
\(134\) 10.1778 + 8.39704i 0.879224 + 0.725394i
\(135\) 0 0
\(136\) 11.1223 + 6.05700i 0.953732 + 0.519383i
\(137\) −11.2772 −0.963474 −0.481737 0.876316i \(-0.659994\pi\)
−0.481737 + 0.876316i \(0.659994\pi\)
\(138\) 0 0
\(139\) 0.953667i 0.0808890i 0.999182 + 0.0404445i \(0.0128774\pi\)
−0.999182 + 0.0404445i \(0.987123\pi\)
\(140\) 9.26566 1.79303i 0.783091 0.151538i
\(141\) 0 0
\(142\) 6.77494 8.21166i 0.568540 0.689107i
\(143\) 4.08464 0.341575
\(144\) 0 0
\(145\) −25.7783 −2.14077
\(146\) 5.04473 6.11453i 0.417504 0.506042i
\(147\) 0 0
\(148\) 11.0062 2.12985i 0.904707 0.175073i
\(149\) 5.35820i 0.438961i −0.975617 0.219481i \(-0.929564\pi\)
0.975617 0.219481i \(-0.0704363\pi\)
\(150\) 0 0
\(151\) −6.90944 −0.562283 −0.281141 0.959666i \(-0.590713\pi\)
−0.281141 + 0.959666i \(0.590713\pi\)
\(152\) −3.63199 + 6.66935i −0.294594 + 0.540956i
\(153\) 0 0
\(154\) −6.85991 5.65969i −0.552787 0.456071i
\(155\) 15.7689i 1.26659i
\(156\) 0 0
\(157\) 5.01523i 0.400259i −0.979769 0.200130i \(-0.935864\pi\)
0.979769 0.200130i \(-0.0641363\pi\)
\(158\) 10.2369 12.4077i 0.814400 0.987106i
\(159\) 0 0
\(160\) −16.5251 5.24833i −1.30642 0.414917i
\(161\) 4.99539 0.393692
\(162\) 0 0
\(163\) 23.4882i 1.83974i 0.392229 + 0.919868i \(0.371704\pi\)
−0.392229 + 0.919868i \(0.628296\pi\)
\(164\) 2.03113 + 10.4961i 0.158604 + 0.819605i
\(165\) 0 0
\(166\) −4.87238 4.01990i −0.378170 0.312005i
\(167\) −21.0636 −1.62995 −0.814975 0.579497i \(-0.803249\pi\)
−0.814975 + 0.579497i \(0.803249\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 14.9712 + 12.3518i 1.14824 + 0.947340i
\(171\) 0 0
\(172\) −17.5040 + 3.38726i −1.33467 + 0.258276i
\(173\) 2.84062i 0.215968i −0.994153 0.107984i \(-0.965560\pi\)
0.994153 0.107984i \(-0.0344396\pi\)
\(174\) 0 0
\(175\) 6.76551 0.511425
\(176\) 6.09521 + 15.1591i 0.459443 + 1.14266i
\(177\) 0 0
\(178\) −5.31277 + 6.43942i −0.398209 + 0.482655i
\(179\) 6.01451i 0.449546i 0.974411 + 0.224773i \(0.0721640\pi\)
−0.974411 + 0.224773i \(0.927836\pi\)
\(180\) 0 0
\(181\) 3.30604i 0.245736i 0.992423 + 0.122868i \(0.0392091\pi\)
−0.992423 + 0.122868i \(0.960791\pi\)
\(182\) 1.67944 + 1.38560i 0.124488 + 0.102708i
\(183\) 0 0
\(184\) −8.05979 4.38920i −0.594176 0.323576i
\(185\) 17.1802 1.26311
\(186\) 0 0
\(187\) 18.2895i 1.33746i
\(188\) 4.03319 + 20.8419i 0.294150 + 1.52005i
\(189\) 0 0
\(190\) −7.40658 + 8.97726i −0.537330 + 0.651279i
\(191\) 18.8424 1.36339 0.681693 0.731638i \(-0.261244\pi\)
0.681693 + 0.731638i \(0.261244\pi\)
\(192\) 0 0
\(193\) −26.4738 −1.90563 −0.952813 0.303558i \(-0.901826\pi\)
−0.952813 + 0.303558i \(0.901826\pi\)
\(194\) −12.6135 + 15.2884i −0.905598 + 1.09764i
\(195\) 0 0
\(196\) 1.75922 + 9.09094i 0.125658 + 0.649353i
\(197\) 12.8619i 0.916375i −0.888856 0.458188i \(-0.848499\pi\)
0.888856 0.458188i \(-0.151501\pi\)
\(198\) 0 0
\(199\) −8.29510 −0.588024 −0.294012 0.955802i \(-0.594991\pi\)
−0.294012 + 0.955802i \(0.594991\pi\)
\(200\) −10.9158 5.94452i −0.771863 0.420341i
\(201\) 0 0
\(202\) 5.78863 + 4.77584i 0.407286 + 0.336027i
\(203\) 12.9483i 0.908789i
\(204\) 0 0
\(205\) 16.3838i 1.14430i
\(206\) −11.3709 + 13.7822i −0.792246 + 0.960253i
\(207\) 0 0
\(208\) −1.49222 3.71123i −0.103467 0.257328i
\(209\) 10.9671 0.758607
\(210\) 0 0
\(211\) 8.42146i 0.579757i 0.957063 + 0.289879i \(0.0936149\pi\)
−0.957063 + 0.289879i \(0.906385\pi\)
\(212\) −4.87216 + 0.942827i −0.334622 + 0.0647537i
\(213\) 0 0
\(214\) 5.95578 + 4.91375i 0.407129 + 0.335897i
\(215\) −27.3230 −1.86341
\(216\) 0 0
\(217\) 7.92060 0.537685
\(218\) 17.8410 + 14.7195i 1.20834 + 0.996931i
\(219\) 0 0
\(220\) 4.75716 + 24.5831i 0.320728 + 1.65740i
\(221\) 4.47763i 0.301198i
\(222\) 0 0
\(223\) 15.9829 1.07029 0.535147 0.844759i \(-0.320256\pi\)
0.535147 + 0.844759i \(0.320256\pi\)
\(224\) −2.63619 + 8.30042i −0.176138 + 0.554595i
\(225\) 0 0
\(226\) −18.0003 + 21.8175i −1.19736 + 1.45128i
\(227\) 22.0283i 1.46207i −0.682341 0.731034i \(-0.739038\pi\)
0.682341 0.731034i \(-0.260962\pi\)
\(228\) 0 0
\(229\) 22.1183i 1.46162i −0.682582 0.730809i \(-0.739143\pi\)
0.682582 0.730809i \(-0.260857\pi\)
\(230\) −10.8489 8.95073i −0.715353 0.590193i
\(231\) 0 0
\(232\) 11.3770 20.8913i 0.746936 1.37158i
\(233\) 18.2955 1.19858 0.599289 0.800533i \(-0.295450\pi\)
0.599289 + 0.800533i \(0.295450\pi\)
\(234\) 0 0
\(235\) 32.5332i 2.12223i
\(236\) 6.07308 1.17522i 0.395324 0.0765003i
\(237\) 0 0
\(238\) 6.20421 7.51991i 0.402159 0.487443i
\(239\) 14.4015 0.931555 0.465777 0.884902i \(-0.345775\pi\)
0.465777 + 0.884902i \(0.345775\pi\)
\(240\) 0 0
\(241\) 27.8275 1.79253 0.896263 0.443523i \(-0.146271\pi\)
0.896263 + 0.443523i \(0.146271\pi\)
\(242\) 5.11591 6.20082i 0.328863 0.398604i
\(243\) 0 0
\(244\) 16.6385 3.21976i 1.06517 0.206124i
\(245\) 14.1905i 0.906599i
\(246\) 0 0
\(247\) −2.68495 −0.170839
\(248\) −12.7795 6.95944i −0.811496 0.441925i
\(249\) 0 0
\(250\) 2.02458 + 1.67036i 0.128046 + 0.105643i
\(251\) 11.0370i 0.696647i 0.937374 + 0.348324i \(0.113249\pi\)
−0.937374 + 0.348324i \(0.886751\pi\)
\(252\) 0 0
\(253\) 13.2535i 0.833240i
\(254\) −8.95968 + 10.8597i −0.562181 + 0.681399i
\(255\) 0 0
\(256\) 11.5465 11.0760i 0.721658 0.692250i
\(257\) −15.5226 −0.968271 −0.484135 0.874993i \(-0.660866\pi\)
−0.484135 + 0.874993i \(0.660866\pi\)
\(258\) 0 0
\(259\) 8.62949i 0.536210i
\(260\) −1.16465 6.01843i −0.0722282 0.373247i
\(261\) 0 0
\(262\) −14.0591 11.5993i −0.868577 0.716609i
\(263\) −7.75769 −0.478360 −0.239180 0.970975i \(-0.576879\pi\)
−0.239180 + 0.970975i \(0.576879\pi\)
\(264\) 0 0
\(265\) −7.60521 −0.467184
\(266\) 4.50921 + 3.72027i 0.276477 + 0.228104i
\(267\) 0 0
\(268\) −18.3201 + 3.54518i −1.11908 + 0.216556i
\(269\) 17.3913i 1.06037i −0.847883 0.530184i \(-0.822123\pi\)
0.847883 0.530184i \(-0.177877\pi\)
\(270\) 0 0
\(271\) 11.5240 0.700034 0.350017 0.936743i \(-0.386176\pi\)
0.350017 + 0.936743i \(0.386176\pi\)
\(272\) −16.6175 + 6.68163i −1.00759 + 0.405133i
\(273\) 0 0
\(274\) 10.1495 12.3019i 0.613155 0.743184i
\(275\) 17.9499i 1.08242i
\(276\) 0 0
\(277\) 5.37979i 0.323240i 0.986853 + 0.161620i \(0.0516719\pi\)
−0.986853 + 0.161620i \(0.948328\pi\)
\(278\) −1.04032 0.858306i −0.0623944 0.0514778i
\(279\) 0 0
\(280\) −6.38320 + 11.7213i −0.381469 + 0.700483i
\(281\) −11.8348 −0.706006 −0.353003 0.935622i \(-0.614839\pi\)
−0.353003 + 0.935622i \(0.614839\pi\)
\(282\) 0 0
\(283\) 4.29013i 0.255022i −0.991837 0.127511i \(-0.959301\pi\)
0.991837 0.127511i \(-0.0406988\pi\)
\(284\) 2.86034 + 14.7811i 0.169730 + 0.877097i
\(285\) 0 0
\(286\) −3.67620 + 4.45580i −0.217379 + 0.263477i
\(287\) 8.22948 0.485771
\(288\) 0 0
\(289\) 3.04917 0.179363
\(290\) 23.2007 28.1207i 1.36239 1.65130i
\(291\) 0 0
\(292\) 2.12985 + 11.0062i 0.124640 + 0.644091i
\(293\) 1.85244i 0.108221i 0.998535 + 0.0541103i \(0.0172322\pi\)
−0.998535 + 0.0541103i \(0.982768\pi\)
\(294\) 0 0
\(295\) 9.47978 0.551934
\(296\) −7.58230 + 13.9232i −0.440712 + 0.809270i
\(297\) 0 0
\(298\) 5.84508 + 4.82242i 0.338597 + 0.279355i
\(299\) 3.24471i 0.187647i
\(300\) 0 0
\(301\) 13.7241i 0.791045i
\(302\) 6.21854 7.53728i 0.357837 0.433722i
\(303\) 0 0
\(304\) −4.00655 9.96448i −0.229791 0.571502i
\(305\) 25.9719 1.48714
\(306\) 0 0
\(307\) 24.1569i 1.37871i −0.724424 0.689354i \(-0.757894\pi\)
0.724424 0.689354i \(-0.242106\pi\)
\(308\) 12.3479 2.38949i 0.703588 0.136154i
\(309\) 0 0
\(310\) −17.2018 14.1921i −0.976994 0.806058i
\(311\) −23.8271 −1.35111 −0.675557 0.737308i \(-0.736097\pi\)
−0.675557 + 0.737308i \(0.736097\pi\)
\(312\) 0 0
\(313\) 34.8419 1.96938 0.984690 0.174316i \(-0.0557715\pi\)
0.984690 + 0.174316i \(0.0557715\pi\)
\(314\) 5.47095 + 4.51374i 0.308743 + 0.254725i
\(315\) 0 0
\(316\) 4.32193 + 22.3341i 0.243128 + 1.25639i
\(317\) 24.0822i 1.35259i −0.736631 0.676295i \(-0.763585\pi\)
0.736631 0.676295i \(-0.236415\pi\)
\(318\) 0 0
\(319\) −34.3536 −1.92343
\(320\) 20.5979 13.3031i 1.15146 0.743667i
\(321\) 0 0
\(322\) −4.49588 + 5.44930i −0.250546 + 0.303678i
\(323\) 12.0222i 0.668933i
\(324\) 0 0
\(325\) 4.39448i 0.243762i
\(326\) −25.6224 21.1395i −1.41910 1.17081i
\(327\) 0 0
\(328\) −13.2778 7.23084i −0.733145 0.399256i
\(329\) 16.3412 0.900919
\(330\) 0 0
\(331\) 18.9047i 1.03910i −0.854441 0.519549i \(-0.826100\pi\)
0.854441 0.519549i \(-0.173900\pi\)
\(332\) 8.77034 1.69718i 0.481335 0.0931446i
\(333\) 0 0
\(334\) 18.9574 22.9775i 1.03730 1.25728i
\(335\) −28.5968 −1.56241
\(336\) 0 0
\(337\) 19.0547 1.03798 0.518989 0.854781i \(-0.326309\pi\)
0.518989 + 0.854781i \(0.326309\pi\)
\(338\) 0.900006 1.09087i 0.0489539 0.0593353i
\(339\) 0 0
\(340\) −26.9483 + 5.21485i −1.46148 + 0.282815i
\(341\) 21.0145i 1.13800i
\(342\) 0 0
\(343\) 17.9046 0.966758
\(344\) 12.0587 22.1431i 0.650162 1.19388i
\(345\) 0 0
\(346\) 3.09873 + 2.55657i 0.166589 + 0.137442i
\(347\) 5.85643i 0.314390i −0.987568 0.157195i \(-0.949755\pi\)
0.987568 0.157195i \(-0.0502451\pi\)
\(348\) 0 0
\(349\) 36.7471i 1.96703i 0.180833 + 0.983514i \(0.442121\pi\)
−0.180833 + 0.983514i \(0.557879\pi\)
\(350\) −6.08900 + 7.38026i −0.325471 + 0.394492i
\(351\) 0 0
\(352\) −22.0222 6.99421i −1.17379 0.372792i
\(353\) −4.29572 −0.228638 −0.114319 0.993444i \(-0.536469\pi\)
−0.114319 + 0.993444i \(0.536469\pi\)
\(354\) 0 0
\(355\) 23.0726i 1.22457i
\(356\) −2.24302 11.5910i −0.118880 0.614324i
\(357\) 0 0
\(358\) −6.56103 5.41310i −0.346761 0.286091i
\(359\) −2.76866 −0.146124 −0.0730621 0.997327i \(-0.523277\pi\)
−0.0730621 + 0.997327i \(0.523277\pi\)
\(360\) 0 0
\(361\) 11.7911 0.620582
\(362\) −3.60644 2.97545i −0.189550 0.156386i
\(363\) 0 0
\(364\) −3.02301 + 0.584993i −0.158449 + 0.0306619i
\(365\) 17.1802i 0.899253i
\(366\) 0 0
\(367\) −8.47535 −0.442410 −0.221205 0.975227i \(-0.570999\pi\)
−0.221205 + 0.975227i \(0.570999\pi\)
\(368\) 12.0419 4.84184i 0.627727 0.252398i
\(369\) 0 0
\(370\) −15.4623 + 18.7413i −0.803846 + 0.974314i
\(371\) 3.82004i 0.198327i
\(372\) 0 0
\(373\) 1.08038i 0.0559400i −0.999609 0.0279700i \(-0.991096\pi\)
0.999609 0.0279700i \(-0.00890429\pi\)
\(374\) 19.9514 + 16.4607i 1.03166 + 0.851162i
\(375\) 0 0
\(376\) −26.3656 14.3582i −1.35970 0.740468i
\(377\) 8.41043 0.433159
\(378\) 0 0
\(379\) 28.8581i 1.48234i −0.671318 0.741170i \(-0.734271\pi\)
0.671318 0.741170i \(-0.265729\pi\)
\(380\) −3.12701 16.1592i −0.160412 0.828949i
\(381\) 0 0
\(382\) −16.9583 + 20.5545i −0.867660 + 1.05166i
\(383\) 30.8123 1.57444 0.787218 0.616675i \(-0.211521\pi\)
0.787218 + 0.616675i \(0.211521\pi\)
\(384\) 0 0
\(385\) 19.2745 0.982320
\(386\) 23.8266 28.8794i 1.21274 1.46992i
\(387\) 0 0
\(388\) −5.32535 27.5193i −0.270354 1.39708i
\(389\) 14.4458i 0.732429i 0.930530 + 0.366214i \(0.119346\pi\)
−0.930530 + 0.366214i \(0.880654\pi\)
\(390\) 0 0
\(391\) −14.5286 −0.734744
\(392\) −11.5003 6.26283i −0.580853 0.316321i
\(393\) 0 0
\(394\) 14.0306 + 11.5758i 0.706854 + 0.583182i
\(395\) 34.8624i 1.75412i
\(396\) 0 0
\(397\) 19.3194i 0.969615i −0.874621 0.484808i \(-0.838890\pi\)
0.874621 0.484808i \(-0.161110\pi\)
\(398\) 7.46565 9.04885i 0.374219 0.453578i
\(399\) 0 0
\(400\) 16.3090 6.55755i 0.815448 0.327878i
\(401\) −17.0808 −0.852972 −0.426486 0.904494i \(-0.640249\pi\)
−0.426486 + 0.904494i \(0.640249\pi\)
\(402\) 0 0
\(403\) 5.14476i 0.256279i
\(404\) −10.4196 + 2.01633i −0.518395 + 0.100316i
\(405\) 0 0
\(406\) −14.1248 11.6535i −0.701003 0.578354i
\(407\) 22.8953 1.13488
\(408\) 0 0
\(409\) 2.17373 0.107484 0.0537420 0.998555i \(-0.482885\pi\)
0.0537420 + 0.998555i \(0.482885\pi\)
\(410\) −17.8726 14.7456i −0.882664 0.728231i
\(411\) 0 0
\(412\) −4.80071 24.8082i −0.236514 1.22221i
\(413\) 4.76162i 0.234304i
\(414\) 0 0
\(415\) 13.6901 0.672019
\(416\) 5.39147 + 1.71232i 0.264339 + 0.0839533i
\(417\) 0 0
\(418\) −9.87042 + 11.9636i −0.482778 + 0.585158i
\(419\) 14.0890i 0.688295i −0.938916 0.344147i \(-0.888168\pi\)
0.938916 0.344147i \(-0.111832\pi\)
\(420\) 0 0
\(421\) 26.8194i 1.30710i 0.756884 + 0.653549i \(0.226721\pi\)
−0.756884 + 0.653549i \(0.773279\pi\)
\(422\) −9.18668 7.57937i −0.447201 0.368958i
\(423\) 0 0
\(424\) 3.35648 6.16343i 0.163005 0.299323i
\(425\) −19.6769 −0.954468
\(426\) 0 0
\(427\) 13.0455i 0.631314i
\(428\) −10.7205 + 2.07455i −0.518194 + 0.100277i
\(429\) 0 0
\(430\) 24.5909 29.8057i 1.18588 1.43736i
\(431\) 10.6793 0.514405 0.257203 0.966357i \(-0.417199\pi\)
0.257203 + 0.966357i \(0.417199\pi\)
\(432\) 0 0
\(433\) 25.6827 1.23423 0.617116 0.786872i \(-0.288301\pi\)
0.617116 + 0.786872i \(0.288301\pi\)
\(434\) −7.12859 + 8.64031i −0.342183 + 0.414748i
\(435\) 0 0
\(436\) −32.1140 + 6.21448i −1.53798 + 0.297620i
\(437\) 8.71189i 0.416746i
\(438\) 0 0
\(439\) 39.1318 1.86766 0.933828 0.357722i \(-0.116446\pi\)
0.933828 + 0.357722i \(0.116446\pi\)
\(440\) −31.0984 16.9356i −1.48256 0.807371i
\(441\) 0 0
\(442\) −4.88449 4.02990i −0.232332 0.191683i
\(443\) 28.0513i 1.33276i −0.745614 0.666378i \(-0.767844\pi\)
0.745614 0.666378i \(-0.232156\pi\)
\(444\) 0 0
\(445\) 18.0930i 0.857692i
\(446\) −14.3847 + 17.4352i −0.681135 + 0.825580i
\(447\) 0 0
\(448\) −6.68206 10.3462i −0.315698 0.488811i
\(449\) −24.1923 −1.14171 −0.570853 0.821052i \(-0.693387\pi\)
−0.570853 + 0.821052i \(0.693387\pi\)
\(450\) 0 0
\(451\) 21.8340i 1.02812i
\(452\) −7.59961 39.2718i −0.357456 1.84719i
\(453\) 0 0
\(454\) 24.0299 + 19.8256i 1.12778 + 0.930461i
\(455\) −4.71878 −0.221220
\(456\) 0 0
\(457\) −4.64631 −0.217345 −0.108673 0.994078i \(-0.534660\pi\)
−0.108673 + 0.994078i \(0.534660\pi\)
\(458\) 24.1281 + 19.9066i 1.12743 + 0.930175i
\(459\) 0 0
\(460\) 19.5281 3.77894i 0.910502 0.176194i
\(461\) 8.95432i 0.417044i −0.978018 0.208522i \(-0.933135\pi\)
0.978018 0.208522i \(-0.0668653\pi\)
\(462\) 0 0
\(463\) 1.07881 0.0501365 0.0250682 0.999686i \(-0.492020\pi\)
0.0250682 + 0.999686i \(0.492020\pi\)
\(464\) 12.5503 + 31.2131i 0.582631 + 1.44903i
\(465\) 0 0
\(466\) −16.4661 + 19.9579i −0.762775 + 0.924533i
\(467\) 22.8953i 1.05947i −0.848164 0.529734i \(-0.822292\pi\)
0.848164 0.529734i \(-0.177708\pi\)
\(468\) 0 0
\(469\) 14.3639i 0.663265i
\(470\) −35.4894 29.2801i −1.63700 1.35059i
\(471\) 0 0
\(472\) −4.18380 + 7.68262i −0.192575 + 0.353621i
\(473\) −36.4121 −1.67423
\(474\) 0 0
\(475\) 11.7990i 0.541373i
\(476\) 2.61938 + 13.5359i 0.120059 + 0.620418i
\(477\) 0 0
\(478\) −12.9614 + 15.7101i −0.592842 + 0.718563i
\(479\) −9.79548 −0.447567 −0.223783 0.974639i \(-0.571841\pi\)
−0.223783 + 0.974639i \(0.571841\pi\)
\(480\) 0 0
\(481\) −5.60521 −0.255576
\(482\) −25.0449 + 30.3561i −1.14076 + 1.38268i
\(483\) 0 0
\(484\) 2.15991 + 11.1615i 0.0981775 + 0.507343i
\(485\) 42.9563i 1.95055i
\(486\) 0 0
\(487\) 38.1722 1.72975 0.864874 0.501989i \(-0.167398\pi\)
0.864874 + 0.501989i \(0.167398\pi\)
\(488\) −11.4624 + 21.0482i −0.518879 + 0.952805i
\(489\) 0 0
\(490\) −15.4799 12.7716i −0.699313 0.576960i
\(491\) 36.8387i 1.66251i −0.555893 0.831254i \(-0.687623\pi\)
0.555893 0.831254i \(-0.312377\pi\)
\(492\) 0 0
\(493\) 37.6588i 1.69607i
\(494\) 2.41647 2.92892i 0.108722 0.131778i
\(495\) 0 0
\(496\) 19.0934 7.67714i 0.857319 0.344714i
\(497\) 11.5892 0.519846
\(498\) 0 0
\(499\) 9.44767i 0.422936i 0.977385 + 0.211468i \(0.0678244\pi\)
−0.977385 + 0.211468i \(0.932176\pi\)
\(500\) −3.64428 + 0.705215i −0.162977 + 0.0315382i
\(501\) 0 0
\(502\) −12.0399 9.93334i −0.537365 0.443347i
\(503\) −3.12104 −0.139160 −0.0695802 0.997576i \(-0.522166\pi\)
−0.0695802 + 0.997576i \(0.522166\pi\)
\(504\) 0 0
\(505\) −16.2645 −0.723760
\(506\) −14.4578 11.9282i −0.642727 0.530274i
\(507\) 0 0
\(508\) −3.78272 19.5476i −0.167831 0.867286i
\(509\) 1.82216i 0.0807658i 0.999184 + 0.0403829i \(0.0128578\pi\)
−0.999184 + 0.0403829i \(0.987142\pi\)
\(510\) 0 0
\(511\) 8.62949 0.381746
\(512\) 1.69047 + 22.5642i 0.0747091 + 0.997205i
\(513\) 0 0
\(514\) 13.9704 16.9330i 0.616208 0.746884i
\(515\) 38.7244i 1.70640i
\(516\) 0 0
\(517\) 43.3556i 1.90678i
\(518\) 9.41361 + 7.76659i 0.413610 + 0.341245i
\(519\) 0 0
\(520\) 7.61349 + 4.14616i 0.333874 + 0.181821i
\(521\) 8.67898 0.380233 0.190117 0.981762i \(-0.439113\pi\)
0.190117 + 0.981762i \(0.439113\pi\)
\(522\) 0 0
\(523\) 11.8477i 0.518064i −0.965869 0.259032i \(-0.916596\pi\)
0.965869 0.259032i \(-0.0834036\pi\)
\(524\) 25.3066 4.89717i 1.10553 0.213934i
\(525\) 0 0
\(526\) 6.98197 8.46260i 0.304429 0.368987i
\(527\) −23.0363 −1.00348
\(528\) 0 0
\(529\) −12.4718 −0.542254
\(530\) 6.84474 8.29627i 0.297316 0.360367i
\(531\) 0 0
\(532\) −8.11663 + 1.57067i −0.351901 + 0.0680974i
\(533\) 5.34539i 0.231535i
\(534\) 0 0
\(535\) −16.7341 −0.723480
\(536\) 12.6209 23.1754i 0.545139 1.00103i
\(537\) 0 0
\(538\) 18.9716 + 15.6523i 0.817924 + 0.674819i
\(539\) 18.9111i 0.814557i
\(540\) 0 0
\(541\) 12.0878i 0.519696i −0.965649 0.259848i \(-0.916327\pi\)
0.965649 0.259848i \(-0.0836725\pi\)
\(542\) −10.3717 + 12.5711i −0.445502 + 0.539977i
\(543\) 0 0
\(544\) 7.66712 24.1410i 0.328725 1.03504i
\(545\) −50.1284 −2.14727
\(546\) 0 0
\(547\) 45.8603i 1.96084i 0.196911 + 0.980421i \(0.436909\pi\)
−0.196911 + 0.980421i \(0.563091\pi\)
\(548\) 4.28507 + 22.1436i 0.183049 + 0.945926i
\(549\) 0 0
\(550\) −19.5809 16.1550i −0.834933 0.688852i
\(551\) 22.5816 0.962008
\(552\) 0 0
\(553\) 17.5111 0.744648
\(554\) −5.86863 4.84184i −0.249334 0.205710i
\(555\) 0 0
\(556\) 1.87259 0.362372i 0.0794157 0.0153680i
\(557\) 23.1714i 0.981804i 0.871215 + 0.490902i \(0.163333\pi\)
−0.871215 + 0.490902i \(0.836667\pi\)
\(558\) 0 0
\(559\) 8.91439 0.377038
\(560\) −7.04148 17.5125i −0.297557 0.740038i
\(561\) 0 0
\(562\) 10.6514 12.9102i 0.449303 0.544584i
\(563\) 30.8773i 1.30132i −0.759368 0.650662i \(-0.774492\pi\)
0.759368 0.650662i \(-0.225508\pi\)
\(564\) 0 0
\(565\) 61.3014i 2.57897i
\(566\) 4.67996 + 3.86115i 0.196713 + 0.162296i
\(567\) 0 0
\(568\) −18.6985 10.1828i −0.784572 0.427262i
\(569\) 12.3484 0.517673 0.258836 0.965921i \(-0.416661\pi\)
0.258836 + 0.965921i \(0.416661\pi\)
\(570\) 0 0
\(571\) 28.6787i 1.20016i −0.799938 0.600082i \(-0.795135\pi\)
0.799938 0.600082i \(-0.204865\pi\)
\(572\) −1.55207 8.02049i −0.0648953 0.335354i
\(573\) 0 0
\(574\) −7.40658 + 8.97726i −0.309145 + 0.374704i
\(575\) 14.2588 0.594634
\(576\) 0 0
\(577\) 2.40971 0.100318 0.0501588 0.998741i \(-0.484027\pi\)
0.0501588 + 0.998741i \(0.484027\pi\)
\(578\) −2.74427 + 3.32623i −0.114147 + 0.138353i
\(579\) 0 0
\(580\) 9.79517 + 50.6176i 0.406722 + 2.10178i
\(581\) 6.87642i 0.285282i
\(582\) 0 0
\(583\) −10.1351 −0.419754
\(584\) −13.9232 7.58230i −0.576147 0.313758i
\(585\) 0 0
\(586\) −2.02076 1.66720i −0.0834768 0.0688716i
\(587\) 2.78354i 0.114889i −0.998349 0.0574444i \(-0.981705\pi\)
0.998349 0.0574444i \(-0.0182952\pi\)
\(588\) 0 0
\(589\) 13.8134i 0.569172i
\(590\) −8.53187 + 10.3412i −0.351251 + 0.425739i
\(591\) 0 0
\(592\) −8.36424 20.8023i −0.343768 0.854967i
\(593\) 1.14404 0.0469799 0.0234900 0.999724i \(-0.492522\pi\)
0.0234900 + 0.999724i \(0.492522\pi\)
\(594\) 0 0
\(595\) 21.1289i 0.866202i
\(596\) −10.5212 + 2.03599i −0.430966 + 0.0833976i
\(597\) 0 0
\(598\) 3.53955 + 2.92026i 0.144743 + 0.119418i
\(599\) 2.31285 0.0945005 0.0472503 0.998883i \(-0.484954\pi\)
0.0472503 + 0.998883i \(0.484954\pi\)
\(600\) 0 0
\(601\) 17.9439 0.731947 0.365973 0.930625i \(-0.380736\pi\)
0.365973 + 0.930625i \(0.380736\pi\)
\(602\) −14.9712 12.3518i −0.610180 0.503422i
\(603\) 0 0
\(604\) 2.62543 + 13.5672i 0.106827 + 0.552041i
\(605\) 17.4226i 0.708331i
\(606\) 0 0
\(607\) −5.60428 −0.227471 −0.113735 0.993511i \(-0.536282\pi\)
−0.113735 + 0.993511i \(0.536282\pi\)
\(608\) 14.4758 + 4.59749i 0.587072 + 0.186453i
\(609\) 0 0
\(610\) −23.3748 + 28.3318i −0.946420 + 1.14712i
\(611\) 10.6143i 0.429408i
\(612\) 0 0
\(613\) 2.81625i 0.113747i 0.998381 + 0.0568736i \(0.0181132\pi\)
−0.998381 + 0.0568736i \(0.981887\pi\)
\(614\) 26.3520 + 21.7414i 1.06348 + 0.877411i
\(615\) 0 0
\(616\) −8.50660 + 15.6205i −0.342741 + 0.629367i
\(617\) 30.2020 1.21589 0.607943 0.793981i \(-0.291995\pi\)
0.607943 + 0.793981i \(0.291995\pi\)
\(618\) 0 0
\(619\) 21.4184i 0.860879i −0.902619 0.430440i \(-0.858359\pi\)
0.902619 0.430440i \(-0.141641\pi\)
\(620\) 30.9634 5.99182i 1.24352 0.240637i
\(621\) 0 0
\(622\) 21.4446 25.9922i 0.859850 1.04219i
\(623\) −9.08800 −0.364103
\(624\) 0 0
\(625\) −27.6609 −1.10644
\(626\) −31.3579 + 38.0078i −1.25331 + 1.51910i
\(627\) 0 0
\(628\) −9.84777 + 1.90567i −0.392969 + 0.0760446i
\(629\) 25.0981i 1.00073i
\(630\) 0 0
\(631\) −11.8944 −0.473510 −0.236755 0.971569i \(-0.576084\pi\)
−0.236755 + 0.971569i \(0.576084\pi\)
\(632\) −28.2532 15.3862i −1.12385 0.612028i
\(633\) 0 0
\(634\) 26.2704 + 21.6741i 1.04333 + 0.860789i
\(635\) 30.5129i 1.21087i
\(636\) 0 0
\(637\) 4.62979i 0.183439i
\(638\) 30.9185 37.4752i 1.22407 1.48366i
\(639\) 0 0
\(640\) −4.02632 + 34.4424i −0.159154 + 1.36146i
\(641\) −12.0823 −0.477224 −0.238612 0.971115i \(-0.576692\pi\)
−0.238612 + 0.971115i \(0.576692\pi\)
\(642\) 0 0
\(643\) 8.29078i 0.326956i 0.986547 + 0.163478i \(0.0522713\pi\)
−0.986547 + 0.163478i \(0.947729\pi\)
\(644\) −1.89813 9.80881i −0.0747969 0.386521i
\(645\) 0 0
\(646\) −13.1146 10.8201i −0.515988 0.425710i
\(647\) 31.3814 1.23373 0.616865 0.787069i \(-0.288402\pi\)
0.616865 + 0.787069i \(0.288402\pi\)
\(648\) 0 0
\(649\) 12.6333 0.495900
\(650\) 4.79379 + 3.95506i 0.188028 + 0.155130i
\(651\) 0 0
\(652\) 46.1207 8.92496i 1.80623 0.349529i
\(653\) 1.52441i 0.0596546i −0.999555 0.0298273i \(-0.990504\pi\)
0.999555 0.0298273i \(-0.00949574\pi\)
\(654\) 0 0
\(655\) 39.5024 1.54349
\(656\) 19.8380 7.97652i 0.774544 0.311431i
\(657\) 0 0
\(658\) −14.7072 + 17.8261i −0.573346 + 0.694932i
\(659\) 32.1348i 1.25179i 0.779906 + 0.625897i \(0.215267\pi\)
−0.779906 + 0.625897i \(0.784733\pi\)
\(660\) 0 0
\(661\) 45.2896i 1.76156i 0.473525 + 0.880780i \(0.342981\pi\)
−0.473525 + 0.880780i \(0.657019\pi\)
\(662\) 20.6225 + 17.0144i 0.801517 + 0.661282i
\(663\) 0 0
\(664\) −6.04197 + 11.0947i −0.234474 + 0.430559i
\(665\) −12.6697 −0.491309
\(666\) 0 0
\(667\) 27.2894i 1.05665i
\(668\) 8.00368 + 41.3599i 0.309672 + 1.60026i
\(669\) 0 0
\(670\) 25.7373 31.1952i 0.994318 1.20518i
\(671\) 34.6115 1.33616
\(672\) 0 0
\(673\) −31.6596 −1.22039 −0.610195 0.792251i \(-0.708909\pi\)
−0.610195 + 0.792251i \(0.708909\pi\)
\(674\) −17.1494 + 20.7862i −0.660570 + 0.800653i
\(675\) 0 0
\(676\) 0.379977 + 1.96357i 0.0146145 + 0.0755220i
\(677\) 39.5883i 1.52150i −0.649043 0.760752i \(-0.724830\pi\)
0.649043 0.760752i \(-0.275170\pi\)
\(678\) 0 0
\(679\) −21.5766 −0.828035
\(680\) 18.5649 34.0904i 0.711933 1.30731i
\(681\) 0 0
\(682\) −22.9240 18.9132i −0.877805 0.724223i
\(683\) 25.6951i 0.983196i 0.870822 + 0.491598i \(0.163587\pi\)
−0.870822 + 0.491598i \(0.836413\pi\)
\(684\) 0 0
\(685\) 34.5650i 1.32066i
\(686\) −16.1143 + 19.5315i −0.615246 + 0.745718i
\(687\) 0 0
\(688\) 13.3023 + 33.0834i 0.507144 + 1.26129i
\(689\) 2.48127 0.0945290
\(690\) 0 0
\(691\) 33.9215i 1.29043i 0.764000 + 0.645217i \(0.223233\pi\)
−0.764000 + 0.645217i \(0.776767\pi\)
\(692\) −5.57776 + 1.07937i −0.212035 + 0.0410315i
\(693\) 0 0
\(694\) 6.38859 + 5.27083i 0.242507 + 0.200078i
\(695\) 2.92303 0.110877
\(696\) 0 0
\(697\) −23.9347 −0.906591
\(698\) −40.0862 33.0726i −1.51728 1.25182i
\(699\) 0 0
\(700\) −2.57074 13.2846i −0.0971648 0.502110i
\(701\) 38.5695i 1.45675i 0.685179 + 0.728375i \(0.259724\pi\)
−0.685179 + 0.728375i \(0.740276\pi\)
\(702\) 0 0
\(703\) −15.0497 −0.567610
\(704\) 27.4499 17.7285i 1.03456 0.668167i
\(705\) 0 0
\(706\) 3.86617 4.68605i 0.145505 0.176362i
\(707\) 8.16953i 0.307247i
\(708\) 0 0
\(709\) 0.628816i 0.0236157i −0.999930 0.0118078i \(-0.996241\pi\)
0.999930 0.0118078i \(-0.00375864\pi\)
\(710\) −25.1691 20.7655i −0.944579 0.779314i
\(711\) 0 0
\(712\) 14.6630 + 7.98517i 0.549519 + 0.299257i
\(713\) 16.6933 0.625168
\(714\) 0 0
\(715\) 12.5196i 0.468206i
\(716\) 11.8099 2.28538i 0.441358 0.0854086i
\(717\) 0 0
\(718\) 2.49181 3.02024i 0.0929936 0.112714i
\(719\) −14.6658 −0.546942 −0.273471 0.961880i \(-0.588172\pi\)
−0.273471 + 0.961880i \(0.588172\pi\)
\(720\) 0 0
\(721\) −19.4510 −0.724392
\(722\) −10.6120 + 12.8625i −0.394939 + 0.478691i
\(723\) 0 0
\(724\) 6.49164 1.25622i 0.241260 0.0466870i
\(725\) 36.9595i 1.37264i
\(726\) 0 0
\(727\) −25.6145 −0.949991 −0.474996 0.879988i \(-0.657550\pi\)
−0.474996 + 0.879988i \(0.657550\pi\)
\(728\) 2.08258 3.82420i 0.0771856 0.141734i
\(729\) 0 0
\(730\) −18.7413 15.4623i −0.693647 0.572285i
\(731\) 39.9153i 1.47632i
\(732\) 0 0
\(733\) 3.38122i 0.124888i −0.998048 0.0624440i \(-0.980111\pi\)
0.998048 0.0624440i \(-0.0198895\pi\)
\(734\) 7.62787 9.24547i 0.281550 0.341257i
\(735\) 0 0
\(736\) −5.55598 + 17.4938i −0.204796 + 0.644829i
\(737\) −38.1096 −1.40379
\(738\) 0 0
\(739\) 23.7865i 0.875000i 0.899218 + 0.437500i \(0.144136\pi\)
−0.899218 + 0.437500i \(0.855864\pi\)
\(740\) −6.52808 33.7346i −0.239977 1.24011i
\(741\) 0 0
\(742\) −4.16715 3.43806i −0.152981 0.126215i
\(743\) 39.6656 1.45519 0.727595 0.686007i \(-0.240638\pi\)
0.727595 + 0.686007i \(0.240638\pi\)
\(744\) 0 0
\(745\) −16.4231 −0.601697
\(746\) 1.17855 + 0.972349i 0.0431498 + 0.0356002i
\(747\) 0 0
\(748\) −35.9128 + 6.94960i −1.31310 + 0.254102i
\(749\) 8.40543i 0.307128i
\(750\) 0 0
\(751\) −11.4232 −0.416837 −0.208419 0.978040i \(-0.566832\pi\)
−0.208419 + 0.978040i \(0.566832\pi\)
\(752\) 39.3921 15.8389i 1.43648 0.577585i
\(753\) 0 0
\(754\) −7.56944 + 9.17465i −0.275663 + 0.334121i
\(755\) 21.1777i 0.770737i
\(756\) 0 0
\(757\) 45.1067i 1.63943i −0.572772 0.819715i \(-0.694132\pi\)
0.572772 0.819715i \(-0.305868\pi\)
\(758\) 31.4803 + 25.9724i 1.14342 + 0.943362i
\(759\) 0 0
\(760\) 20.4418 + 11.1322i 0.741503 + 0.403808i
\(761\) −38.2864 −1.38788 −0.693941 0.720032i \(-0.744127\pi\)
−0.693941 + 0.720032i \(0.744127\pi\)
\(762\) 0 0
\(763\) 25.1791i 0.911546i
\(764\) −7.15967 36.9984i −0.259028 1.33855i
\(765\) 0 0
\(766\) −27.7313 + 33.6121i −1.00197 + 1.21445i
\(767\) −3.09287 −0.111677
\(768\) 0 0
\(769\) 13.0069 0.469039 0.234520 0.972111i \(-0.424648\pi\)
0.234520 + 0.972111i \(0.424648\pi\)
\(770\) −17.3472 + 21.0259i −0.625149 + 0.757721i
\(771\) 0 0
\(772\) 10.0594 + 51.9832i 0.362047 + 1.87092i
\(773\) 43.3238i 1.55825i 0.626869 + 0.779124i \(0.284336\pi\)
−0.626869 + 0.779124i \(0.715664\pi\)
\(774\) 0 0
\(775\) 22.6085 0.812123
\(776\) 34.8127 + 18.9583i 1.24970 + 0.680564i
\(777\) 0 0
\(778\) −15.7584 13.0013i −0.564965 0.466118i
\(779\) 14.3521i 0.514217i
\(780\) 0 0
\(781\) 30.7478i 1.10024i
\(782\) 13.0759 15.8488i 0.467592 0.566751i
\(783\) 0 0
\(784\) 17.1823 6.90870i 0.613652 0.246739i
\(785\) −15.3719 −0.548647
\(786\) 0 0
\(787\) 12.0517i 0.429597i −0.976658 0.214798i \(-0.931091\pi\)
0.976658 0.214798i \(-0.0689094\pi\)
\(788\) −25.2553 + 4.88724i −0.899684 + 0.174101i
\(789\) 0 0
\(790\) −38.0302 31.3764i −1.35305 1.11632i
\(791\) −30.7912 −1.09481
\(792\) 0 0
\(793\) −8.47358 −0.300905
\(794\) 21.0749 + 17.3876i 0.747921 + 0.617064i
\(795\) 0 0
\(796\) 3.15195 + 16.2880i 0.111718 + 0.577314i
\(797\) 28.0211i 0.992558i 0.868163 + 0.496279i \(0.165301\pi\)
−0.868163 + 0.496279i \(0.834699\pi\)
\(798\) 0 0
\(799\) −47.5269 −1.68138
\(800\) −7.52475 + 23.6927i −0.266040 + 0.837664i
\(801\) 0 0
\(802\) 15.3728 18.6328i 0.542832 0.657947i
\(803\) 22.8953i 0.807957i
\(804\) 0 0
\(805\) 15.3111i 0.539644i
\(806\) 5.61224 + 4.63032i 0.197683 + 0.163096i
\(807\) 0 0
\(808\) 7.17816 13.1811i 0.252527 0.463709i
\(809\) 35.2588 1.23963 0.619817 0.784746i \(-0.287207\pi\)
0.619817 + 0.784746i \(0.287207\pi\)
\(810\) 0 0
\(811\) 46.3530i 1.62767i −0.581094 0.813836i \(-0.697375\pi\)
0.581094 0.813836i \(-0.302625\pi\)
\(812\) 25.4248 4.92004i 0.892237 0.172660i
\(813\) 0 0
\(814\) −20.6059 + 24.9757i −0.722237 + 0.875397i
\(815\) 71.9922 2.52178
\(816\) 0 0
\(817\) 23.9347 0.837368
\(818\) −1.95637 + 2.37125i −0.0684029 + 0.0829087i
\(819\) 0 0
\(820\) 32.1709 6.22548i 1.12346 0.217403i
\(821\) 23.1380i 0.807520i −0.914865 0.403760i \(-0.867703\pi\)
0.914865 0.403760i \(-0.132297\pi\)
\(822\) 0 0
\(823\) 8.31783 0.289941 0.144971 0.989436i \(-0.453691\pi\)
0.144971 + 0.989436i \(0.453691\pi\)
\(824\) 31.3831 + 17.0906i 1.09328 + 0.595379i
\(825\) 0 0
\(826\) 5.19429 + 4.28549i 0.180733 + 0.149111i
\(827\) 35.6621i 1.24009i 0.784565 + 0.620046i \(0.212886\pi\)
−0.784565 + 0.620046i \(0.787114\pi\)
\(828\) 0 0
\(829\) 6.05505i 0.210301i −0.994456 0.105150i \(-0.966468\pi\)
0.994456 0.105150i \(-0.0335324\pi\)
\(830\) −12.3212 + 14.9340i −0.427673 + 0.518368i
\(831\) 0 0
\(832\) −6.72027 + 4.34028i −0.232983 + 0.150472i
\(833\) −20.7305 −0.718269
\(834\) 0 0
\(835\) 64.5608i 2.23422i
\(836\) −4.16723 21.5346i −0.144127 0.744790i
\(837\) 0 0
\(838\) 15.3693 + 12.6802i 0.530922 + 0.438031i
\(839\) 45.5223 1.57160 0.785802 0.618478i \(-0.212251\pi\)
0.785802 + 0.618478i \(0.212251\pi\)
\(840\) 0 0
\(841\) −41.7354 −1.43915
\(842\) −29.2564 24.1377i −1.00824 0.831839i
\(843\) 0 0
\(844\) 16.5362 3.19996i 0.569198 0.110147i
\(845\) 3.06504i 0.105441i
\(846\) 0 0
\(847\) 8.75126 0.300697
\(848\) 3.70262 + 9.20859i 0.127149 + 0.316224i
\(849\) 0 0
\(850\) 17.7093 21.4648i 0.607424 0.736237i
\(851\) 18.1873i 0.623453i
\(852\) 0 0
\(853\) 7.21422i 0.247010i 0.992344 + 0.123505i \(0.0394135\pi\)
−0.992344 + 0.123505i \(0.960586\pi\)
\(854\) 14.2309 + 11.7410i 0.486970 + 0.401769i
\(855\) 0 0
\(856\) 7.38544 13.5617i 0.252429 0.463530i
\(857\) −25.2860 −0.863754 −0.431877 0.901933i \(-0.642149\pi\)
−0.431877 + 0.901933i \(0.642149\pi\)
\(858\) 0 0
\(859\) 27.1905i 0.927727i −0.885907 0.463864i \(-0.846463\pi\)
0.885907 0.463864i \(-0.153537\pi\)
\(860\) 10.3821 + 53.6506i 0.354027 + 1.82947i
\(861\) 0 0
\(862\) −9.61147 + 11.6497i −0.327368 + 0.396791i
\(863\) −52.6961 −1.79380 −0.896898 0.442237i \(-0.854185\pi\)
−0.896898 + 0.442237i \(0.854185\pi\)
\(864\) 0 0
\(865\) −8.70661 −0.296034
\(866\) −23.1146 + 28.0164i −0.785466 + 0.952036i
\(867\) 0 0
\(868\) −3.00965 15.5527i −0.102154 0.527892i
\(869\) 46.4595i 1.57603i
\(870\) 0 0
\(871\) 9.32998 0.316134
\(872\) 22.1237 40.6252i 0.749202 1.37574i
\(873\) 0 0
\(874\) 9.50350 + 7.84076i 0.321461 + 0.265218i
\(875\) 2.85731i 0.0965947i
\(876\) 0 0
\(877\) 20.0897i 0.678380i −0.940718 0.339190i \(-0.889847\pi\)
0.940718 0.339190i \(-0.110153\pi\)
\(878\) −35.2188 + 42.6875i −1.18858 + 1.44063i
\(879\) 0 0
\(880\) 46.4632 18.6821i 1.56627 0.629772i
\(881\) 52.8711 1.78127 0.890636 0.454718i \(-0.150260\pi\)
0.890636 + 0.454718i \(0.150260\pi\)
\(882\) 0 0
\(883\) 20.1563i 0.678313i −0.940730 0.339157i \(-0.889858\pi\)
0.940730 0.339157i \(-0.110142\pi\)
\(884\) 8.79215 1.70140i 0.295712 0.0572242i
\(885\) 0 0
\(886\) 30.6002 + 25.2463i 1.02803 + 0.848167i
\(887\) 19.3446 0.649528 0.324764 0.945795i \(-0.394715\pi\)
0.324764 + 0.945795i \(0.394715\pi\)
\(888\) 0 0
\(889\) −15.3264 −0.514031
\(890\) 19.7371 + 16.2839i 0.661588 + 0.545836i
\(891\) 0 0
\(892\) −6.07313 31.3836i −0.203343 1.05080i
\(893\) 28.4988i 0.953677i
\(894\) 0 0
\(895\) 18.4347 0.616205
\(896\) 17.3002 + 2.02239i 0.577958 + 0.0675632i
\(897\) 0 0
\(898\) 21.7732 26.3906i 0.726582 0.880664i
\(899\) 43.2696i 1.44312i
\(900\) 0 0
\(901\) 11.1102i 0.370135i
\(902\) −23.8180 19.6507i −0.793052 0.654298i
\(903\) 0 0
\(904\) 49.6800 + 27.0547i 1.65233 + 0.899827i
\(905\) 10.1331 0.336837
\(906\) 0 0
\(907\) 32.0311i 1.06358i −0.846877 0.531788i \(-0.821520\pi\)
0.846877 0.531788i \(-0.178480\pi\)
\(908\) −43.2541 + 8.37024i −1.43544 + 0.277776i
\(909\) 0 0
\(910\) 4.24693 5.14755i 0.140784 0.170640i
\(911\) −16.3856 −0.542880 −0.271440 0.962455i \(-0.587500\pi\)
−0.271440 + 0.962455i \(0.587500\pi\)
\(912\) 0 0
\(913\) 18.2441 0.603793
\(914\) 4.18171 5.06851i 0.138319 0.167651i
\(915\) 0 0
\(916\) −43.4309 + 8.40444i −1.43500 + 0.277691i
\(917\) 19.8418i 0.655233i
\(918\) 0 0
\(919\) −21.1754 −0.698513 −0.349257 0.937027i \(-0.613566\pi\)
−0.349257 + 0.937027i \(0.613566\pi\)
\(920\) −13.4531 + 24.7036i −0.443535 + 0.814453i
\(921\) 0 0
\(922\) 9.76796 + 8.05894i 0.321691 + 0.265407i
\(923\) 7.52766i 0.247776i
\(924\) 0 0
\(925\) 24.6320i 0.809895i
\(926\) −0.970934 + 1.17683i −0.0319069 + 0.0386732i
\(927\) 0 0
\(928\) −45.3446 14.4013i −1.48851 0.472747i
\(929\) −30.7749 −1.00969 −0.504846 0.863210i \(-0.668451\pi\)
−0.504846 + 0.863210i \(0.668451\pi\)
\(930\) 0 0
\(931\) 12.4308i 0.407402i
\(932\) −6.95187 35.9245i −0.227716 1.17675i
\(933\) 0 0
\(934\) 24.9757 + 20.6059i 0.817229 + 0.674246i
\(935\) −56.0581 −1.83330
\(936\) 0 0
\(937\) −6.23750 −0.203770 −0.101885 0.994796i \(-0.532487\pi\)
−0.101885 + 0.994796i \(0.532487\pi\)
\(938\) −15.6691 12.9276i −0.511615 0.422102i
\(939\) 0 0
\(940\) 63.8814 12.3619i 2.08358 0.403200i
\(941\) 17.8567i 0.582112i −0.956706 0.291056i \(-0.905993\pi\)
0.956706 0.291056i \(-0.0940067\pi\)
\(942\) 0 0
\(943\) 17.3443 0.564807
\(944\) −4.61526 11.4784i −0.150214 0.373589i
\(945\) 0 0
\(946\) 32.7711 39.7207i 1.06548 1.29143i
\(947\) 48.2716i 1.56861i −0.620372 0.784307i \(-0.713019\pi\)
0.620372 0.784307i \(-0.286981\pi\)
\(948\) 0 0
\(949\) 5.60521i 0.181953i
\(950\) 12.8711 + 10.6191i 0.417593 + 0.344530i
\(951\) 0 0
\(952\) −17.1233 9.32503i −0.554971 0.302226i
\(953\) 11.8061 0.382436 0.191218 0.981548i \(-0.438756\pi\)
0.191218 + 0.981548i \(0.438756\pi\)
\(954\) 0 0
\(955\) 57.7527i 1.86883i
\(956\) −5.47224 28.2784i −0.176985 0.914588i
\(957\) 0 0
\(958\) 8.81599 10.6856i 0.284832 0.345234i
\(959\) 17.3617 0.560640
\(960\) 0 0
\(961\) −4.53146 −0.146176
\(962\) 5.04473 6.11453i 0.162648 0.197140i
\(963\) 0 0
\(964\) −10.5738 54.6413i −0.340559 1.75988i
\(965\) 81.1433i 2.61210i
\(966\) 0 0
\(967\) −46.9298 −1.50916 −0.754581 0.656207i \(-0.772160\pi\)
−0.754581 + 0.656207i \(0.772160\pi\)
\(968\) −14.1197 7.68930i −0.453824 0.247143i
\(969\) 0 0
\(970\) 46.8596 + 38.6610i 1.50457 + 1.24133i
\(971\) 3.92771i 0.126046i −0.998012 0.0630230i \(-0.979926\pi\)
0.998012 0.0630230i \(-0.0200742\pi\)
\(972\) 0 0
\(973\) 1.46822i 0.0470688i
\(974\) −34.3552 + 41.6408i −1.10081 + 1.33426i
\(975\) 0 0
\(976\) −12.6445 31.4474i −0.404740 1.00661i
\(977\) −52.9280 −1.69332 −0.846659 0.532136i \(-0.821389\pi\)
−0.846659 + 0.532136i \(0.821389\pi\)
\(978\) 0 0
\(979\) 24.1118i 0.770616i
\(980\) 27.8641 5.39207i 0.890086 0.172243i
\(981\) 0 0
\(982\) 40.1861 + 33.1551i 1.28239 + 1.05802i
\(983\) 22.3899 0.714128 0.357064 0.934080i \(-0.383778\pi\)
0.357064 + 0.934080i \(0.383778\pi\)
\(984\) 0 0
\(985\) −39.4224 −1.25610
\(986\) 41.0807 + 33.8932i 1.30828 + 1.07938i
\(987\) 0 0
\(988\) 1.02022 + 5.27209i 0.0324575 + 0.167728i
\(989\) 28.9246i 0.919750i
\(990\) 0 0
\(991\) −14.5258 −0.461426 −0.230713 0.973022i \(-0.574106\pi\)
−0.230713 + 0.973022i \(0.574106\pi\)
\(992\) −8.80946 + 27.7378i −0.279701 + 0.880677i
\(993\) 0 0
\(994\) −10.4303 + 12.6422i −0.330830 + 0.400988i
\(995\) 25.4248i 0.806022i
\(996\) 0 0
\(997\) 33.6376i 1.06531i 0.846332 + 0.532656i \(0.178806\pi\)
−0.846332 + 0.532656i \(0.821194\pi\)
\(998\) −10.3061 8.50296i −0.326235 0.269156i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.g.f.469.10 yes 24
3.2 odd 2 inner 936.2.g.f.469.15 yes 24
4.3 odd 2 3744.2.g.f.1873.9 24
8.3 odd 2 3744.2.g.f.1873.10 24
8.5 even 2 inner 936.2.g.f.469.9 24
12.11 even 2 3744.2.g.f.1873.14 24
24.5 odd 2 inner 936.2.g.f.469.16 yes 24
24.11 even 2 3744.2.g.f.1873.13 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.g.f.469.9 24 8.5 even 2 inner
936.2.g.f.469.10 yes 24 1.1 even 1 trivial
936.2.g.f.469.15 yes 24 3.2 odd 2 inner
936.2.g.f.469.16 yes 24 24.5 odd 2 inner
3744.2.g.f.1873.9 24 4.3 odd 2
3744.2.g.f.1873.10 24 8.3 odd 2
3744.2.g.f.1873.13 24 24.11 even 2
3744.2.g.f.1873.14 24 12.11 even 2