Properties

Label 936.2.m.d
Level 936936
Weight 22
Character orbit 936.m
Analytic conductor 7.4747.474
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [936,2,Mod(181,936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(936, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("936.181");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 936=233213 936 = 2^{3} \cdot 3^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 936.m (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 7.473997629197.47399762919
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(i+1)q22iq4+2q5+(2i2)q8+(2i+2)q10+4q11+(2i+3)q134q16+6q176q194iq20+(4i+4)q22q25+(i+5)q26++(7i+7)q98+O(q100) q + ( - i + 1) q^{2} - 2 i q^{4} + 2 q^{5} + ( - 2 i - 2) q^{8} + ( - 2 i + 2) q^{10} + 4 q^{11} + (2 i + 3) q^{13} - 4 q^{16} + 6 q^{17} - 6 q^{19} - 4 i q^{20} + ( - 4 i + 4) q^{22} - q^{25} + ( - i + 5) q^{26} + \cdots + ( - 7 i + 7) q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q2+4q54q8+4q10+8q11+6q138q16+12q1712q19+8q222q25+10q268q32+12q3412q3712q388q40+14q49++14q98+O(q100) 2 q + 2 q^{2} + 4 q^{5} - 4 q^{8} + 4 q^{10} + 8 q^{11} + 6 q^{13} - 8 q^{16} + 12 q^{17} - 12 q^{19} + 8 q^{22} - 2 q^{25} + 10 q^{26} - 8 q^{32} + 12 q^{34} - 12 q^{37} - 12 q^{38} - 8 q^{40} + 14 q^{49}+ \cdots + 14 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/936Z)×\left(\mathbb{Z}/936\mathbb{Z}\right)^\times.

nn 145145 209209 469469 703703
χ(n)\chi(n) 1-1 11 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
181.1
1.00000i
1.00000i
1.00000 1.00000i 0 2.00000i 2.00000 0 0 −2.00000 2.00000i 0 2.00000 2.00000i
181.2 1.00000 + 1.00000i 0 2.00000i 2.00000 0 0 −2.00000 + 2.00000i 0 2.00000 + 2.00000i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
104.e even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 936.2.m.d 2
3.b odd 2 1 312.2.m.a 2
4.b odd 2 1 3744.2.m.d 2
8.b even 2 1 936.2.m.a 2
8.d odd 2 1 3744.2.m.a 2
12.b even 2 1 1248.2.m.a 2
13.b even 2 1 936.2.m.a 2
24.f even 2 1 1248.2.m.b 2
24.h odd 2 1 312.2.m.b yes 2
39.d odd 2 1 312.2.m.b yes 2
52.b odd 2 1 3744.2.m.a 2
104.e even 2 1 inner 936.2.m.d 2
104.h odd 2 1 3744.2.m.d 2
156.h even 2 1 1248.2.m.b 2
312.b odd 2 1 312.2.m.a 2
312.h even 2 1 1248.2.m.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
312.2.m.a 2 3.b odd 2 1
312.2.m.a 2 312.b odd 2 1
312.2.m.b yes 2 24.h odd 2 1
312.2.m.b yes 2 39.d odd 2 1
936.2.m.a 2 8.b even 2 1
936.2.m.a 2 13.b even 2 1
936.2.m.d 2 1.a even 1 1 trivial
936.2.m.d 2 104.e even 2 1 inner
1248.2.m.a 2 12.b even 2 1
1248.2.m.a 2 312.h even 2 1
1248.2.m.b 2 24.f even 2 1
1248.2.m.b 2 156.h even 2 1
3744.2.m.a 2 8.d odd 2 1
3744.2.m.a 2 52.b odd 2 1
3744.2.m.d 2 4.b odd 2 1
3744.2.m.d 2 104.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T52 T_{5} - 2 acting on S2new(936,[χ])S_{2}^{\mathrm{new}}(936, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T22T+2 T^{2} - 2T + 2 Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 (T2)2 (T - 2)^{2} Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 (T4)2 (T - 4)^{2} Copy content Toggle raw display
1313 T26T+13 T^{2} - 6T + 13 Copy content Toggle raw display
1717 (T6)2 (T - 6)^{2} Copy content Toggle raw display
1919 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T2+36 T^{2} + 36 Copy content Toggle raw display
3131 T2 T^{2} Copy content Toggle raw display
3737 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
4141 T2+4 T^{2} + 4 Copy content Toggle raw display
4343 T2+144 T^{2} + 144 Copy content Toggle raw display
4747 T2+64 T^{2} + 64 Copy content Toggle raw display
5353 T2+36 T^{2} + 36 Copy content Toggle raw display
5959 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
6161 T2+64 T^{2} + 64 Copy content Toggle raw display
6767 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
7171 T2+16 T^{2} + 16 Copy content Toggle raw display
7373 T2+144 T^{2} + 144 Copy content Toggle raw display
7979 (T6)2 (T - 6)^{2} Copy content Toggle raw display
8383 (T+8)2 (T + 8)^{2} Copy content Toggle raw display
8989 T2+4 T^{2} + 4 Copy content Toggle raw display
9797 T2+144 T^{2} + 144 Copy content Toggle raw display
show more
show less