Properties

Label 936.2.m.f.181.5
Level $936$
Weight $2$
Character 936.181
Analytic conductor $7.474$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [936,2,Mod(181,936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(936, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("936.181");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.4521217600.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + x^{6} - 2x^{4} + 4x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.5
Root \(-0.273147 + 1.38758i\) of defining polynomial
Character \(\chi\) \(=\) 936.181
Dual form 936.2.m.f.181.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.273147 - 1.38758i) q^{2} +(-1.85078 - 0.758030i) q^{4} +3.11473 q^{5} +2.77517i q^{7} +(-1.55737 + 2.36106i) q^{8} +(0.850781 - 4.32196i) q^{10} -2.56844 q^{11} +(0.546295 + 3.56393i) q^{13} +(3.85078 + 0.758030i) q^{14} +(2.85078 + 2.80590i) q^{16} +5.70156 q^{17} +4.75362 q^{19} +(-5.76469 - 2.36106i) q^{20} +(-0.701562 + 3.56393i) q^{22} -4.00000 q^{23} +4.70156 q^{25} +(5.09447 + 0.215447i) q^{26} +(2.10366 - 5.13623i) q^{28} +7.12785i q^{29} -3.60338i q^{31} +(4.67210 - 3.18928i) q^{32} +(1.55737 - 7.91140i) q^{34} +8.64391i q^{35} +4.20732 q^{37} +(1.29844 - 6.59605i) q^{38} +(-4.85078 + 7.35408i) q^{40} +1.51606i q^{43} +(4.75362 + 1.94695i) q^{44} +(-1.09259 + 5.55034i) q^{46} -2.77517i q^{47} -0.701562 q^{49} +(1.28422 - 6.52381i) q^{50} +(1.69049 - 7.01015i) q^{52} +6.06424i q^{53} -8.00000 q^{55} +(-6.55234 - 4.32196i) q^{56} +(9.89049 + 1.94695i) q^{58} +4.75362 q^{59} +(-5.00000 - 0.984255i) q^{62} +(-3.14922 - 7.35408i) q^{64} +(1.70156 + 11.1007i) q^{65} -12.0757 q^{67} +(-10.5523 - 4.32196i) q^{68} +(11.9942 + 2.36106i) q^{70} -6.66908i q^{71} -14.9946i q^{73} +(1.14922 - 5.83802i) q^{74} +(-8.79790 - 3.60338i) q^{76} -7.12785i q^{77} +14.8062 q^{79} +(8.87942 + 8.73961i) q^{80} -9.89049 q^{83} +17.7588 q^{85} +(2.10366 + 0.414108i) q^{86} +(4.00000 - 6.06424i) q^{88} -14.9946i q^{89} +(-9.89049 + 1.51606i) q^{91} +(7.40312 + 3.03212i) q^{92} +(-3.85078 - 0.758030i) q^{94} +14.8062 q^{95} -3.89391i q^{97} +(-0.191630 + 0.973477i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{4} - 6 q^{10} + 18 q^{14} + 10 q^{16} + 20 q^{17} + 20 q^{22} - 32 q^{23} + 12 q^{25} + 14 q^{26} + 36 q^{38} - 26 q^{40} + 20 q^{49} - 4 q^{52} - 64 q^{55} - 14 q^{56} - 40 q^{62} - 38 q^{64}+ \cdots + 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.273147 1.38758i 0.193144 0.981170i
\(3\) 0 0
\(4\) −1.85078 0.758030i −0.925391 0.379015i
\(5\) 3.11473 1.39295 0.696475 0.717581i \(-0.254750\pi\)
0.696475 + 0.717581i \(0.254750\pi\)
\(6\) 0 0
\(7\) 2.77517i 1.04892i 0.851437 + 0.524458i \(0.175732\pi\)
−0.851437 + 0.524458i \(0.824268\pi\)
\(8\) −1.55737 + 2.36106i −0.550612 + 0.834761i
\(9\) 0 0
\(10\) 0.850781 4.32196i 0.269041 1.36672i
\(11\) −2.56844 −0.774413 −0.387207 0.921993i \(-0.626560\pi\)
−0.387207 + 0.921993i \(0.626560\pi\)
\(12\) 0 0
\(13\) 0.546295 + 3.56393i 0.151515 + 0.988455i
\(14\) 3.85078 + 0.758030i 1.02916 + 0.202592i
\(15\) 0 0
\(16\) 2.85078 + 2.80590i 0.712695 + 0.701474i
\(17\) 5.70156 1.38283 0.691416 0.722457i \(-0.256987\pi\)
0.691416 + 0.722457i \(0.256987\pi\)
\(18\) 0 0
\(19\) 4.75362 1.09055 0.545277 0.838256i \(-0.316424\pi\)
0.545277 + 0.838256i \(0.316424\pi\)
\(20\) −5.76469 2.36106i −1.28902 0.527949i
\(21\) 0 0
\(22\) −0.701562 + 3.56393i −0.149574 + 0.759831i
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 0 0
\(25\) 4.70156 0.940312
\(26\) 5.09447 + 0.215447i 0.999107 + 0.0422526i
\(27\) 0 0
\(28\) 2.10366 5.13623i 0.397555 0.970656i
\(29\) 7.12785i 1.32361i 0.749677 + 0.661804i \(0.230209\pi\)
−0.749677 + 0.661804i \(0.769791\pi\)
\(30\) 0 0
\(31\) 3.60338i 0.647187i −0.946196 0.323593i \(-0.895109\pi\)
0.946196 0.323593i \(-0.104891\pi\)
\(32\) 4.67210 3.18928i 0.825918 0.563790i
\(33\) 0 0
\(34\) 1.55737 7.91140i 0.267086 1.35679i
\(35\) 8.64391i 1.46109i
\(36\) 0 0
\(37\) 4.20732 0.691680 0.345840 0.938294i \(-0.387594\pi\)
0.345840 + 0.938294i \(0.387594\pi\)
\(38\) 1.29844 6.59605i 0.210634 1.07002i
\(39\) 0 0
\(40\) −4.85078 + 7.35408i −0.766976 + 1.16278i
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 1.51606i 0.231197i 0.993296 + 0.115598i \(0.0368786\pi\)
−0.993296 + 0.115598i \(0.963121\pi\)
\(44\) 4.75362 + 1.94695i 0.716635 + 0.293514i
\(45\) 0 0
\(46\) −1.09259 + 5.55034i −0.161094 + 0.818353i
\(47\) 2.77517i 0.404800i −0.979303 0.202400i \(-0.935126\pi\)
0.979303 0.202400i \(-0.0648741\pi\)
\(48\) 0 0
\(49\) −0.701562 −0.100223
\(50\) 1.28422 6.52381i 0.181616 0.922607i
\(51\) 0 0
\(52\) 1.69049 7.01015i 0.234429 0.972133i
\(53\) 6.06424i 0.832987i 0.909139 + 0.416494i \(0.136741\pi\)
−0.909139 + 0.416494i \(0.863259\pi\)
\(54\) 0 0
\(55\) −8.00000 −1.07872
\(56\) −6.55234 4.32196i −0.875594 0.577546i
\(57\) 0 0
\(58\) 9.89049 + 1.94695i 1.29869 + 0.255647i
\(59\) 4.75362 0.618868 0.309434 0.950921i \(-0.399860\pi\)
0.309434 + 0.950921i \(0.399860\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) −5.00000 0.984255i −0.635001 0.125000i
\(63\) 0 0
\(64\) −3.14922 7.35408i −0.393652 0.919259i
\(65\) 1.70156 + 11.1007i 0.211053 + 1.37687i
\(66\) 0 0
\(67\) −12.0757 −1.47528 −0.737639 0.675195i \(-0.764059\pi\)
−0.737639 + 0.675195i \(0.764059\pi\)
\(68\) −10.5523 4.32196i −1.27966 0.524114i
\(69\) 0 0
\(70\) 11.9942 + 2.36106i 1.43358 + 0.282201i
\(71\) 6.66908i 0.791474i −0.918364 0.395737i \(-0.870489\pi\)
0.918364 0.395737i \(-0.129511\pi\)
\(72\) 0 0
\(73\) 14.9946i 1.75498i −0.479592 0.877492i \(-0.659215\pi\)
0.479592 0.877492i \(-0.340785\pi\)
\(74\) 1.14922 5.83802i 0.133594 0.678655i
\(75\) 0 0
\(76\) −8.79790 3.60338i −1.00919 0.413337i
\(77\) 7.12785i 0.812294i
\(78\) 0 0
\(79\) 14.8062 1.66583 0.832917 0.553399i \(-0.186669\pi\)
0.832917 + 0.553399i \(0.186669\pi\)
\(80\) 8.87942 + 8.73961i 0.992750 + 0.977119i
\(81\) 0 0
\(82\) 0 0
\(83\) −9.89049 −1.08562 −0.542811 0.839855i \(-0.682640\pi\)
−0.542811 + 0.839855i \(0.682640\pi\)
\(84\) 0 0
\(85\) 17.7588 1.92622
\(86\) 2.10366 + 0.414108i 0.226844 + 0.0446544i
\(87\) 0 0
\(88\) 4.00000 6.06424i 0.426401 0.646450i
\(89\) 14.9946i 1.58942i −0.606988 0.794711i \(-0.707622\pi\)
0.606988 0.794711i \(-0.292378\pi\)
\(90\) 0 0
\(91\) −9.89049 + 1.51606i −1.03681 + 0.158926i
\(92\) 7.40312 + 3.03212i 0.771829 + 0.316120i
\(93\) 0 0
\(94\) −3.85078 0.758030i −0.397178 0.0781848i
\(95\) 14.8062 1.51909
\(96\) 0 0
\(97\) 3.89391i 0.395366i −0.980266 0.197683i \(-0.936658\pi\)
0.980266 0.197683i \(-0.0633417\pi\)
\(98\) −0.191630 + 0.973477i −0.0193575 + 0.0983360i
\(99\) 0 0
\(100\) −8.70156 3.56393i −0.870156 0.356393i
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 4.00000 0.394132 0.197066 0.980390i \(-0.436859\pi\)
0.197066 + 0.980390i \(0.436859\pi\)
\(104\) −9.26543 4.26050i −0.908550 0.417777i
\(105\) 0 0
\(106\) 8.41464 + 1.65643i 0.817303 + 0.160887i
\(107\) 10.1600i 0.982201i −0.871103 0.491101i \(-0.836595\pi\)
0.871103 0.491101i \(-0.163405\pi\)
\(108\) 0 0
\(109\) 2.02214 0.193686 0.0968431 0.995300i \(-0.469125\pi\)
0.0968431 + 0.995300i \(0.469125\pi\)
\(110\) −2.18518 + 11.1007i −0.208349 + 1.05841i
\(111\) 0 0
\(112\) −7.78683 + 7.91140i −0.735787 + 0.747557i
\(113\) −11.4031 −1.07272 −0.536358 0.843991i \(-0.680200\pi\)
−0.536358 + 0.843991i \(0.680200\pi\)
\(114\) 0 0
\(115\) −12.4589 −1.16180
\(116\) 5.40312 13.1921i 0.501667 1.22485i
\(117\) 0 0
\(118\) 1.29844 6.59605i 0.119531 0.607215i
\(119\) 15.8228i 1.45047i
\(120\) 0 0
\(121\) −4.40312 −0.400284
\(122\) 0 0
\(123\) 0 0
\(124\) −2.73147 + 6.66908i −0.245294 + 0.598901i
\(125\) −0.929554 −0.0831419
\(126\) 0 0
\(127\) −12.0000 −1.06483 −0.532414 0.846484i \(-0.678715\pi\)
−0.532414 + 0.846484i \(0.678715\pi\)
\(128\) −11.0646 + 2.36106i −0.977982 + 0.208690i
\(129\) 0 0
\(130\) 15.8679 + 0.671059i 1.39171 + 0.0588558i
\(131\) 18.8039i 1.64290i 0.570279 + 0.821451i \(0.306835\pi\)
−0.570279 + 0.821451i \(0.693165\pi\)
\(132\) 0 0
\(133\) 13.1921i 1.14390i
\(134\) −3.29844 + 16.7560i −0.284942 + 1.44750i
\(135\) 0 0
\(136\) −8.87942 + 13.4617i −0.761404 + 1.15433i
\(137\) 11.1007i 0.948395i 0.880419 + 0.474197i \(0.157262\pi\)
−0.880419 + 0.474197i \(0.842738\pi\)
\(138\) 0 0
\(139\) 9.70752i 0.823381i 0.911324 + 0.411691i \(0.135062\pi\)
−0.911324 + 0.411691i \(0.864938\pi\)
\(140\) 6.55234 15.9980i 0.553774 1.35208i
\(141\) 0 0
\(142\) −9.25391 1.82164i −0.776570 0.152869i
\(143\) −1.40312 9.15372i −0.117335 0.765473i
\(144\) 0 0
\(145\) 22.2014i 1.84372i
\(146\) −20.8062 4.09573i −1.72194 0.338965i
\(147\) 0 0
\(148\) −7.78683 3.18928i −0.640074 0.262157i
\(149\) 13.5515 1.11018 0.555092 0.831789i \(-0.312683\pi\)
0.555092 + 0.831789i \(0.312683\pi\)
\(150\) 0 0
\(151\) 13.8758i 1.12920i 0.825365 + 0.564600i \(0.190970\pi\)
−0.825365 + 0.564600i \(0.809030\pi\)
\(152\) −7.40312 + 11.2236i −0.600473 + 0.910353i
\(153\) 0 0
\(154\) −9.89049 1.94695i −0.796999 0.156890i
\(155\) 11.2236i 0.901500i
\(156\) 0 0
\(157\) 1.06361i 0.0848853i −0.999099 0.0424427i \(-0.986486\pi\)
0.999099 0.0424427i \(-0.0135140\pi\)
\(158\) 4.04429 20.5449i 0.321746 1.63447i
\(159\) 0 0
\(160\) 14.5523 9.93375i 1.15046 0.785332i
\(161\) 11.1007i 0.874856i
\(162\) 0 0
\(163\) 9.89049 0.774683 0.387342 0.921936i \(-0.373393\pi\)
0.387342 + 0.921936i \(0.373393\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −2.70156 + 13.7239i −0.209682 + 1.06518i
\(167\) 7.49729i 0.580158i 0.957003 + 0.290079i \(0.0936816\pi\)
−0.957003 + 0.290079i \(0.906318\pi\)
\(168\) 0 0
\(169\) −12.4031 + 3.89391i −0.954086 + 0.299531i
\(170\) 4.85078 24.6419i 0.372038 1.88995i
\(171\) 0 0
\(172\) 1.14922 2.80590i 0.0876271 0.213947i
\(173\) 6.06424i 0.461056i 0.973066 + 0.230528i \(0.0740453\pi\)
−0.973066 + 0.230528i \(0.925955\pi\)
\(174\) 0 0
\(175\) 13.0476i 0.986308i
\(176\) −7.32206 7.20677i −0.551921 0.543231i
\(177\) 0 0
\(178\) −20.8062 4.09573i −1.55949 0.306988i
\(179\) 12.7396i 0.952205i 0.879390 + 0.476103i \(0.157951\pi\)
−0.879390 + 0.476103i \(0.842049\pi\)
\(180\) 0 0
\(181\) 13.1921i 0.980560i −0.871565 0.490280i \(-0.836894\pi\)
0.871565 0.490280i \(-0.163106\pi\)
\(182\) −0.597901 + 14.1380i −0.0443194 + 1.04798i
\(183\) 0 0
\(184\) 6.22947 9.44424i 0.459242 0.696239i
\(185\) 13.1047 0.963476
\(186\) 0 0
\(187\) −14.6441 −1.07088
\(188\) −2.10366 + 5.13623i −0.153425 + 0.374598i
\(189\) 0 0
\(190\) 4.04429 20.5449i 0.293403 1.49049i
\(191\) 2.80625 0.203053 0.101527 0.994833i \(-0.467627\pi\)
0.101527 + 0.994833i \(0.467627\pi\)
\(192\) 0 0
\(193\) 14.9946i 1.07933i −0.841879 0.539667i \(-0.818550\pi\)
0.841879 0.539667i \(-0.181450\pi\)
\(194\) −5.40312 1.06361i −0.387922 0.0763628i
\(195\) 0 0
\(196\) 1.29844 + 0.531805i 0.0927456 + 0.0379861i
\(197\) −4.20732 −0.299759 −0.149880 0.988704i \(-0.547889\pi\)
−0.149880 + 0.988704i \(0.547889\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) −7.32206 + 11.1007i −0.517748 + 0.784936i
\(201\) 0 0
\(202\) 0 0
\(203\) −19.7810 −1.38835
\(204\) 0 0
\(205\) 0 0
\(206\) 1.09259 5.55034i 0.0761243 0.386710i
\(207\) 0 0
\(208\) −8.44263 + 11.6928i −0.585391 + 0.810751i
\(209\) −12.2094 −0.844540
\(210\) 0 0
\(211\) 18.8039i 1.29451i −0.762272 0.647256i \(-0.775916\pi\)
0.762272 0.647256i \(-0.224084\pi\)
\(212\) 4.59688 11.2236i 0.315715 0.770839i
\(213\) 0 0
\(214\) −14.0978 2.77517i −0.963707 0.189707i
\(215\) 4.72212i 0.322046i
\(216\) 0 0
\(217\) 10.0000 0.678844
\(218\) 0.552343 2.80590i 0.0374094 0.190039i
\(219\) 0 0
\(220\) 14.8062 + 6.06424i 0.998237 + 0.408851i
\(221\) 3.11473 + 20.3199i 0.209520 + 1.36687i
\(222\) 0 0
\(223\) 15.5323i 1.04012i −0.854130 0.520059i \(-0.825910\pi\)
0.854130 0.520059i \(-0.174090\pi\)
\(224\) 8.85078 + 12.9659i 0.591368 + 0.866318i
\(225\) 0 0
\(226\) −3.11473 + 15.8228i −0.207189 + 1.05252i
\(227\) −6.93880 −0.460544 −0.230272 0.973126i \(-0.573962\pi\)
−0.230272 + 0.973126i \(0.573962\pi\)
\(228\) 0 0
\(229\) −7.48509 −0.494629 −0.247314 0.968935i \(-0.579548\pi\)
−0.247314 + 0.968935i \(0.579548\pi\)
\(230\) −3.40312 + 17.2878i −0.224395 + 1.13993i
\(231\) 0 0
\(232\) −16.8293 11.1007i −1.10490 0.728795i
\(233\) 7.10469 0.465443 0.232722 0.972543i \(-0.425237\pi\)
0.232722 + 0.972543i \(0.425237\pi\)
\(234\) 0 0
\(235\) 8.64391i 0.563867i
\(236\) −8.79790 3.60338i −0.572695 0.234560i
\(237\) 0 0
\(238\) 21.9555 + 4.32196i 1.42316 + 0.280151i
\(239\) 12.2194i 0.790408i 0.918593 + 0.395204i \(0.129326\pi\)
−0.918593 + 0.395204i \(0.870674\pi\)
\(240\) 0 0
\(241\) 7.20677i 0.464229i 0.972688 + 0.232114i \(0.0745644\pi\)
−0.972688 + 0.232114i \(0.925436\pi\)
\(242\) −1.20270 + 6.10971i −0.0773126 + 0.392747i
\(243\) 0 0
\(244\) 0 0
\(245\) −2.18518 −0.139606
\(246\) 0 0
\(247\) 2.59688 + 16.9415i 0.165235 + 1.07796i
\(248\) 8.50781 + 5.61179i 0.540247 + 0.356349i
\(249\) 0 0
\(250\) −0.253905 + 1.28984i −0.0160584 + 0.0815763i
\(251\) 24.4157i 1.54110i −0.637377 0.770552i \(-0.719981\pi\)
0.637377 0.770552i \(-0.280019\pi\)
\(252\) 0 0
\(253\) 10.2738 0.645905
\(254\) −3.27777 + 16.6510i −0.205665 + 1.04478i
\(255\) 0 0
\(256\) 0.253905 + 15.9980i 0.0158691 + 0.999874i
\(257\) −6.50781 −0.405946 −0.202973 0.979184i \(-0.565060\pi\)
−0.202973 + 0.979184i \(0.565060\pi\)
\(258\) 0 0
\(259\) 11.6760i 0.725513i
\(260\) 5.26543 21.8348i 0.326548 1.35413i
\(261\) 0 0
\(262\) 26.0920 + 5.13623i 1.61197 + 0.317317i
\(263\) 16.0000 0.986602 0.493301 0.869859i \(-0.335790\pi\)
0.493301 + 0.869859i \(0.335790\pi\)
\(264\) 0 0
\(265\) 18.8885i 1.16031i
\(266\) 18.3051 + 3.60338i 1.12236 + 0.220938i
\(267\) 0 0
\(268\) 22.3494 + 9.15372i 1.36521 + 0.559153i
\(269\) 19.2563i 1.17408i −0.809558 0.587040i \(-0.800293\pi\)
0.809558 0.587040i \(-0.199707\pi\)
\(270\) 0 0
\(271\) 27.2140i 1.65313i −0.562839 0.826566i \(-0.690291\pi\)
0.562839 0.826566i \(-0.309709\pi\)
\(272\) 16.2539 + 15.9980i 0.985538 + 0.970020i
\(273\) 0 0
\(274\) 15.4031 + 3.03212i 0.930537 + 0.183177i
\(275\) −12.0757 −0.728190
\(276\) 0 0
\(277\) 12.1285i 0.728730i 0.931256 + 0.364365i \(0.118714\pi\)
−0.931256 + 0.364365i \(0.881286\pi\)
\(278\) 13.4700 + 2.65158i 0.807877 + 0.159031i
\(279\) 0 0
\(280\) −20.4088 13.4617i −1.21966 0.804493i
\(281\) 7.20677i 0.429920i 0.976623 + 0.214960i \(0.0689621\pi\)
−0.976623 + 0.214960i \(0.931038\pi\)
\(282\) 0 0
\(283\) 4.09573i 0.243466i −0.992563 0.121733i \(-0.961155\pi\)
0.992563 0.121733i \(-0.0388451\pi\)
\(284\) −5.05536 + 12.3430i −0.299980 + 0.732422i
\(285\) 0 0
\(286\) −13.0848 0.553362i −0.773722 0.0327210i
\(287\) 0 0
\(288\) 0 0
\(289\) 15.5078 0.912224
\(290\) 30.8062 + 6.06424i 1.80901 + 0.356104i
\(291\) 0 0
\(292\) −11.3663 + 27.7517i −0.665165 + 1.62404i
\(293\) 29.4513 1.72056 0.860280 0.509821i \(-0.170288\pi\)
0.860280 + 0.509821i \(0.170288\pi\)
\(294\) 0 0
\(295\) 14.8062 0.862053
\(296\) −6.55234 + 9.93375i −0.380847 + 0.577387i
\(297\) 0 0
\(298\) 3.70156 18.8039i 0.214426 1.08928i
\(299\) −2.18518 14.2557i −0.126372 0.824428i
\(300\) 0 0
\(301\) −4.20732 −0.242506
\(302\) 19.2539 + 3.79015i 1.10794 + 0.218099i
\(303\) 0 0
\(304\) 13.5515 + 13.3382i 0.777233 + 0.764995i
\(305\) 0 0
\(306\) 0 0
\(307\) −29.6715 −1.69344 −0.846720 0.532038i \(-0.821426\pi\)
−0.846720 + 0.532038i \(0.821426\pi\)
\(308\) −5.40312 + 13.1921i −0.307872 + 0.751689i
\(309\) 0 0
\(310\) −15.5737 3.06569i −0.884525 0.174120i
\(311\) −12.0000 −0.680458 −0.340229 0.940343i \(-0.610505\pi\)
−0.340229 + 0.940343i \(0.610505\pi\)
\(312\) 0 0
\(313\) −24.5078 −1.38526 −0.692632 0.721291i \(-0.743549\pi\)
−0.692632 + 0.721291i \(0.743549\pi\)
\(314\) −1.47585 0.290522i −0.0832870 0.0163951i
\(315\) 0 0
\(316\) −27.4031 11.2236i −1.54155 0.631376i
\(317\) −25.2439 −1.41784 −0.708920 0.705289i \(-0.750817\pi\)
−0.708920 + 0.705289i \(0.750817\pi\)
\(318\) 0 0
\(319\) 18.3074i 1.02502i
\(320\) −9.80898 22.9060i −0.548338 1.28048i
\(321\) 0 0
\(322\) −15.4031 3.03212i −0.858383 0.168973i
\(323\) 27.1030 1.50805
\(324\) 0 0
\(325\) 2.56844 + 16.7560i 0.142471 + 0.929456i
\(326\) 2.70156 13.7239i 0.149626 0.760096i
\(327\) 0 0
\(328\) 0 0
\(329\) 7.70156 0.424601
\(330\) 0 0
\(331\) −5.52014 −0.303414 −0.151707 0.988425i \(-0.548477\pi\)
−0.151707 + 0.988425i \(0.548477\pi\)
\(332\) 18.3051 + 7.49729i 1.00463 + 0.411467i
\(333\) 0 0
\(334\) 10.4031 + 2.04787i 0.569234 + 0.112054i
\(335\) −37.6125 −2.05499
\(336\) 0 0
\(337\) 14.2984 0.778886 0.389443 0.921051i \(-0.372668\pi\)
0.389443 + 0.921051i \(0.372668\pi\)
\(338\) 2.01524 + 18.2740i 0.109615 + 0.993974i
\(339\) 0 0
\(340\) −32.8677 13.4617i −1.78250 0.730065i
\(341\) 9.25507i 0.501190i
\(342\) 0 0
\(343\) 17.4792i 0.943790i
\(344\) −3.57951 2.36106i −0.192994 0.127300i
\(345\) 0 0
\(346\) 8.41464 + 1.65643i 0.452374 + 0.0890503i
\(347\) 6.67540i 0.358354i 0.983817 + 0.179177i \(0.0573435\pi\)
−0.983817 + 0.179177i \(0.942656\pi\)
\(348\) 0 0
\(349\) 3.44080 0.184182 0.0920910 0.995751i \(-0.470645\pi\)
0.0920910 + 0.995751i \(0.470645\pi\)
\(350\) 18.1047 + 3.56393i 0.967736 + 0.190500i
\(351\) 0 0
\(352\) −12.0000 + 8.19146i −0.639602 + 0.436606i
\(353\) 33.3020i 1.77249i −0.463219 0.886244i \(-0.653306\pi\)
0.463219 0.886244i \(-0.346694\pi\)
\(354\) 0 0
\(355\) 20.7724i 1.10248i
\(356\) −11.3663 + 27.7517i −0.602415 + 1.47084i
\(357\) 0 0
\(358\) 17.6773 + 3.47980i 0.934276 + 0.183913i
\(359\) 18.5980i 0.981563i −0.871283 0.490782i \(-0.836711\pi\)
0.871283 0.490782i \(-0.163289\pi\)
\(360\) 0 0
\(361\) 3.59688 0.189309
\(362\) −18.3051 3.60338i −0.962097 0.189390i
\(363\) 0 0
\(364\) 19.4544 + 4.69140i 1.01969 + 0.245896i
\(365\) 46.7041i 2.44461i
\(366\) 0 0
\(367\) 8.00000 0.417597 0.208798 0.977959i \(-0.433045\pi\)
0.208798 + 0.977959i \(0.433045\pi\)
\(368\) −11.4031 11.2236i −0.594429 0.585070i
\(369\) 0 0
\(370\) 3.57951 18.1839i 0.186090 0.945334i
\(371\) −16.8293 −0.873733
\(372\) 0 0
\(373\) 19.2563i 0.997055i −0.866874 0.498527i \(-0.833874\pi\)
0.866874 0.498527i \(-0.166126\pi\)
\(374\) −4.00000 + 20.3199i −0.206835 + 1.05072i
\(375\) 0 0
\(376\) 6.55234 + 4.32196i 0.337911 + 0.222888i
\(377\) −25.4031 + 3.89391i −1.30833 + 0.200546i
\(378\) 0 0
\(379\) 4.75362 0.244177 0.122088 0.992519i \(-0.461041\pi\)
0.122088 + 0.992519i \(0.461041\pi\)
\(380\) −27.4031 11.2236i −1.40575 0.575758i
\(381\) 0 0
\(382\) 0.766519 3.89391i 0.0392185 0.199230i
\(383\) 1.11874i 0.0571648i 0.999591 + 0.0285824i \(0.00909930\pi\)
−0.999591 + 0.0285824i \(0.990901\pi\)
\(384\) 0 0
\(385\) 22.2014i 1.13149i
\(386\) −20.8062 4.09573i −1.05901 0.208467i
\(387\) 0 0
\(388\) −2.95170 + 7.20677i −0.149850 + 0.365868i
\(389\) 15.3193i 0.776720i −0.921508 0.388360i \(-0.873042\pi\)
0.921508 0.388360i \(-0.126958\pi\)
\(390\) 0 0
\(391\) −22.8062 −1.15336
\(392\) 1.09259 1.65643i 0.0551841 0.0836624i
\(393\) 0 0
\(394\) −1.14922 + 5.83802i −0.0578968 + 0.294115i
\(395\) 46.1175 2.32042
\(396\) 0 0
\(397\) 6.22947 0.312648 0.156324 0.987706i \(-0.450036\pi\)
0.156324 + 0.987706i \(0.450036\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 13.4031 + 13.1921i 0.670156 + 0.659605i
\(401\) 7.20677i 0.359889i 0.983677 + 0.179944i \(0.0575918\pi\)
−0.983677 + 0.179944i \(0.942408\pi\)
\(402\) 0 0
\(403\) 12.8422 1.96851i 0.639715 0.0980585i
\(404\) 0 0
\(405\) 0 0
\(406\) −5.40312 + 27.4478i −0.268153 + 1.36221i
\(407\) −10.8062 −0.535646
\(408\) 0 0
\(409\) 33.3020i 1.64668i −0.567549 0.823340i \(-0.692108\pi\)
0.567549 0.823340i \(-0.307892\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −7.40312 3.03212i −0.364726 0.149382i
\(413\) 13.1921i 0.649140i
\(414\) 0 0
\(415\) −30.8062 −1.51222
\(416\) 13.9187 + 14.9087i 0.682420 + 0.730961i
\(417\) 0 0
\(418\) −3.33496 + 16.9415i −0.163118 + 0.828638i
\(419\) 13.6445i 0.666579i −0.942824 0.333290i \(-0.891841\pi\)
0.942824 0.333290i \(-0.108159\pi\)
\(420\) 0 0
\(421\) 36.4472 1.77633 0.888165 0.459525i \(-0.151980\pi\)
0.888165 + 0.459525i \(0.151980\pi\)
\(422\) −26.0920 5.13623i −1.27014 0.250028i
\(423\) 0 0
\(424\) −14.3180 9.44424i −0.695346 0.458653i
\(425\) 26.8062 1.30029
\(426\) 0 0
\(427\) 0 0
\(428\) −7.70156 + 18.8039i −0.372269 + 0.908920i
\(429\) 0 0
\(430\) 6.55234 + 1.28984i 0.315982 + 0.0622014i
\(431\) 0.537693i 0.0258998i 0.999916 + 0.0129499i \(0.00412219\pi\)
−0.999916 + 0.0129499i \(0.995878\pi\)
\(432\) 0 0
\(433\) 2.50781 0.120518 0.0602588 0.998183i \(-0.480807\pi\)
0.0602588 + 0.998183i \(0.480807\pi\)
\(434\) 2.73147 13.8758i 0.131115 0.666062i
\(435\) 0 0
\(436\) −3.74255 1.53285i −0.179235 0.0734100i
\(437\) −19.0145 −0.909585
\(438\) 0 0
\(439\) −14.8062 −0.706664 −0.353332 0.935498i \(-0.614951\pi\)
−0.353332 + 0.935498i \(0.614951\pi\)
\(440\) 12.4589 18.8885i 0.593956 0.900473i
\(441\) 0 0
\(442\) 29.0464 + 1.22838i 1.38160 + 0.0584282i
\(443\) 1.51606i 0.0720302i −0.999351 0.0360151i \(-0.988534\pi\)
0.999351 0.0360151i \(-0.0114664\pi\)
\(444\) 0 0
\(445\) 46.7041i 2.21399i
\(446\) −21.5523 4.24260i −1.02053 0.200893i
\(447\) 0 0
\(448\) 20.4088 8.73961i 0.964225 0.412908i
\(449\) 11.6817i 0.551294i 0.961259 + 0.275647i \(0.0888922\pi\)
−0.961259 + 0.275647i \(0.911108\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 21.1047 + 8.64391i 0.992681 + 0.406575i
\(453\) 0 0
\(454\) −1.89531 + 9.62817i −0.0889515 + 0.451872i
\(455\) −30.8062 + 4.72212i −1.44422 + 0.221377i
\(456\) 0 0
\(457\) 3.31286i 0.154969i 0.996994 + 0.0774846i \(0.0246889\pi\)
−0.996994 + 0.0774846i \(0.975311\pi\)
\(458\) −2.04453 + 10.3862i −0.0955347 + 0.485315i
\(459\) 0 0
\(460\) 23.0588 + 9.44424i 1.07512 + 0.440340i
\(461\) 8.25161 0.384316 0.192158 0.981364i \(-0.438451\pi\)
0.192158 + 0.981364i \(0.438451\pi\)
\(462\) 0 0
\(463\) 11.3912i 0.529394i −0.964332 0.264697i \(-0.914728\pi\)
0.964332 0.264697i \(-0.0852719\pi\)
\(464\) −20.0000 + 20.3199i −0.928477 + 0.943330i
\(465\) 0 0
\(466\) 1.94063 9.85835i 0.0898978 0.456679i
\(467\) 16.2242i 0.750767i 0.926870 + 0.375383i \(0.122489\pi\)
−0.926870 + 0.375383i \(0.877511\pi\)
\(468\) 0 0
\(469\) 33.5120i 1.54744i
\(470\) −11.9942 2.36106i −0.553249 0.108908i
\(471\) 0 0
\(472\) −7.40312 + 11.2236i −0.340756 + 0.516607i
\(473\) 3.89391i 0.179042i
\(474\) 0 0
\(475\) 22.3494 1.02546
\(476\) 11.9942 29.2845i 0.549751 1.34225i
\(477\) 0 0
\(478\) 16.9555 + 3.33770i 0.775525 + 0.152663i
\(479\) 28.8704i 1.31912i −0.751650 0.659562i \(-0.770742\pi\)
0.751650 0.659562i \(-0.229258\pi\)
\(480\) 0 0
\(481\) 2.29844 + 14.9946i 0.104800 + 0.683694i
\(482\) 10.0000 + 1.96851i 0.455488 + 0.0896632i
\(483\) 0 0
\(484\) 8.14922 + 3.33770i 0.370419 + 0.151714i
\(485\) 12.1285i 0.550726i
\(486\) 0 0
\(487\) 26.3858i 1.19565i 0.801625 + 0.597827i \(0.203969\pi\)
−0.801625 + 0.597827i \(0.796031\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) −0.596876 + 3.03212i −0.0269641 + 0.136977i
\(491\) 3.64328i 0.164419i −0.996615 0.0822095i \(-0.973802\pi\)
0.996615 0.0822095i \(-0.0261977\pi\)
\(492\) 0 0
\(493\) 40.6399i 1.83033i
\(494\) 24.2171 + 1.02415i 1.08958 + 0.0460787i
\(495\) 0 0
\(496\) 10.1107 10.2725i 0.453985 0.461247i
\(497\) 18.5078 0.830189
\(498\) 0 0
\(499\) 31.8567 1.42610 0.713050 0.701113i \(-0.247313\pi\)
0.713050 + 0.701113i \(0.247313\pi\)
\(500\) 1.72040 + 0.704630i 0.0769387 + 0.0315120i
\(501\) 0 0
\(502\) −33.8788 6.66908i −1.51209 0.297655i
\(503\) 25.6125 1.14200 0.571002 0.820948i \(-0.306555\pi\)
0.571002 + 0.820948i \(0.306555\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 2.80625 14.2557i 0.124753 0.633743i
\(507\) 0 0
\(508\) 22.2094 + 9.09636i 0.985382 + 0.403586i
\(509\) 23.0588 1.02206 0.511031 0.859562i \(-0.329264\pi\)
0.511031 + 0.859562i \(0.329264\pi\)
\(510\) 0 0
\(511\) 41.6125 1.84083
\(512\) 22.2679 + 4.01749i 0.984112 + 0.177550i
\(513\) 0 0
\(514\) −1.77759 + 9.03014i −0.0784062 + 0.398302i
\(515\) 12.4589 0.549006
\(516\) 0 0
\(517\) 7.12785i 0.313482i
\(518\) 16.2015 + 3.18928i 0.711852 + 0.140129i
\(519\) 0 0
\(520\) −28.8593 13.2703i −1.26557 0.581942i
\(521\) −13.1047 −0.574127 −0.287063 0.957912i \(-0.592679\pi\)
−0.287063 + 0.957912i \(0.592679\pi\)
\(522\) 0 0
\(523\) 4.09573i 0.179094i −0.995983 0.0895469i \(-0.971458\pi\)
0.995983 0.0895469i \(-0.0285419\pi\)
\(524\) 14.2539 34.8019i 0.622685 1.52033i
\(525\) 0 0
\(526\) 4.37036 22.2014i 0.190557 0.968025i
\(527\) 20.5449i 0.894951i
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 26.2094 + 5.15934i 1.13846 + 0.224107i
\(531\) 0 0
\(532\) 10.0000 24.4157i 0.433555 1.05855i
\(533\) 0 0
\(534\) 0 0
\(535\) 31.6456i 1.36816i
\(536\) 18.8062 28.5114i 0.812306 1.23150i
\(537\) 0 0
\(538\) −26.7198 5.25982i −1.15197 0.226767i
\(539\) 1.80192 0.0776141
\(540\) 0 0
\(541\) −8.25161 −0.354764 −0.177382 0.984142i \(-0.556763\pi\)
−0.177382 + 0.984142i \(0.556763\pi\)
\(542\) −37.7617 7.43343i −1.62200 0.319293i
\(543\) 0 0
\(544\) 26.6383 18.1839i 1.14211 0.779627i
\(545\) 6.29844 0.269795
\(546\) 0 0
\(547\) 42.1559i 1.80246i 0.433343 + 0.901229i \(0.357334\pi\)
−0.433343 + 0.901229i \(0.642666\pi\)
\(548\) 8.41464 20.5449i 0.359456 0.877635i
\(549\) 0 0
\(550\) −3.29844 + 16.7560i −0.140646 + 0.714479i
\(551\) 33.8831i 1.44347i
\(552\) 0 0
\(553\) 41.0898i 1.74732i
\(554\) 16.8293 + 3.31286i 0.715008 + 0.140750i
\(555\) 0 0
\(556\) 7.35859 17.9665i 0.312074 0.761949i
\(557\) −12.2959 −0.520994 −0.260497 0.965475i \(-0.583886\pi\)
−0.260497 + 0.965475i \(0.583886\pi\)
\(558\) 0 0
\(559\) −5.40312 + 0.828216i −0.228528 + 0.0350298i
\(560\) −24.2539 + 24.6419i −1.02491 + 1.04131i
\(561\) 0 0
\(562\) 10.0000 + 1.96851i 0.421825 + 0.0830366i
\(563\) 27.9002i 1.17585i −0.808914 0.587927i \(-0.799944\pi\)
0.808914 0.587927i \(-0.200056\pi\)
\(564\) 0 0
\(565\) −35.5177 −1.49424
\(566\) −5.68317 1.11874i −0.238882 0.0470241i
\(567\) 0 0
\(568\) 15.7461 + 10.3862i 0.660691 + 0.435795i
\(569\) −18.5078 −0.775888 −0.387944 0.921683i \(-0.626815\pi\)
−0.387944 + 0.921683i \(0.626815\pi\)
\(570\) 0 0
\(571\) 18.8039i 0.786918i −0.919342 0.393459i \(-0.871278\pi\)
0.919342 0.393459i \(-0.128722\pi\)
\(572\) −4.34192 + 18.0051i −0.181545 + 0.752833i
\(573\) 0 0
\(574\) 0 0
\(575\) −18.8062 −0.784275
\(576\) 0 0
\(577\) 25.5142i 1.06217i −0.847318 0.531085i \(-0.821784\pi\)
0.847318 0.531085i \(-0.178216\pi\)
\(578\) 4.23592 21.5184i 0.176191 0.895047i
\(579\) 0 0
\(580\) 16.8293 41.0898i 0.698798 1.70616i
\(581\) 27.4478i 1.13873i
\(582\) 0 0
\(583\) 15.5756i 0.645077i
\(584\) 35.4031 + 23.3521i 1.46499 + 0.966315i
\(585\) 0 0
\(586\) 8.04453 40.8661i 0.332317 1.68816i
\(587\) −15.0274 −0.620246 −0.310123 0.950696i \(-0.600370\pi\)
−0.310123 + 0.950696i \(0.600370\pi\)
\(588\) 0 0
\(589\) 17.1291i 0.705793i
\(590\) 4.04429 20.5449i 0.166501 0.845821i
\(591\) 0 0
\(592\) 11.9942 + 11.8053i 0.492957 + 0.485195i
\(593\) 7.78781i 0.319807i 0.987133 + 0.159904i \(0.0511183\pi\)
−0.987133 + 0.159904i \(0.948882\pi\)
\(594\) 0 0
\(595\) 49.2838i 2.02044i
\(596\) −25.0809 10.2725i −1.02735 0.420776i
\(597\) 0 0
\(598\) −20.3779 0.861787i −0.833313 0.0352411i
\(599\) 20.0000 0.817178 0.408589 0.912719i \(-0.366021\pi\)
0.408589 + 0.912719i \(0.366021\pi\)
\(600\) 0 0
\(601\) −6.89531 −0.281266 −0.140633 0.990062i \(-0.544914\pi\)
−0.140633 + 0.990062i \(0.544914\pi\)
\(602\) −1.14922 + 5.83802i −0.0468387 + 0.237940i
\(603\) 0 0
\(604\) 10.5183 25.6811i 0.427984 1.04495i
\(605\) −13.7146 −0.557576
\(606\) 0 0
\(607\) −12.0000 −0.487065 −0.243532 0.969893i \(-0.578306\pi\)
−0.243532 + 0.969893i \(0.578306\pi\)
\(608\) 22.2094 15.1606i 0.900709 0.614844i
\(609\) 0 0
\(610\) 0 0
\(611\) 9.89049 1.51606i 0.400127 0.0613332i
\(612\) 0 0
\(613\) −34.0990 −1.37725 −0.688623 0.725119i \(-0.741785\pi\)
−0.688623 + 0.725119i \(0.741785\pi\)
\(614\) −8.10469 + 41.1717i −0.327079 + 1.66155i
\(615\) 0 0
\(616\) 16.8293 + 11.1007i 0.678071 + 0.447259i
\(617\) 10.5196i 0.423504i −0.977323 0.211752i \(-0.932083\pi\)
0.977323 0.211752i \(-0.0679170\pi\)
\(618\) 0 0
\(619\) 31.8567 1.28043 0.640214 0.768197i \(-0.278846\pi\)
0.640214 + 0.768197i \(0.278846\pi\)
\(620\) −8.50781 + 20.7724i −0.341682 + 0.834239i
\(621\) 0 0
\(622\) −3.27777 + 16.6510i −0.131427 + 0.667645i
\(623\) 41.6125 1.66717
\(624\) 0 0
\(625\) −26.4031 −1.05612
\(626\) −6.69424 + 34.0067i −0.267556 + 1.35918i
\(627\) 0 0
\(628\) −0.806248 + 1.96851i −0.0321728 + 0.0785521i
\(629\) 23.9883 0.956477
\(630\) 0 0
\(631\) 0.537693i 0.0214052i −0.999943 0.0107026i \(-0.996593\pi\)
0.999943 0.0107026i \(-0.00340681\pi\)
\(632\) −23.0588 + 34.9585i −0.917228 + 1.39057i
\(633\) 0 0
\(634\) −6.89531 + 35.0281i −0.273848 + 1.39114i
\(635\) −37.3768 −1.48325
\(636\) 0 0
\(637\) −0.383260 2.50031i −0.0151853 0.0990661i
\(638\) −25.4031 5.00063i −1.00572 0.197977i
\(639\) 0 0
\(640\) −34.4633 + 7.35408i −1.36228 + 0.290695i
\(641\) −24.5969 −0.971518 −0.485759 0.874093i \(-0.661457\pi\)
−0.485759 + 0.874093i \(0.661457\pi\)
\(642\) 0 0
\(643\) 36.9935 1.45888 0.729441 0.684043i \(-0.239780\pi\)
0.729441 + 0.684043i \(0.239780\pi\)
\(644\) −8.41464 + 20.5449i −0.331583 + 0.809583i
\(645\) 0 0
\(646\) 7.40312 37.6078i 0.291272 1.47966i
\(647\) 17.1938 0.675956 0.337978 0.941154i \(-0.390257\pi\)
0.337978 + 0.941154i \(0.390257\pi\)
\(648\) 0 0
\(649\) −12.2094 −0.479260
\(650\) 23.9519 + 1.01294i 0.939473 + 0.0397306i
\(651\) 0 0
\(652\) −18.3051 7.49729i −0.716885 0.293617i
\(653\) 19.2563i 0.753558i 0.926303 + 0.376779i \(0.122968\pi\)
−0.926303 + 0.376779i \(0.877032\pi\)
\(654\) 0 0
\(655\) 58.5691i 2.28848i
\(656\) 0 0
\(657\) 0 0
\(658\) 2.10366 10.6866i 0.0820093 0.416606i
\(659\) 8.03275i 0.312912i −0.987685 0.156456i \(-0.949993\pi\)
0.987685 0.156456i \(-0.0500069\pi\)
\(660\) 0 0
\(661\) 1.85911 0.0723109 0.0361555 0.999346i \(-0.488489\pi\)
0.0361555 + 0.999346i \(0.488489\pi\)
\(662\) −1.50781 + 7.65966i −0.0586027 + 0.297701i
\(663\) 0 0
\(664\) 15.4031 23.3521i 0.597757 0.906236i
\(665\) 41.0898i 1.59340i
\(666\) 0 0
\(667\) 28.5114i 1.10397i
\(668\) 5.68317 13.8758i 0.219889 0.536873i
\(669\) 0 0
\(670\) −10.2738 + 52.1905i −0.396910 + 2.01630i
\(671\) 0 0
\(672\) 0 0
\(673\) −0.0890652 −0.00343321 −0.00171660 0.999999i \(-0.500546\pi\)
−0.00171660 + 0.999999i \(0.500546\pi\)
\(674\) 3.90558 19.8403i 0.150437 0.764219i
\(675\) 0 0
\(676\) 25.9072 + 2.19517i 0.996429 + 0.0844297i
\(677\) 18.1927i 0.699203i 0.936898 + 0.349602i \(0.113683\pi\)
−0.936898 + 0.349602i \(0.886317\pi\)
\(678\) 0 0
\(679\) 10.8062 0.414706
\(680\) −27.6570 + 41.9297i −1.06060 + 1.60793i
\(681\) 0 0
\(682\) 12.8422 + 2.52800i 0.491753 + 0.0968020i
\(683\) 15.7939 0.604336 0.302168 0.953255i \(-0.402290\pi\)
0.302168 + 0.953255i \(0.402290\pi\)
\(684\) 0 0
\(685\) 34.5756i 1.32107i
\(686\) 24.2539 + 4.77440i 0.926018 + 0.182288i
\(687\) 0 0
\(688\) −4.25391 + 4.32196i −0.162179 + 0.164773i
\(689\) −21.6125 + 3.31286i −0.823371 + 0.126210i
\(690\) 0 0
\(691\) 2.56844 0.0977080 0.0488540 0.998806i \(-0.484443\pi\)
0.0488540 + 0.998806i \(0.484443\pi\)
\(692\) 4.59688 11.2236i 0.174747 0.426657i
\(693\) 0 0
\(694\) 9.26268 + 1.82337i 0.351607 + 0.0692141i
\(695\) 30.2363i 1.14693i
\(696\) 0 0
\(697\) 0 0
\(698\) 0.939846 4.77440i 0.0355737 0.180714i
\(699\) 0 0
\(700\) 9.89049 24.1483i 0.373826 0.912720i
\(701\) 13.1921i 0.498258i −0.968470 0.249129i \(-0.919856\pi\)
0.968470 0.249129i \(-0.0801444\pi\)
\(702\) 0 0
\(703\) 20.0000 0.754314
\(704\) 8.08857 + 18.8885i 0.304850 + 0.711887i
\(705\) 0 0
\(706\) −46.2094 9.09636i −1.73911 0.342346i
\(707\) 0 0
\(708\) 0 0
\(709\) −39.2359 −1.47354 −0.736768 0.676146i \(-0.763649\pi\)
−0.736768 + 0.676146i \(0.763649\pi\)
\(710\) −28.8234 5.67392i −1.08172 0.212939i
\(711\) 0 0
\(712\) 35.4031 + 23.3521i 1.32679 + 0.875155i
\(713\) 14.4135i 0.539791i
\(714\) 0 0
\(715\) −4.37036 28.5114i −0.163442 1.06627i
\(716\) 9.65703 23.5783i 0.360900 0.881162i
\(717\) 0 0
\(718\) −25.8062 5.07999i −0.963081 0.189583i
\(719\) 5.19375 0.193694 0.0968471 0.995299i \(-0.469124\pi\)
0.0968471 + 0.995299i \(0.469124\pi\)
\(720\) 0 0
\(721\) 11.1007i 0.413411i
\(722\) 0.982477 4.99097i 0.0365640 0.185745i
\(723\) 0 0
\(724\) −10.0000 + 24.4157i −0.371647 + 0.907401i
\(725\) 33.5120i 1.24461i
\(726\) 0 0
\(727\) 42.8062 1.58760 0.793798 0.608182i \(-0.208101\pi\)
0.793798 + 0.608182i \(0.208101\pi\)
\(728\) 11.8236 25.7131i 0.438212 0.952992i
\(729\) 0 0
\(730\) −64.8059 12.7571i −2.39857 0.472162i
\(731\) 8.64391i 0.319707i
\(732\) 0 0
\(733\) −19.9440 −0.736649 −0.368325 0.929697i \(-0.620069\pi\)
−0.368325 + 0.929697i \(0.620069\pi\)
\(734\) 2.18518 11.1007i 0.0806564 0.409733i
\(735\) 0 0
\(736\) −18.6884 + 12.7571i −0.688864 + 0.470233i
\(737\) 31.0156 1.14248
\(738\) 0 0
\(739\) −6.17228 −0.227051 −0.113525 0.993535i \(-0.536214\pi\)
−0.113525 + 0.993535i \(0.536214\pi\)
\(740\) −24.2539 9.93375i −0.891591 0.365172i
\(741\) 0 0
\(742\) −4.59688 + 23.3521i −0.168757 + 0.857281i
\(743\) 39.9711i 1.46640i −0.680014 0.733199i \(-0.738026\pi\)
0.680014 0.733199i \(-0.261974\pi\)
\(744\) 0 0
\(745\) 42.2094 1.54643
\(746\) −26.7198 5.25982i −0.978281 0.192576i
\(747\) 0 0
\(748\) 27.1030 + 11.1007i 0.990985 + 0.405881i
\(749\) 28.1956 1.03025
\(750\) 0 0
\(751\) −32.4187 −1.18298 −0.591488 0.806313i \(-0.701459\pi\)
−0.591488 + 0.806313i \(0.701459\pi\)
\(752\) 7.78683 7.91140i 0.283957 0.288499i
\(753\) 0 0
\(754\) −1.53567 + 36.3126i −0.0559259 + 1.32243i
\(755\) 43.2196i 1.57292i
\(756\) 0 0
\(757\) 34.5756i 1.25667i 0.777942 + 0.628337i \(0.216264\pi\)
−0.777942 + 0.628337i \(0.783736\pi\)
\(758\) 1.29844 6.59605i 0.0471614 0.239579i
\(759\) 0 0
\(760\) −23.0588 + 34.9585i −0.836429 + 1.26808i
\(761\) 26.6763i 0.967015i −0.875340 0.483508i \(-0.839363\pi\)
0.875340 0.483508i \(-0.160637\pi\)
\(762\) 0 0
\(763\) 5.61179i 0.203160i
\(764\) −5.19375 2.12722i −0.187903 0.0769601i
\(765\) 0 0
\(766\) 1.55234 + 0.305580i 0.0560884 + 0.0110411i
\(767\) 2.59688 + 16.9415i 0.0937677 + 0.611723i
\(768\) 0 0
\(769\) 26.0953i 0.941019i −0.882395 0.470510i \(-0.844070\pi\)
0.882395 0.470510i \(-0.155930\pi\)
\(770\) −30.8062 6.06424i −1.11018 0.218540i
\(771\) 0 0
\(772\) −11.3663 + 27.7517i −0.409084 + 0.998805i
\(773\) −42.3506 −1.52325 −0.761623 0.648020i \(-0.775597\pi\)
−0.761623 + 0.648020i \(0.775597\pi\)
\(774\) 0 0
\(775\) 16.9415i 0.608558i
\(776\) 9.19375 + 6.06424i 0.330036 + 0.217694i
\(777\) 0 0
\(778\) −21.2568 4.18443i −0.762095 0.150019i
\(779\) 0 0
\(780\) 0 0
\(781\) 17.1291i 0.612928i
\(782\) −6.22947 + 31.6456i −0.222765 + 1.13164i
\(783\) 0 0
\(784\) −2.00000 1.96851i −0.0714286 0.0703039i
\(785\) 3.31286i 0.118241i
\(786\) 0 0
\(787\) −40.5974 −1.44714 −0.723570 0.690251i \(-0.757500\pi\)
−0.723570 + 0.690251i \(0.757500\pi\)
\(788\) 7.78683 + 3.18928i 0.277394 + 0.113613i
\(789\) 0 0
\(790\) 12.5969 63.9919i 0.448177 2.27673i
\(791\) 31.6456i 1.12519i
\(792\) 0 0
\(793\) 0 0
\(794\) 1.70156 8.64391i 0.0603862 0.306761i
\(795\) 0 0
\(796\) 0 0
\(797\) 53.8320i 1.90683i 0.301668 + 0.953413i \(0.402457\pi\)
−0.301668 + 0.953413i \(0.597543\pi\)
\(798\) 0 0
\(799\) 15.8228i 0.559770i
\(800\) 21.9662 14.9946i 0.776621 0.530139i
\(801\) 0 0
\(802\) 10.0000 + 1.96851i 0.353112 + 0.0695105i
\(803\) 38.5127i 1.35908i
\(804\) 0 0
\(805\) 34.5756i 1.21863i
\(806\) 0.776337 18.3573i 0.0273453 0.646609i
\(807\) 0 0
\(808\) 0 0
\(809\) 8.50781 0.299119 0.149559 0.988753i \(-0.452214\pi\)
0.149559 + 0.988753i \(0.452214\pi\)
\(810\) 0 0
\(811\) 31.0901 1.09172 0.545861 0.837876i \(-0.316203\pi\)
0.545861 + 0.837876i \(0.316203\pi\)
\(812\) 36.6103 + 14.9946i 1.28477 + 0.526207i
\(813\) 0 0
\(814\) −2.95170 + 14.9946i −0.103457 + 0.525560i
\(815\) 30.8062 1.07910
\(816\) 0 0
\(817\) 7.20677i 0.252133i
\(818\) −46.2094 9.09636i −1.61567 0.318047i
\(819\) 0 0
\(820\) 0 0
\(821\) −17.4328 −0.608408 −0.304204 0.952607i \(-0.598390\pi\)
−0.304204 + 0.952607i \(0.598390\pi\)
\(822\) 0 0
\(823\) −25.6125 −0.892796 −0.446398 0.894835i \(-0.647293\pi\)
−0.446398 + 0.894835i \(0.647293\pi\)
\(824\) −6.22947 + 9.44424i −0.217014 + 0.329006i
\(825\) 0 0
\(826\) 18.3051 + 3.60338i 0.636917 + 0.125378i
\(827\) 48.6860 1.69298 0.846488 0.532408i \(-0.178713\pi\)
0.846488 + 0.532408i \(0.178713\pi\)
\(828\) 0 0
\(829\) 16.3829i 0.569002i −0.958676 0.284501i \(-0.908172\pi\)
0.958676 0.284501i \(-0.0918280\pi\)
\(830\) −8.41464 + 42.7463i −0.292077 + 1.48374i
\(831\) 0 0
\(832\) 24.4890 15.2411i 0.849002 0.528389i
\(833\) −4.00000 −0.138592
\(834\) 0 0
\(835\) 23.3521i 0.808131i
\(836\) 22.5969 + 9.25507i 0.781529 + 0.320093i
\(837\) 0 0
\(838\) −18.9330 3.72697i −0.654028 0.128746i
\(839\) 18.5980i 0.642073i −0.947067 0.321037i \(-0.895969\pi\)
0.947067 0.321037i \(-0.104031\pi\)
\(840\) 0 0
\(841\) −21.8062 −0.751940
\(842\) 9.95547 50.5736i 0.343088 1.74288i
\(843\) 0 0
\(844\) −14.2539 + 34.8019i −0.490640 + 1.19793i
\(845\) −38.6324 + 12.1285i −1.32900 + 0.417232i
\(846\) 0 0
\(847\) 12.2194i 0.419864i
\(848\) −17.0156 + 17.2878i −0.584319 + 0.593666i
\(849\) 0 0
\(850\) 7.32206 37.1959i 0.251144 1.27581i
\(851\) −16.8293 −0.576901
\(852\) 0 0
\(853\) −28.0326 −0.959818 −0.479909 0.877318i \(-0.659330\pi\)
−0.479909 + 0.877318i \(0.659330\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 23.9883 + 15.8228i 0.819904 + 0.540812i
\(857\) −12.8062 −0.437453 −0.218727 0.975786i \(-0.570190\pi\)
−0.218727 + 0.975786i \(0.570190\pi\)
\(858\) 0 0
\(859\) 18.3514i 0.626143i −0.949730 0.313071i \(-0.898642\pi\)
0.949730 0.313071i \(-0.101358\pi\)
\(860\) 3.57951 8.73961i 0.122060 0.298018i
\(861\) 0 0
\(862\) 0.746095 + 0.146869i 0.0254121 + 0.00500239i
\(863\) 22.7390i 0.774046i 0.922070 + 0.387023i \(0.126497\pi\)
−0.922070 + 0.387023i \(0.873503\pi\)
\(864\) 0 0
\(865\) 18.8885i 0.642228i
\(866\) 0.685002 3.47980i 0.0232773 0.118248i
\(867\) 0 0
\(868\) −18.5078 7.58030i −0.628196 0.257292i
\(869\) −38.0289 −1.29004
\(870\) 0 0
\(871\) −6.59688 43.0368i −0.223527 1.45825i
\(872\) −3.14922 + 4.77440i −0.106646 + 0.161682i
\(873\) 0 0
\(874\) −5.19375 + 26.3842i −0.175681 + 0.892458i
\(875\) 2.57967i 0.0872088i
\(876\) 0 0
\(877\) −43.3288 −1.46311 −0.731556 0.681782i \(-0.761205\pi\)
−0.731556 + 0.681782i \(0.761205\pi\)
\(878\) −4.04429 + 20.5449i −0.136488 + 0.693357i
\(879\) 0 0
\(880\) −22.8062 22.4472i −0.768798 0.756694i
\(881\) −35.7016 −1.20282 −0.601408 0.798942i \(-0.705393\pi\)
−0.601408 + 0.798942i \(0.705393\pi\)
\(882\) 0 0
\(883\) 23.9632i 0.806427i 0.915106 + 0.403213i \(0.132107\pi\)
−0.915106 + 0.403213i \(0.867893\pi\)
\(884\) 9.63844 39.9688i 0.324176 1.34430i
\(885\) 0 0
\(886\) −2.10366 0.414108i −0.0706739 0.0139122i
\(887\) 51.2250 1.71997 0.859983 0.510322i \(-0.170474\pi\)
0.859983 + 0.510322i \(0.170474\pi\)
\(888\) 0 0
\(889\) 33.3020i 1.11691i
\(890\) −64.8059 12.7571i −2.17230 0.427619i
\(891\) 0 0
\(892\) −11.7739 + 28.7468i −0.394220 + 0.962515i
\(893\) 13.1921i 0.441456i
\(894\) 0 0
\(895\) 39.6806i 1.32638i
\(896\) −6.55234 30.7061i −0.218898 1.02582i
\(897\) 0 0
\(898\) 16.2094 + 3.19083i 0.540914 + 0.106479i
\(899\) 25.6844 0.856622
\(900\) 0 0
\(901\) 34.5756i 1.15188i
\(902\) 0 0
\(903\) 0 0
\(904\) 17.7588 26.9235i 0.590650 0.895461i
\(905\) 41.0898i 1.36587i
\(906\) 0 0
\(907\) 55.5067i 1.84307i −0.388294 0.921536i \(-0.626935\pi\)
0.388294 0.921536i \(-0.373065\pi\)
\(908\) 12.8422 + 5.25982i 0.426183 + 0.174553i
\(909\) 0 0
\(910\) −1.86230 + 44.0361i −0.0617347 + 1.45978i
\(911\) −32.0000 −1.06021 −0.530104 0.847933i \(-0.677847\pi\)
−0.530104 + 0.847933i \(0.677847\pi\)
\(912\) 0 0
\(913\) 25.4031 0.840721
\(914\) 4.59688 + 0.904899i 0.152051 + 0.0299314i
\(915\) 0 0
\(916\) 13.8533 + 5.67392i 0.457725 + 0.187472i
\(917\) −52.1839 −1.72327
\(918\) 0 0
\(919\) 40.0000 1.31948 0.659739 0.751495i \(-0.270667\pi\)
0.659739 + 0.751495i \(0.270667\pi\)
\(920\) 19.4031 29.4163i 0.639702 0.969827i
\(921\) 0 0
\(922\) 2.25391 11.4498i 0.0742284 0.377079i
\(923\) 23.7681 3.64328i 0.782336 0.119920i
\(924\) 0 0
\(925\) 19.7810 0.650395
\(926\) −15.8062 3.11148i −0.519426 0.102249i
\(927\) 0 0
\(928\) 22.7327 + 33.3020i 0.746237 + 1.09319i
\(929\) 11.6817i 0.383265i 0.981467 + 0.191632i \(0.0613781\pi\)
−0.981467 + 0.191632i \(0.938622\pi\)
\(930\) 0 0
\(931\) −3.33496 −0.109299
\(932\) −13.1492 5.38557i −0.430717 0.176410i
\(933\) 0 0
\(934\) 22.5125 + 4.43160i 0.736630 + 0.145006i
\(935\) −45.6125 −1.49169
\(936\) 0 0
\(937\) 12.8062 0.418362 0.209181 0.977877i \(-0.432920\pi\)
0.209181 + 0.977877i \(0.432920\pi\)
\(938\) −46.5008 9.15372i −1.51830 0.298880i
\(939\) 0 0
\(940\) −6.55234 + 15.9980i −0.213714 + 0.521797i
\(941\) 25.8474 0.842602 0.421301 0.906921i \(-0.361574\pi\)
0.421301 + 0.906921i \(0.361574\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 13.5515 + 13.3382i 0.441064 + 0.434120i
\(945\) 0 0
\(946\) −5.40312 1.06361i −0.175671 0.0345810i
\(947\) 12.0757 0.392407 0.196203 0.980563i \(-0.437139\pi\)
0.196203 + 0.980563i \(0.437139\pi\)
\(948\) 0 0
\(949\) 53.4396 8.19146i 1.73472 0.265906i
\(950\) 6.10469 31.0117i 0.198062 1.00615i
\(951\) 0 0
\(952\) −37.3586 24.6419i −1.21080 0.798648i
\(953\) 51.5234 1.66901 0.834504 0.551002i \(-0.185754\pi\)
0.834504 + 0.551002i \(0.185754\pi\)
\(954\) 0 0
\(955\) 8.74071 0.282843
\(956\) 9.26268 22.6155i 0.299577 0.731436i
\(957\) 0 0
\(958\) −40.0602 7.88588i −1.29428 0.254781i
\(959\) −30.8062 −0.994786
\(960\) 0 0
\(961\) 18.0156 0.581149
\(962\) 21.4341 + 0.906454i 0.691062 + 0.0292252i
\(963\) 0 0
\(964\) 5.46295 13.3382i 0.175950 0.429593i
\(965\) 46.7041i 1.50346i
\(966\) 0 0
\(967\) 51.0718i 1.64236i 0.570671 + 0.821179i \(0.306683\pi\)
−0.570671 + 0.821179i \(0.693317\pi\)
\(968\) 6.85728 10.3960i 0.220401 0.334142i
\(969\) 0 0
\(970\) −16.8293 3.31286i −0.540356 0.106370i
\(971\) 30.0275i 0.963627i −0.876274 0.481814i \(-0.839978\pi\)
0.876274 0.481814i \(-0.160022\pi\)
\(972\) 0 0
\(973\) −26.9400 −0.863657
\(974\) 36.6125 + 7.20721i 1.17314 + 0.230934i
\(975\) 0 0
\(976\) 0 0
\(977\) 18.3074i 0.585707i 0.956157 + 0.292854i \(0.0946048\pi\)
−0.956157 + 0.292854i \(0.905395\pi\)
\(978\) 0 0
\(979\) 38.5127i 1.23087i
\(980\) 4.04429 + 1.65643i 0.129190 + 0.0529127i
\(981\) 0 0
\(982\) −5.05536 0.995152i −0.161323 0.0317566i
\(983\) 29.9458i 0.955123i 0.878598 + 0.477562i \(0.158479\pi\)
−0.878598 + 0.477562i \(0.841521\pi\)
\(984\) 0 0
\(985\) −13.1047 −0.417550
\(986\) 56.3913 + 11.1007i 1.79586 + 0.353518i
\(987\) 0 0
\(988\) 8.03594 33.3236i 0.255657 1.06016i
\(989\) 6.06424i 0.192832i
\(990\) 0 0
\(991\) 41.6125 1.32186 0.660932 0.750446i \(-0.270161\pi\)
0.660932 + 0.750446i \(0.270161\pi\)
\(992\) −11.4922 16.8354i −0.364877 0.534524i
\(993\) 0 0
\(994\) 5.05536 25.6811i 0.160346 0.814557i
\(995\) 0 0
\(996\) 0 0
\(997\) 40.6399i 1.28708i −0.765413 0.643539i \(-0.777465\pi\)
0.765413 0.643539i \(-0.222535\pi\)
\(998\) 8.70156 44.2038i 0.275443 1.39925i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.m.f.181.5 8
3.2 odd 2 104.2.e.c.77.4 yes 8
4.3 odd 2 3744.2.m.g.1585.7 8
8.3 odd 2 3744.2.m.g.1585.1 8
8.5 even 2 inner 936.2.m.f.181.3 8
12.11 even 2 416.2.e.c.337.3 8
13.12 even 2 inner 936.2.m.f.181.4 8
24.5 odd 2 104.2.e.c.77.6 yes 8
24.11 even 2 416.2.e.c.337.6 8
39.38 odd 2 104.2.e.c.77.5 yes 8
52.51 odd 2 3744.2.m.g.1585.2 8
104.51 odd 2 3744.2.m.g.1585.8 8
104.77 even 2 inner 936.2.m.f.181.6 8
156.155 even 2 416.2.e.c.337.4 8
312.77 odd 2 104.2.e.c.77.3 8
312.155 even 2 416.2.e.c.337.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.e.c.77.3 8 312.77 odd 2
104.2.e.c.77.4 yes 8 3.2 odd 2
104.2.e.c.77.5 yes 8 39.38 odd 2
104.2.e.c.77.6 yes 8 24.5 odd 2
416.2.e.c.337.3 8 12.11 even 2
416.2.e.c.337.4 8 156.155 even 2
416.2.e.c.337.5 8 312.155 even 2
416.2.e.c.337.6 8 24.11 even 2
936.2.m.f.181.3 8 8.5 even 2 inner
936.2.m.f.181.4 8 13.12 even 2 inner
936.2.m.f.181.5 8 1.1 even 1 trivial
936.2.m.f.181.6 8 104.77 even 2 inner
3744.2.m.g.1585.1 8 8.3 odd 2
3744.2.m.g.1585.2 8 52.51 odd 2
3744.2.m.g.1585.7 8 4.3 odd 2
3744.2.m.g.1585.8 8 104.51 odd 2