Properties

Label 936.2.t.b
Level 936936
Weight 22
Character orbit 936.t
Analytic conductor 7.4747.474
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [936,2,Mod(217,936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(936, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("936.217");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 936=233213 936 = 2^{3} \cdot 3^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 936.t (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 7.473997629197.47399762919
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q3q5+4ζ6q7+(4ζ6+4)q11+(3ζ61)q13+3ζ6q17+4ζ6q19+(8ζ68)q23+4q25+(5ζ65)q298q31++14ζ6q97+O(q100) q - 3 q^{5} + 4 \zeta_{6} q^{7} + ( - 4 \zeta_{6} + 4) q^{11} + ( - 3 \zeta_{6} - 1) q^{13} + 3 \zeta_{6} q^{17} + 4 \zeta_{6} q^{19} + (8 \zeta_{6} - 8) q^{23} + 4 q^{25} + (5 \zeta_{6} - 5) q^{29} - 8 q^{31}+ \cdots + 14 \zeta_{6} q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q6q5+4q7+4q115q13+3q17+4q198q23+8q255q2916q3112q357q379q418q43+8q479q49+10q5312q55++14q97+O(q100) 2 q - 6 q^{5} + 4 q^{7} + 4 q^{11} - 5 q^{13} + 3 q^{17} + 4 q^{19} - 8 q^{23} + 8 q^{25} - 5 q^{29} - 16 q^{31} - 12 q^{35} - 7 q^{37} - 9 q^{41} - 8 q^{43} + 8 q^{47} - 9 q^{49} + 10 q^{53} - 12 q^{55}+ \cdots + 14 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/936Z)×\left(\mathbb{Z}/936\mathbb{Z}\right)^\times.

nn 145145 209209 469469 703703
χ(n)\chi(n) ζ6-\zeta_{6} 11 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
217.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0 0 −3.00000 0 2.00000 + 3.46410i 0 0 0
289.1 0 0 0 −3.00000 0 2.00000 3.46410i 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 936.2.t.b 2
3.b odd 2 1 312.2.q.c 2
4.b odd 2 1 1872.2.t.a 2
12.b even 2 1 624.2.q.e 2
13.c even 3 1 inner 936.2.t.b 2
39.h odd 6 1 4056.2.a.b 1
39.i odd 6 1 312.2.q.c 2
39.i odd 6 1 4056.2.a.j 1
39.k even 12 2 4056.2.c.b 2
52.j odd 6 1 1872.2.t.a 2
156.p even 6 1 624.2.q.e 2
156.p even 6 1 8112.2.a.bh 1
156.r even 6 1 8112.2.a.r 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
312.2.q.c 2 3.b odd 2 1
312.2.q.c 2 39.i odd 6 1
624.2.q.e 2 12.b even 2 1
624.2.q.e 2 156.p even 6 1
936.2.t.b 2 1.a even 1 1 trivial
936.2.t.b 2 13.c even 3 1 inner
1872.2.t.a 2 4.b odd 2 1
1872.2.t.a 2 52.j odd 6 1
4056.2.a.b 1 39.h odd 6 1
4056.2.a.j 1 39.i odd 6 1
4056.2.c.b 2 39.k even 12 2
8112.2.a.r 1 156.r even 6 1
8112.2.a.bh 1 156.p even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(936,[χ])S_{2}^{\mathrm{new}}(936, [\chi]):

T5+3 T_{5} + 3 Copy content Toggle raw display
T724T7+16 T_{7}^{2} - 4T_{7} + 16 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 (T+3)2 (T + 3)^{2} Copy content Toggle raw display
77 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
1111 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
1313 T2+5T+13 T^{2} + 5T + 13 Copy content Toggle raw display
1717 T23T+9 T^{2} - 3T + 9 Copy content Toggle raw display
1919 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
2323 T2+8T+64 T^{2} + 8T + 64 Copy content Toggle raw display
2929 T2+5T+25 T^{2} + 5T + 25 Copy content Toggle raw display
3131 (T+8)2 (T + 8)^{2} Copy content Toggle raw display
3737 T2+7T+49 T^{2} + 7T + 49 Copy content Toggle raw display
4141 T2+9T+81 T^{2} + 9T + 81 Copy content Toggle raw display
4343 T2+8T+64 T^{2} + 8T + 64 Copy content Toggle raw display
4747 (T4)2 (T - 4)^{2} Copy content Toggle raw display
5353 (T5)2 (T - 5)^{2} Copy content Toggle raw display
5959 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
6161 T25T+25 T^{2} - 5T + 25 Copy content Toggle raw display
6767 T2+8T+64 T^{2} + 8T + 64 Copy content Toggle raw display
7171 T2+4T+16 T^{2} + 4T + 16 Copy content Toggle raw display
7373 (T11)2 (T - 11)^{2} Copy content Toggle raw display
7979 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 T2+6T+36 T^{2} + 6T + 36 Copy content Toggle raw display
9797 T214T+196 T^{2} - 14T + 196 Copy content Toggle raw display
show more
show less