Defining parameters
Level: | \( N \) | \(=\) | \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 936.g (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
Character field: | \(\Q\) | ||
Sturm bound: | \(672\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(936, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 512 | 180 | 332 |
Cusp forms | 496 | 180 | 316 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(936, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{4}^{\mathrm{old}}(936, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(936, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(8, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(312, [\chi])\)\(^{\oplus 2}\)