Defining parameters
Level: | \( N \) | \(=\) | \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 936.s (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 117 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Sturm bound: | \(672\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(936, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1024 | 252 | 772 |
Cusp forms | 992 | 252 | 740 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(936, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{4}^{\mathrm{old}}(936, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(936, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(117, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(234, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(468, [\chi])\)\(^{\oplus 2}\)