Properties

Label 936.4.s
Level $936$
Weight $4$
Character orbit 936.s
Rep. character $\chi_{936}(529,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $252$
Sturm bound $672$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 936.s (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 117 \)
Character field: \(\Q(\zeta_{3})\)
Sturm bound: \(672\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(936, [\chi])\).

Total New Old
Modular forms 1024 252 772
Cusp forms 992 252 740
Eisenstein series 32 0 32

Trace form

\( 252 q - 88 q^{15} - 136 q^{17} + 80 q^{21} - 104 q^{23} - 3150 q^{25} - 138 q^{27} - 348 q^{29} - 90 q^{31} + 350 q^{33} + 834 q^{35} + 940 q^{39} - 252 q^{43} + 228 q^{45} - 66 q^{47} + 12348 q^{49} + 450 q^{51}+ \cdots + 1904 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(936, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(936, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(936, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(117, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(234, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(468, [\chi])\)\(^{\oplus 2}\)