Properties

Label 936.6.a.m.1.1
Level $936$
Weight $6$
Character 936.1
Self dual yes
Analytic conductor $150.119$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [936,6,Mod(1,936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(936, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("936.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 936.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(150.119255345\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 186x^{2} - 529x - 95 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{7}\cdot 5 \)
Twist minimal: no (minimal twist has level 312)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.82810\) of defining polynomial
Character \(\chi\) \(=\) 936.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-94.1278 q^{5} +33.4615 q^{7} -109.791 q^{11} -169.000 q^{13} -1155.28 q^{17} +1312.40 q^{19} -52.2234 q^{23} +5735.03 q^{25} +7094.51 q^{29} +8210.74 q^{31} -3149.65 q^{35} -12812.2 q^{37} -2811.26 q^{41} +3494.85 q^{43} +4232.26 q^{47} -15687.3 q^{49} -13517.8 q^{53} +10334.4 q^{55} +42651.7 q^{59} +35971.5 q^{61} +15907.6 q^{65} +35153.7 q^{67} -8006.18 q^{71} -11656.0 q^{73} -3673.78 q^{77} +28206.0 q^{79} -3127.94 q^{83} +108744. q^{85} -92556.1 q^{89} -5654.99 q^{91} -123533. q^{95} +6867.86 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{5} - 176 q^{7} - 96 q^{11} - 676 q^{13} - 1224 q^{17} + 3856 q^{19} + 368 q^{23} + 5884 q^{25} - 264 q^{29} + 10928 q^{31} - 7984 q^{35} + 12008 q^{37} - 32792 q^{41} + 24288 q^{43} - 14176 q^{47}+ \cdots + 34664 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −94.1278 −1.68381 −0.841904 0.539627i \(-0.818565\pi\)
−0.841904 + 0.539627i \(0.818565\pi\)
\(6\) 0 0
\(7\) 33.4615 0.258107 0.129054 0.991638i \(-0.458806\pi\)
0.129054 + 0.991638i \(0.458806\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −109.791 −0.273581 −0.136791 0.990600i \(-0.543679\pi\)
−0.136791 + 0.990600i \(0.543679\pi\)
\(12\) 0 0
\(13\) −169.000 −0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1155.28 −0.969538 −0.484769 0.874642i \(-0.661096\pi\)
−0.484769 + 0.874642i \(0.661096\pi\)
\(18\) 0 0
\(19\) 1312.40 0.834028 0.417014 0.908900i \(-0.363077\pi\)
0.417014 + 0.908900i \(0.363077\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −52.2234 −0.0205847 −0.0102924 0.999947i \(-0.503276\pi\)
−0.0102924 + 0.999947i \(0.503276\pi\)
\(24\) 0 0
\(25\) 5735.03 1.83521
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 7094.51 1.56649 0.783245 0.621713i \(-0.213563\pi\)
0.783245 + 0.621713i \(0.213563\pi\)
\(30\) 0 0
\(31\) 8210.74 1.53454 0.767269 0.641325i \(-0.221615\pi\)
0.767269 + 0.641325i \(0.221615\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −3149.65 −0.434603
\(36\) 0 0
\(37\) −12812.2 −1.53858 −0.769289 0.638901i \(-0.779389\pi\)
−0.769289 + 0.638901i \(0.779389\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2811.26 −0.261180 −0.130590 0.991436i \(-0.541687\pi\)
−0.130590 + 0.991436i \(0.541687\pi\)
\(42\) 0 0
\(43\) 3494.85 0.288242 0.144121 0.989560i \(-0.453964\pi\)
0.144121 + 0.989560i \(0.453964\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4232.26 0.279465 0.139733 0.990189i \(-0.455376\pi\)
0.139733 + 0.990189i \(0.455376\pi\)
\(48\) 0 0
\(49\) −15687.3 −0.933381
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −13517.8 −0.661025 −0.330512 0.943802i \(-0.607222\pi\)
−0.330512 + 0.943802i \(0.607222\pi\)
\(54\) 0 0
\(55\) 10334.4 0.460659
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 42651.7 1.59517 0.797584 0.603208i \(-0.206111\pi\)
0.797584 + 0.603208i \(0.206111\pi\)
\(60\) 0 0
\(61\) 35971.5 1.23775 0.618876 0.785488i \(-0.287588\pi\)
0.618876 + 0.785488i \(0.287588\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 15907.6 0.467004
\(66\) 0 0
\(67\) 35153.7 0.956719 0.478359 0.878164i \(-0.341232\pi\)
0.478359 + 0.878164i \(0.341232\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −8006.18 −0.188486 −0.0942431 0.995549i \(-0.530043\pi\)
−0.0942431 + 0.995549i \(0.530043\pi\)
\(72\) 0 0
\(73\) −11656.0 −0.256001 −0.128000 0.991774i \(-0.540856\pi\)
−0.128000 + 0.991774i \(0.540856\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −3673.78 −0.0706133
\(78\) 0 0
\(79\) 28206.0 0.508480 0.254240 0.967141i \(-0.418175\pi\)
0.254240 + 0.967141i \(0.418175\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −3127.94 −0.0498383 −0.0249192 0.999689i \(-0.507933\pi\)
−0.0249192 + 0.999689i \(0.507933\pi\)
\(84\) 0 0
\(85\) 108744. 1.63252
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −92556.1 −1.23860 −0.619299 0.785156i \(-0.712583\pi\)
−0.619299 + 0.785156i \(0.712583\pi\)
\(90\) 0 0
\(91\) −5654.99 −0.0715861
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −123533. −1.40434
\(96\) 0 0
\(97\) 6867.86 0.0741126 0.0370563 0.999313i \(-0.488202\pi\)
0.0370563 + 0.999313i \(0.488202\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −39694.2 −0.387189 −0.193595 0.981082i \(-0.562015\pi\)
−0.193595 + 0.981082i \(0.562015\pi\)
\(102\) 0 0
\(103\) 60349.8 0.560509 0.280255 0.959926i \(-0.409581\pi\)
0.280255 + 0.959926i \(0.409581\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −3692.75 −0.0311810 −0.0155905 0.999878i \(-0.504963\pi\)
−0.0155905 + 0.999878i \(0.504963\pi\)
\(108\) 0 0
\(109\) −185664. −1.49679 −0.748395 0.663254i \(-0.769175\pi\)
−0.748395 + 0.663254i \(0.769175\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 62430.5 0.459939 0.229970 0.973198i \(-0.426137\pi\)
0.229970 + 0.973198i \(0.426137\pi\)
\(114\) 0 0
\(115\) 4915.67 0.0346608
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −38657.4 −0.250245
\(120\) 0 0
\(121\) −148997. −0.925153
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −245677. −1.40634
\(126\) 0 0
\(127\) 283633. 1.56044 0.780220 0.625505i \(-0.215107\pi\)
0.780220 + 0.625505i \(0.215107\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −65395.1 −0.332941 −0.166470 0.986046i \(-0.553237\pi\)
−0.166470 + 0.986046i \(0.553237\pi\)
\(132\) 0 0
\(133\) 43914.7 0.215269
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 69085.3 0.314474 0.157237 0.987561i \(-0.449741\pi\)
0.157237 + 0.987561i \(0.449741\pi\)
\(138\) 0 0
\(139\) 207136. 0.909322 0.454661 0.890665i \(-0.349760\pi\)
0.454661 + 0.890665i \(0.349760\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 18554.7 0.0758778
\(144\) 0 0
\(145\) −667791. −2.63767
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −410160. −1.51352 −0.756759 0.653694i \(-0.773219\pi\)
−0.756759 + 0.653694i \(0.773219\pi\)
\(150\) 0 0
\(151\) −312600. −1.11570 −0.557849 0.829943i \(-0.688373\pi\)
−0.557849 + 0.829943i \(0.688373\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −772858. −2.58387
\(156\) 0 0
\(157\) −462608. −1.49784 −0.748918 0.662662i \(-0.769426\pi\)
−0.748918 + 0.662662i \(0.769426\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −1747.47 −0.00531307
\(162\) 0 0
\(163\) 505955. 1.49157 0.745783 0.666188i \(-0.232075\pi\)
0.745783 + 0.666188i \(0.232075\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −72857.3 −0.202154 −0.101077 0.994879i \(-0.532229\pi\)
−0.101077 + 0.994879i \(0.532229\pi\)
\(168\) 0 0
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −15026.2 −0.0381711 −0.0190856 0.999818i \(-0.506075\pi\)
−0.0190856 + 0.999818i \(0.506075\pi\)
\(174\) 0 0
\(175\) 191903. 0.473681
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −196586. −0.458586 −0.229293 0.973357i \(-0.573641\pi\)
−0.229293 + 0.973357i \(0.573641\pi\)
\(180\) 0 0
\(181\) −268073. −0.608215 −0.304107 0.952638i \(-0.598358\pi\)
−0.304107 + 0.952638i \(0.598358\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.20598e6 2.59067
\(186\) 0 0
\(187\) 126840. 0.265248
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −702006. −1.39238 −0.696189 0.717858i \(-0.745123\pi\)
−0.696189 + 0.717858i \(0.745123\pi\)
\(192\) 0 0
\(193\) −614642. −1.18776 −0.593881 0.804553i \(-0.702405\pi\)
−0.593881 + 0.804553i \(0.702405\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 725714. 1.33229 0.666147 0.745821i \(-0.267942\pi\)
0.666147 + 0.745821i \(0.267942\pi\)
\(198\) 0 0
\(199\) −623315. −1.11577 −0.557885 0.829918i \(-0.688387\pi\)
−0.557885 + 0.829918i \(0.688387\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 237393. 0.404322
\(204\) 0 0
\(205\) 264617. 0.439778
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −144090. −0.228174
\(210\) 0 0
\(211\) −1.17911e6 −1.82326 −0.911631 0.411010i \(-0.865176\pi\)
−0.911631 + 0.411010i \(0.865176\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −328963. −0.485345
\(216\) 0 0
\(217\) 274743. 0.396076
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 195242. 0.268902
\(222\) 0 0
\(223\) −1.33293e6 −1.79492 −0.897461 0.441094i \(-0.854591\pi\)
−0.897461 + 0.441094i \(0.854591\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −28437.9 −0.0366296 −0.0183148 0.999832i \(-0.505830\pi\)
−0.0183148 + 0.999832i \(0.505830\pi\)
\(228\) 0 0
\(229\) −140585. −0.177154 −0.0885772 0.996069i \(-0.528232\pi\)
−0.0885772 + 0.996069i \(0.528232\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.18087e6 1.42499 0.712497 0.701675i \(-0.247564\pi\)
0.712497 + 0.701675i \(0.247564\pi\)
\(234\) 0 0
\(235\) −398373. −0.470566
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.40333e6 1.58915 0.794577 0.607164i \(-0.207693\pi\)
0.794577 + 0.607164i \(0.207693\pi\)
\(240\) 0 0
\(241\) −1.55388e6 −1.72335 −0.861676 0.507459i \(-0.830585\pi\)
−0.861676 + 0.507459i \(0.830585\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.47661e6 1.57163
\(246\) 0 0
\(247\) −221795. −0.231318
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 679718. 0.680996 0.340498 0.940245i \(-0.389404\pi\)
0.340498 + 0.940245i \(0.389404\pi\)
\(252\) 0 0
\(253\) 5733.68 0.00563160
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1.16742e6 −1.10254 −0.551272 0.834326i \(-0.685857\pi\)
−0.551272 + 0.834326i \(0.685857\pi\)
\(258\) 0 0
\(259\) −428715. −0.397118
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 274301. 0.244533 0.122267 0.992497i \(-0.460984\pi\)
0.122267 + 0.992497i \(0.460984\pi\)
\(264\) 0 0
\(265\) 1.27240e6 1.11304
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 481307. 0.405547 0.202773 0.979226i \(-0.435005\pi\)
0.202773 + 0.979226i \(0.435005\pi\)
\(270\) 0 0
\(271\) −458496. −0.379238 −0.189619 0.981858i \(-0.560725\pi\)
−0.189619 + 0.981858i \(0.560725\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −629657. −0.502080
\(276\) 0 0
\(277\) 463861. 0.363236 0.181618 0.983369i \(-0.441867\pi\)
0.181618 + 0.983369i \(0.441867\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −287065. −0.216878 −0.108439 0.994103i \(-0.534585\pi\)
−0.108439 + 0.994103i \(0.534585\pi\)
\(282\) 0 0
\(283\) 1.52222e6 1.12983 0.564914 0.825150i \(-0.308909\pi\)
0.564914 + 0.825150i \(0.308909\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −94068.8 −0.0674126
\(288\) 0 0
\(289\) −85185.2 −0.0599956
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −451386. −0.307170 −0.153585 0.988135i \(-0.549082\pi\)
−0.153585 + 0.988135i \(0.549082\pi\)
\(294\) 0 0
\(295\) −4.01471e6 −2.68596
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 8825.75 0.00570918
\(300\) 0 0
\(301\) 116943. 0.0743974
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −3.38592e6 −2.08414
\(306\) 0 0
\(307\) −101365. −0.0613821 −0.0306911 0.999529i \(-0.509771\pi\)
−0.0306911 + 0.999529i \(0.509771\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −3.20785e6 −1.88067 −0.940337 0.340243i \(-0.889491\pi\)
−0.940337 + 0.340243i \(0.889491\pi\)
\(312\) 0 0
\(313\) 379116. 0.218732 0.109366 0.994002i \(-0.465118\pi\)
0.109366 + 0.994002i \(0.465118\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3.46265e6 1.93536 0.967678 0.252189i \(-0.0811504\pi\)
0.967678 + 0.252189i \(0.0811504\pi\)
\(318\) 0 0
\(319\) −778916. −0.428562
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −1.51618e6 −0.808622
\(324\) 0 0
\(325\) −969221. −0.508996
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 141618. 0.0721320
\(330\) 0 0
\(331\) 2.04899e6 1.02794 0.513972 0.857807i \(-0.328173\pi\)
0.513972 + 0.857807i \(0.328173\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −3.30894e6 −1.61093
\(336\) 0 0
\(337\) 520864. 0.249833 0.124917 0.992167i \(-0.460134\pi\)
0.124917 + 0.992167i \(0.460134\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −901468. −0.419821
\(342\) 0 0
\(343\) −1.08731e6 −0.499019
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −2.56918e6 −1.14544 −0.572718 0.819752i \(-0.694111\pi\)
−0.572718 + 0.819752i \(0.694111\pi\)
\(348\) 0 0
\(349\) −3.42386e6 −1.50471 −0.752354 0.658759i \(-0.771082\pi\)
−0.752354 + 0.658759i \(0.771082\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 739548. 0.315886 0.157943 0.987448i \(-0.449514\pi\)
0.157943 + 0.987448i \(0.449514\pi\)
\(354\) 0 0
\(355\) 753604. 0.317375
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −586748. −0.240279 −0.120139 0.992757i \(-0.538334\pi\)
−0.120139 + 0.992757i \(0.538334\pi\)
\(360\) 0 0
\(361\) −753718. −0.304397
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1.09715e6 0.431056
\(366\) 0 0
\(367\) −4.85860e6 −1.88298 −0.941492 0.337037i \(-0.890575\pi\)
−0.941492 + 0.337037i \(0.890575\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −452327. −0.170615
\(372\) 0 0
\(373\) −229665. −0.0854717 −0.0427359 0.999086i \(-0.513607\pi\)
−0.0427359 + 0.999086i \(0.513607\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −1.19897e6 −0.434466
\(378\) 0 0
\(379\) −1.69343e6 −0.605576 −0.302788 0.953058i \(-0.597917\pi\)
−0.302788 + 0.953058i \(0.597917\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −447870. −0.156011 −0.0780055 0.996953i \(-0.524855\pi\)
−0.0780055 + 0.996953i \(0.524855\pi\)
\(384\) 0 0
\(385\) 345805. 0.118899
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 965484. 0.323498 0.161749 0.986832i \(-0.448287\pi\)
0.161749 + 0.986832i \(0.448287\pi\)
\(390\) 0 0
\(391\) 60332.6 0.0199577
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −2.65497e6 −0.856183
\(396\) 0 0
\(397\) −1.59726e6 −0.508627 −0.254313 0.967122i \(-0.581849\pi\)
−0.254313 + 0.967122i \(0.581849\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2.67502e6 −0.830741 −0.415371 0.909652i \(-0.636348\pi\)
−0.415371 + 0.909652i \(0.636348\pi\)
\(402\) 0 0
\(403\) −1.38761e6 −0.425605
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.40667e6 0.420926
\(408\) 0 0
\(409\) 3.87780e6 1.14625 0.573123 0.819470i \(-0.305732\pi\)
0.573123 + 0.819470i \(0.305732\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 1.42719e6 0.411724
\(414\) 0 0
\(415\) 294426. 0.0839182
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 2.05001e6 0.570453 0.285227 0.958460i \(-0.407931\pi\)
0.285227 + 0.958460i \(0.407931\pi\)
\(420\) 0 0
\(421\) −5.60798e6 −1.54206 −0.771030 0.636799i \(-0.780258\pi\)
−0.771030 + 0.636799i \(0.780258\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −6.62557e6 −1.77931
\(426\) 0 0
\(427\) 1.20366e6 0.319473
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −5.44139e6 −1.41097 −0.705483 0.708727i \(-0.749270\pi\)
−0.705483 + 0.708727i \(0.749270\pi\)
\(432\) 0 0
\(433\) 4.82997e6 1.23801 0.619005 0.785387i \(-0.287536\pi\)
0.619005 + 0.785387i \(0.287536\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −68537.7 −0.0171683
\(438\) 0 0
\(439\) −1.69685e6 −0.420224 −0.210112 0.977677i \(-0.567383\pi\)
−0.210112 + 0.977677i \(0.567383\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 3.65667e6 0.885272 0.442636 0.896701i \(-0.354043\pi\)
0.442636 + 0.896701i \(0.354043\pi\)
\(444\) 0 0
\(445\) 8.71210e6 2.08556
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −5.20796e6 −1.21913 −0.609567 0.792734i \(-0.708657\pi\)
−0.609567 + 0.792734i \(0.708657\pi\)
\(450\) 0 0
\(451\) 308652. 0.0714541
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 532292. 0.120537
\(456\) 0 0
\(457\) 6.72690e6 1.50669 0.753346 0.657624i \(-0.228438\pi\)
0.753346 + 0.657624i \(0.228438\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −3.54845e6 −0.777653 −0.388827 0.921311i \(-0.627120\pi\)
−0.388827 + 0.921311i \(0.627120\pi\)
\(462\) 0 0
\(463\) 4.97769e6 1.07913 0.539567 0.841943i \(-0.318588\pi\)
0.539567 + 0.841943i \(0.318588\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 3.32958e6 0.706475 0.353238 0.935534i \(-0.385081\pi\)
0.353238 + 0.935534i \(0.385081\pi\)
\(468\) 0 0
\(469\) 1.17630e6 0.246936
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −383705. −0.0788577
\(474\) 0 0
\(475\) 7.52663e6 1.53062
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −8.05780e6 −1.60464 −0.802320 0.596894i \(-0.796401\pi\)
−0.802320 + 0.596894i \(0.796401\pi\)
\(480\) 0 0
\(481\) 2.16526e6 0.426725
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −646456. −0.124791
\(486\) 0 0
\(487\) −9.96655e6 −1.90424 −0.952122 0.305719i \(-0.901103\pi\)
−0.952122 + 0.305719i \(0.901103\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 8.50234e6 1.59160 0.795801 0.605558i \(-0.207050\pi\)
0.795801 + 0.605558i \(0.207050\pi\)
\(492\) 0 0
\(493\) −8.19615e6 −1.51877
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −267899. −0.0486497
\(498\) 0 0
\(499\) 2.30152e6 0.413774 0.206887 0.978365i \(-0.433667\pi\)
0.206887 + 0.978365i \(0.433667\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 8.15778e6 1.43765 0.718823 0.695193i \(-0.244681\pi\)
0.718823 + 0.695193i \(0.244681\pi\)
\(504\) 0 0
\(505\) 3.73632e6 0.651952
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 6.01951e6 1.02983 0.514917 0.857240i \(-0.327823\pi\)
0.514917 + 0.857240i \(0.327823\pi\)
\(510\) 0 0
\(511\) −390026. −0.0660756
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −5.68059e6 −0.943790
\(516\) 0 0
\(517\) −464666. −0.0764565
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 1.05732e7 1.70653 0.853263 0.521480i \(-0.174620\pi\)
0.853263 + 0.521480i \(0.174620\pi\)
\(522\) 0 0
\(523\) −98658.5 −0.0157718 −0.00788588 0.999969i \(-0.502510\pi\)
−0.00788588 + 0.999969i \(0.502510\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −9.48570e6 −1.48779
\(528\) 0 0
\(529\) −6.43362e6 −0.999576
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 475102. 0.0724384
\(534\) 0 0
\(535\) 347590. 0.0525029
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1.72233e6 0.255356
\(540\) 0 0
\(541\) 6.90663e6 1.01455 0.507275 0.861785i \(-0.330653\pi\)
0.507275 + 0.861785i \(0.330653\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1.74761e7 2.52031
\(546\) 0 0
\(547\) −1.01800e7 −1.45471 −0.727357 0.686259i \(-0.759252\pi\)
−0.727357 + 0.686259i \(0.759252\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 9.31081e6 1.30650
\(552\) 0 0
\(553\) 943815. 0.131242
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −3.00546e6 −0.410463 −0.205231 0.978714i \(-0.565795\pi\)
−0.205231 + 0.978714i \(0.565795\pi\)
\(558\) 0 0
\(559\) −590630. −0.0799441
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.12827e7 1.50018 0.750089 0.661337i \(-0.230011\pi\)
0.750089 + 0.661337i \(0.230011\pi\)
\(564\) 0 0
\(565\) −5.87644e6 −0.774450
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 8.52382e6 1.10371 0.551853 0.833941i \(-0.313921\pi\)
0.551853 + 0.833941i \(0.313921\pi\)
\(570\) 0 0
\(571\) 9.54675e6 1.22536 0.612682 0.790329i \(-0.290091\pi\)
0.612682 + 0.790329i \(0.290091\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −299503. −0.0377774
\(576\) 0 0
\(577\) 7.22142e6 0.902991 0.451495 0.892273i \(-0.350891\pi\)
0.451495 + 0.892273i \(0.350891\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −104666. −0.0128636
\(582\) 0 0
\(583\) 1.48414e6 0.180844
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 6.37884e6 0.764094 0.382047 0.924143i \(-0.375219\pi\)
0.382047 + 0.924143i \(0.375219\pi\)
\(588\) 0 0
\(589\) 1.07757e7 1.27985
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −4.67591e6 −0.546046 −0.273023 0.962008i \(-0.588023\pi\)
−0.273023 + 0.962008i \(0.588023\pi\)
\(594\) 0 0
\(595\) 3.63873e6 0.421364
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −5.78485e6 −0.658757 −0.329378 0.944198i \(-0.606839\pi\)
−0.329378 + 0.944198i \(0.606839\pi\)
\(600\) 0 0
\(601\) 603630. 0.0681687 0.0340843 0.999419i \(-0.489149\pi\)
0.0340843 + 0.999419i \(0.489149\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.40247e7 1.55778
\(606\) 0 0
\(607\) 1.17363e6 0.129288 0.0646439 0.997908i \(-0.479409\pi\)
0.0646439 + 0.997908i \(0.479409\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −715252. −0.0775097
\(612\) 0 0
\(613\) −6.02374e6 −0.647463 −0.323732 0.946149i \(-0.604938\pi\)
−0.323732 + 0.946149i \(0.604938\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 371323. 0.0392680 0.0196340 0.999807i \(-0.493750\pi\)
0.0196340 + 0.999807i \(0.493750\pi\)
\(618\) 0 0
\(619\) −1.54077e6 −0.161626 −0.0808131 0.996729i \(-0.525752\pi\)
−0.0808131 + 0.996729i \(0.525752\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −3.09706e6 −0.319691
\(624\) 0 0
\(625\) 5.20301e6 0.532789
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1.48017e7 1.49171
\(630\) 0 0
\(631\) −1.06031e7 −1.06013 −0.530066 0.847957i \(-0.677833\pi\)
−0.530066 + 0.847957i \(0.677833\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −2.66977e7 −2.62748
\(636\) 0 0
\(637\) 2.65116e6 0.258873
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −7.63599e6 −0.734041 −0.367021 0.930213i \(-0.619622\pi\)
−0.367021 + 0.930213i \(0.619622\pi\)
\(642\) 0 0
\(643\) −1.34581e7 −1.28368 −0.641838 0.766840i \(-0.721828\pi\)
−0.641838 + 0.766840i \(0.721828\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.65614e7 1.55538 0.777690 0.628648i \(-0.216391\pi\)
0.777690 + 0.628648i \(0.216391\pi\)
\(648\) 0 0
\(649\) −4.68279e6 −0.436408
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −2.51489e6 −0.230800 −0.115400 0.993319i \(-0.536815\pi\)
−0.115400 + 0.993319i \(0.536815\pi\)
\(654\) 0 0
\(655\) 6.15549e6 0.560609
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −1.38636e6 −0.124355 −0.0621774 0.998065i \(-0.519804\pi\)
−0.0621774 + 0.998065i \(0.519804\pi\)
\(660\) 0 0
\(661\) 1.46224e6 0.130171 0.0650857 0.997880i \(-0.479268\pi\)
0.0650857 + 0.997880i \(0.479268\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −4.13359e6 −0.362471
\(666\) 0 0
\(667\) −370500. −0.0322458
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −3.94936e6 −0.338626
\(672\) 0 0
\(673\) −5.05023e6 −0.429807 −0.214903 0.976635i \(-0.568944\pi\)
−0.214903 + 0.976635i \(0.568944\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −92645.8 −0.00776880 −0.00388440 0.999992i \(-0.501236\pi\)
−0.00388440 + 0.999992i \(0.501236\pi\)
\(678\) 0 0
\(679\) 229809. 0.0191290
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −3.72081e6 −0.305201 −0.152600 0.988288i \(-0.548765\pi\)
−0.152600 + 0.988288i \(0.548765\pi\)
\(684\) 0 0
\(685\) −6.50284e6 −0.529513
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 2.28452e6 0.183335
\(690\) 0 0
\(691\) 7.18845e6 0.572717 0.286358 0.958123i \(-0.407555\pi\)
0.286358 + 0.958123i \(0.407555\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1.94972e7 −1.53112
\(696\) 0 0
\(697\) 3.24779e6 0.253224
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 15297.9 0.00117581 0.000587905 1.00000i \(-0.499813\pi\)
0.000587905 1.00000i \(0.499813\pi\)
\(702\) 0 0
\(703\) −1.68147e7 −1.28322
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1.32823e6 −0.0999363
\(708\) 0 0
\(709\) 1.39863e6 0.104493 0.0522466 0.998634i \(-0.483362\pi\)
0.0522466 + 0.998634i \(0.483362\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −428793. −0.0315881
\(714\) 0 0
\(715\) −1.74652e6 −0.127764
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1.35207e7 0.975384 0.487692 0.873016i \(-0.337839\pi\)
0.487692 + 0.873016i \(0.337839\pi\)
\(720\) 0 0
\(721\) 2.01939e6 0.144671
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 4.06873e7 2.87484
\(726\) 0 0
\(727\) −1.03561e7 −0.726708 −0.363354 0.931651i \(-0.618368\pi\)
−0.363354 + 0.931651i \(0.618368\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −4.03753e6 −0.279462
\(732\) 0 0
\(733\) 2.72409e7 1.87267 0.936335 0.351107i \(-0.114195\pi\)
0.936335 + 0.351107i \(0.114195\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −3.85958e6 −0.261740
\(738\) 0 0
\(739\) 6.18785e6 0.416801 0.208401 0.978044i \(-0.433174\pi\)
0.208401 + 0.978044i \(0.433174\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −2.57724e7 −1.71270 −0.856352 0.516392i \(-0.827275\pi\)
−0.856352 + 0.516392i \(0.827275\pi\)
\(744\) 0 0
\(745\) 3.86075e7 2.54848
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −123565. −0.00804804
\(750\) 0 0
\(751\) 4.06370e6 0.262919 0.131459 0.991322i \(-0.458034\pi\)
0.131459 + 0.991322i \(0.458034\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 2.94243e7 1.87862
\(756\) 0 0
\(757\) −3.90503e6 −0.247677 −0.123838 0.992302i \(-0.539520\pi\)
−0.123838 + 0.992302i \(0.539520\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1.93874e7 −1.21355 −0.606774 0.794874i \(-0.707537\pi\)
−0.606774 + 0.794874i \(0.707537\pi\)
\(762\) 0 0
\(763\) −6.21258e6 −0.386332
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −7.20814e6 −0.442420
\(768\) 0 0
\(769\) −1.75737e6 −0.107163 −0.0535817 0.998563i \(-0.517064\pi\)
−0.0535817 + 0.998563i \(0.517064\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −6.62448e6 −0.398752 −0.199376 0.979923i \(-0.563892\pi\)
−0.199376 + 0.979923i \(0.563892\pi\)
\(774\) 0 0
\(775\) 4.70889e7 2.81620
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −3.68948e6 −0.217832
\(780\) 0 0
\(781\) 879010. 0.0515663
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 4.35443e7 2.52207
\(786\) 0 0
\(787\) −7.44210e6 −0.428310 −0.214155 0.976800i \(-0.568700\pi\)
−0.214155 + 0.976800i \(0.568700\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 2.08902e6 0.118714
\(792\) 0 0
\(793\) −6.07918e6 −0.343291
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 2.09663e7 1.16917 0.584583 0.811334i \(-0.301258\pi\)
0.584583 + 0.811334i \(0.301258\pi\)
\(798\) 0 0
\(799\) −4.88945e6 −0.270952
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 1.27972e6 0.0700370
\(804\) 0 0
\(805\) 164486. 0.00894620
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −8.39942e6 −0.451209 −0.225605 0.974219i \(-0.572436\pi\)
−0.225605 + 0.974219i \(0.572436\pi\)
\(810\) 0 0
\(811\) 1.60701e7 0.857961 0.428981 0.903314i \(-0.358873\pi\)
0.428981 + 0.903314i \(0.358873\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −4.76244e7 −2.51151
\(816\) 0 0
\(817\) 4.58663e6 0.240402
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 5.01528e6 0.259679 0.129840 0.991535i \(-0.458554\pi\)
0.129840 + 0.991535i \(0.458554\pi\)
\(822\) 0 0
\(823\) 3.15405e7 1.62319 0.811594 0.584221i \(-0.198600\pi\)
0.811594 + 0.584221i \(0.198600\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −3.14143e7 −1.59721 −0.798607 0.601853i \(-0.794429\pi\)
−0.798607 + 0.601853i \(0.794429\pi\)
\(828\) 0 0
\(829\) −1.83920e7 −0.929488 −0.464744 0.885445i \(-0.653854\pi\)
−0.464744 + 0.885445i \(0.653854\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 1.81233e7 0.904948
\(834\) 0 0
\(835\) 6.85789e6 0.340388
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −1.43095e7 −0.701810 −0.350905 0.936411i \(-0.614126\pi\)
−0.350905 + 0.936411i \(0.614126\pi\)
\(840\) 0 0
\(841\) 2.98210e7 1.45389
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −2.68838e6 −0.129524
\(846\) 0 0
\(847\) −4.98566e6 −0.238789
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 669096. 0.0316712
\(852\) 0 0
\(853\) −5.57700e6 −0.262439 −0.131219 0.991353i \(-0.541889\pi\)
−0.131219 + 0.991353i \(0.541889\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −2.69291e7 −1.25248 −0.626240 0.779631i \(-0.715407\pi\)
−0.626240 + 0.779631i \(0.715407\pi\)
\(858\) 0 0
\(859\) 1.84576e7 0.853480 0.426740 0.904374i \(-0.359662\pi\)
0.426740 + 0.904374i \(0.359662\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −3.14937e6 −0.143945 −0.0719725 0.997407i \(-0.522929\pi\)
−0.0719725 + 0.997407i \(0.522929\pi\)
\(864\) 0 0
\(865\) 1.41439e6 0.0642729
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −3.09678e6 −0.139111
\(870\) 0 0
\(871\) −5.94098e6 −0.265346
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −8.22071e6 −0.362985
\(876\) 0 0
\(877\) 9.37513e6 0.411603 0.205801 0.978594i \(-0.434020\pi\)
0.205801 + 0.978594i \(0.434020\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1.09946e7 0.477245 0.238623 0.971112i \(-0.423304\pi\)
0.238623 + 0.971112i \(0.423304\pi\)
\(882\) 0 0
\(883\) −7.04746e6 −0.304180 −0.152090 0.988367i \(-0.548600\pi\)
−0.152090 + 0.988367i \(0.548600\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 3.64956e7 1.55751 0.778757 0.627326i \(-0.215851\pi\)
0.778757 + 0.627326i \(0.215851\pi\)
\(888\) 0 0
\(889\) 9.49078e6 0.402761
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 5.55440e6 0.233082
\(894\) 0 0
\(895\) 1.85042e7 0.772170
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 5.82512e7 2.40384
\(900\) 0 0
\(901\) 1.56169e7 0.640889
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2.52331e7 1.02412
\(906\) 0 0
\(907\) 4.03594e7 1.62902 0.814510 0.580150i \(-0.197006\pi\)
0.814510 + 0.580150i \(0.197006\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −2.09136e7 −0.834896 −0.417448 0.908701i \(-0.637075\pi\)
−0.417448 + 0.908701i \(0.637075\pi\)
\(912\) 0 0
\(913\) 343421. 0.0136348
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −2.18822e6 −0.0859344
\(918\) 0 0
\(919\) −3.22946e7 −1.26136 −0.630682 0.776041i \(-0.717225\pi\)
−0.630682 + 0.776041i \(0.717225\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1.35305e6 0.0522767
\(924\) 0 0
\(925\) −7.34784e7 −2.82361
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −2.53890e7 −0.965177 −0.482588 0.875847i \(-0.660303\pi\)
−0.482588 + 0.875847i \(0.660303\pi\)
\(930\) 0 0
\(931\) −2.05880e7 −0.778466
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −1.19391e7 −0.446626
\(936\) 0 0
\(937\) 4.48170e7 1.66761 0.833803 0.552062i \(-0.186159\pi\)
0.833803 + 0.552062i \(0.186159\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 3.68202e7 1.35554 0.677769 0.735275i \(-0.262947\pi\)
0.677769 + 0.735275i \(0.262947\pi\)
\(942\) 0 0
\(943\) 146813. 0.00537633
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −4.43343e7 −1.60644 −0.803220 0.595682i \(-0.796882\pi\)
−0.803220 + 0.595682i \(0.796882\pi\)
\(948\) 0 0
\(949\) 1.96986e6 0.0710018
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1.26322e7 −0.450553 −0.225277 0.974295i \(-0.572329\pi\)
−0.225277 + 0.974295i \(0.572329\pi\)
\(954\) 0 0
\(955\) 6.60782e7 2.34450
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 2.31170e6 0.0811679
\(960\) 0 0
\(961\) 3.87870e7 1.35481
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 5.78549e7 1.99996
\(966\) 0 0
\(967\) 1.08031e7 0.371520 0.185760 0.982595i \(-0.440525\pi\)
0.185760 + 0.982595i \(0.440525\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −2.18020e7 −0.742076 −0.371038 0.928618i \(-0.620998\pi\)
−0.371038 + 0.928618i \(0.620998\pi\)
\(972\) 0 0
\(973\) 6.93107e6 0.234703
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −1.68196e7 −0.563741 −0.281871 0.959452i \(-0.590955\pi\)
−0.281871 + 0.959452i \(0.590955\pi\)
\(978\) 0 0
\(979\) 1.01619e7 0.338857
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 5.00455e7 1.65189 0.825945 0.563751i \(-0.190642\pi\)
0.825945 + 0.563751i \(0.190642\pi\)
\(984\) 0 0
\(985\) −6.83098e7 −2.24333
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −182513. −0.00593340
\(990\) 0 0
\(991\) 3.81950e6 0.123544 0.0617721 0.998090i \(-0.480325\pi\)
0.0617721 + 0.998090i \(0.480325\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 5.86712e7 1.87874
\(996\) 0 0
\(997\) −2.52979e7 −0.806021 −0.403011 0.915195i \(-0.632036\pi\)
−0.403011 + 0.915195i \(0.632036\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.6.a.m.1.1 4
3.2 odd 2 312.6.a.i.1.4 4
12.11 even 2 624.6.a.v.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.6.a.i.1.4 4 3.2 odd 2
624.6.a.v.1.4 4 12.11 even 2
936.6.a.m.1.1 4 1.1 even 1 trivial