Properties

Label 9360.2.a.cc.1.2
Level $9360$
Weight $2$
Character 9360.1
Self dual yes
Analytic conductor $74.740$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9360,2,Mod(1,9360)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9360, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9360.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9360 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9360.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(74.7399762919\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{6}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 520)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.44949\) of defining polynomial
Character \(\chi\) \(=\) 9360.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{5} -2.00000 q^{7} +0.449490 q^{11} -1.00000 q^{13} +2.89898 q^{17} +4.44949 q^{19} +1.55051 q^{23} +1.00000 q^{25} -4.00000 q^{29} -0.449490 q^{31} +2.00000 q^{35} -4.89898 q^{37} -1.10102 q^{41} +3.34847 q^{43} -2.00000 q^{47} -3.00000 q^{49} -10.8990 q^{53} -0.449490 q^{55} -5.34847 q^{59} +13.7980 q^{61} +1.00000 q^{65} +14.8990 q^{67} -8.44949 q^{71} +14.6969 q^{73} -0.898979 q^{77} +4.89898 q^{79} +2.00000 q^{83} -2.89898 q^{85} -6.00000 q^{89} +2.00000 q^{91} -4.44949 q^{95} -11.7980 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{5} - 4 q^{7} - 4 q^{11} - 2 q^{13} - 4 q^{17} + 4 q^{19} + 8 q^{23} + 2 q^{25} - 8 q^{29} + 4 q^{31} + 4 q^{35} - 12 q^{41} - 8 q^{43} - 4 q^{47} - 6 q^{49} - 12 q^{53} + 4 q^{55} + 4 q^{59}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.449490 0.135526 0.0677631 0.997701i \(-0.478414\pi\)
0.0677631 + 0.997701i \(0.478414\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.89898 0.703106 0.351553 0.936168i \(-0.385654\pi\)
0.351553 + 0.936168i \(0.385654\pi\)
\(18\) 0 0
\(19\) 4.44949 1.02078 0.510391 0.859942i \(-0.329501\pi\)
0.510391 + 0.859942i \(0.329501\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.55051 0.323304 0.161652 0.986848i \(-0.448318\pi\)
0.161652 + 0.986848i \(0.448318\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.00000 −0.742781 −0.371391 0.928477i \(-0.621119\pi\)
−0.371391 + 0.928477i \(0.621119\pi\)
\(30\) 0 0
\(31\) −0.449490 −0.0807307 −0.0403654 0.999185i \(-0.512852\pi\)
−0.0403654 + 0.999185i \(0.512852\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.00000 0.338062
\(36\) 0 0
\(37\) −4.89898 −0.805387 −0.402694 0.915335i \(-0.631926\pi\)
−0.402694 + 0.915335i \(0.631926\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.10102 −0.171951 −0.0859753 0.996297i \(-0.527401\pi\)
−0.0859753 + 0.996297i \(0.527401\pi\)
\(42\) 0 0
\(43\) 3.34847 0.510637 0.255318 0.966857i \(-0.417820\pi\)
0.255318 + 0.966857i \(0.417820\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.00000 −0.291730 −0.145865 0.989305i \(-0.546597\pi\)
−0.145865 + 0.989305i \(0.546597\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −10.8990 −1.49709 −0.748545 0.663084i \(-0.769247\pi\)
−0.748545 + 0.663084i \(0.769247\pi\)
\(54\) 0 0
\(55\) −0.449490 −0.0606092
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −5.34847 −0.696311 −0.348156 0.937437i \(-0.613192\pi\)
−0.348156 + 0.937437i \(0.613192\pi\)
\(60\) 0 0
\(61\) 13.7980 1.76665 0.883324 0.468763i \(-0.155300\pi\)
0.883324 + 0.468763i \(0.155300\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.00000 0.124035
\(66\) 0 0
\(67\) 14.8990 1.82020 0.910100 0.414389i \(-0.136005\pi\)
0.910100 + 0.414389i \(0.136005\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −8.44949 −1.00277 −0.501385 0.865224i \(-0.667176\pi\)
−0.501385 + 0.865224i \(0.667176\pi\)
\(72\) 0 0
\(73\) 14.6969 1.72015 0.860073 0.510171i \(-0.170418\pi\)
0.860073 + 0.510171i \(0.170418\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.898979 −0.102448
\(78\) 0 0
\(79\) 4.89898 0.551178 0.275589 0.961276i \(-0.411127\pi\)
0.275589 + 0.961276i \(0.411127\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.00000 0.219529 0.109764 0.993958i \(-0.464990\pi\)
0.109764 + 0.993958i \(0.464990\pi\)
\(84\) 0 0
\(85\) −2.89898 −0.314438
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) 2.00000 0.209657
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −4.44949 −0.456508
\(96\) 0 0
\(97\) −11.7980 −1.19790 −0.598951 0.800786i \(-0.704415\pi\)
−0.598951 + 0.800786i \(0.704415\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −3.79796 −0.377911 −0.188956 0.981986i \(-0.560510\pi\)
−0.188956 + 0.981986i \(0.560510\pi\)
\(102\) 0 0
\(103\) 3.34847 0.329934 0.164967 0.986299i \(-0.447248\pi\)
0.164967 + 0.986299i \(0.447248\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 12.2474 1.18401 0.592003 0.805936i \(-0.298337\pi\)
0.592003 + 0.805936i \(0.298337\pi\)
\(108\) 0 0
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −10.8990 −1.02529 −0.512645 0.858601i \(-0.671334\pi\)
−0.512645 + 0.858601i \(0.671334\pi\)
\(114\) 0 0
\(115\) −1.55051 −0.144586
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −5.79796 −0.531498
\(120\) 0 0
\(121\) −10.7980 −0.981633
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −19.3485 −1.71690 −0.858450 0.512898i \(-0.828572\pi\)
−0.858450 + 0.512898i \(0.828572\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −19.5959 −1.71210 −0.856052 0.516890i \(-0.827090\pi\)
−0.856052 + 0.516890i \(0.827090\pi\)
\(132\) 0 0
\(133\) −8.89898 −0.771639
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 14.0000 1.19610 0.598050 0.801459i \(-0.295942\pi\)
0.598050 + 0.801459i \(0.295942\pi\)
\(138\) 0 0
\(139\) 7.10102 0.602301 0.301150 0.953577i \(-0.402629\pi\)
0.301150 + 0.953577i \(0.402629\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −0.449490 −0.0375882
\(144\) 0 0
\(145\) 4.00000 0.332182
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 7.79796 0.638834 0.319417 0.947614i \(-0.396513\pi\)
0.319417 + 0.947614i \(0.396513\pi\)
\(150\) 0 0
\(151\) 17.3485 1.41180 0.705899 0.708312i \(-0.250543\pi\)
0.705899 + 0.708312i \(0.250543\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0.449490 0.0361039
\(156\) 0 0
\(157\) 10.0000 0.798087 0.399043 0.916932i \(-0.369342\pi\)
0.399043 + 0.916932i \(0.369342\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −3.10102 −0.244395
\(162\) 0 0
\(163\) 18.8990 1.48028 0.740141 0.672452i \(-0.234759\pi\)
0.740141 + 0.672452i \(0.234759\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 18.0000 1.39288 0.696441 0.717614i \(-0.254766\pi\)
0.696441 + 0.717614i \(0.254766\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2.89898 0.220405 0.110203 0.993909i \(-0.464850\pi\)
0.110203 + 0.993909i \(0.464850\pi\)
\(174\) 0 0
\(175\) −2.00000 −0.151186
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 8.00000 0.597948 0.298974 0.954261i \(-0.403356\pi\)
0.298974 + 0.954261i \(0.403356\pi\)
\(180\) 0 0
\(181\) −13.7980 −1.02559 −0.512797 0.858510i \(-0.671391\pi\)
−0.512797 + 0.858510i \(0.671391\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 4.89898 0.360180
\(186\) 0 0
\(187\) 1.30306 0.0952893
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 17.7980 1.28782 0.643908 0.765103i \(-0.277312\pi\)
0.643908 + 0.765103i \(0.277312\pi\)
\(192\) 0 0
\(193\) 19.7980 1.42509 0.712544 0.701627i \(-0.247543\pi\)
0.712544 + 0.701627i \(0.247543\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4.20204 0.299383 0.149692 0.988733i \(-0.452172\pi\)
0.149692 + 0.988733i \(0.452172\pi\)
\(198\) 0 0
\(199\) 13.7980 0.978111 0.489056 0.872253i \(-0.337341\pi\)
0.489056 + 0.872253i \(0.337341\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 8.00000 0.561490
\(204\) 0 0
\(205\) 1.10102 0.0768986
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.00000 0.138343
\(210\) 0 0
\(211\) 6.20204 0.426966 0.213483 0.976947i \(-0.431519\pi\)
0.213483 + 0.976947i \(0.431519\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −3.34847 −0.228364
\(216\) 0 0
\(217\) 0.898979 0.0610267
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −2.89898 −0.195006
\(222\) 0 0
\(223\) −21.5959 −1.44617 −0.723085 0.690759i \(-0.757276\pi\)
−0.723085 + 0.690759i \(0.757276\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 13.1010 0.869545 0.434773 0.900540i \(-0.356829\pi\)
0.434773 + 0.900540i \(0.356829\pi\)
\(228\) 0 0
\(229\) −9.10102 −0.601412 −0.300706 0.953717i \(-0.597222\pi\)
−0.300706 + 0.953717i \(0.597222\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −13.5959 −0.890698 −0.445349 0.895357i \(-0.646920\pi\)
−0.445349 + 0.895357i \(0.646920\pi\)
\(234\) 0 0
\(235\) 2.00000 0.130466
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 23.1464 1.49722 0.748609 0.663012i \(-0.230722\pi\)
0.748609 + 0.663012i \(0.230722\pi\)
\(240\) 0 0
\(241\) 28.6969 1.84853 0.924266 0.381749i \(-0.124678\pi\)
0.924266 + 0.381749i \(0.124678\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 3.00000 0.191663
\(246\) 0 0
\(247\) −4.44949 −0.283114
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 14.6969 0.927663 0.463831 0.885924i \(-0.346474\pi\)
0.463831 + 0.885924i \(0.346474\pi\)
\(252\) 0 0
\(253\) 0.696938 0.0438161
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −15.7980 −0.985450 −0.492725 0.870185i \(-0.663999\pi\)
−0.492725 + 0.870185i \(0.663999\pi\)
\(258\) 0 0
\(259\) 9.79796 0.608816
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 21.5505 1.32886 0.664431 0.747350i \(-0.268674\pi\)
0.664431 + 0.747350i \(0.268674\pi\)
\(264\) 0 0
\(265\) 10.8990 0.669519
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −26.0000 −1.58525 −0.792624 0.609711i \(-0.791286\pi\)
−0.792624 + 0.609711i \(0.791286\pi\)
\(270\) 0 0
\(271\) −8.44949 −0.513270 −0.256635 0.966508i \(-0.582614\pi\)
−0.256635 + 0.966508i \(0.582614\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.449490 0.0271053
\(276\) 0 0
\(277\) 26.4949 1.59192 0.795962 0.605347i \(-0.206965\pi\)
0.795962 + 0.605347i \(0.206965\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −2.89898 −0.172939 −0.0864693 0.996255i \(-0.527558\pi\)
−0.0864693 + 0.996255i \(0.527558\pi\)
\(282\) 0 0
\(283\) 1.55051 0.0921683 0.0460841 0.998938i \(-0.485326\pi\)
0.0460841 + 0.998938i \(0.485326\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2.20204 0.129982
\(288\) 0 0
\(289\) −8.59592 −0.505642
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 20.4949 1.19732 0.598662 0.801001i \(-0.295699\pi\)
0.598662 + 0.801001i \(0.295699\pi\)
\(294\) 0 0
\(295\) 5.34847 0.311400
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1.55051 −0.0896683
\(300\) 0 0
\(301\) −6.69694 −0.386005
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −13.7980 −0.790069
\(306\) 0 0
\(307\) 11.7980 0.673345 0.336673 0.941622i \(-0.390698\pi\)
0.336673 + 0.941622i \(0.390698\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 12.8990 0.731434 0.365717 0.930726i \(-0.380824\pi\)
0.365717 + 0.930726i \(0.380824\pi\)
\(312\) 0 0
\(313\) 26.4949 1.49758 0.748790 0.662807i \(-0.230635\pi\)
0.748790 + 0.662807i \(0.230635\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.69694 0.151475 0.0757376 0.997128i \(-0.475869\pi\)
0.0757376 + 0.997128i \(0.475869\pi\)
\(318\) 0 0
\(319\) −1.79796 −0.100666
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 12.8990 0.717718
\(324\) 0 0
\(325\) −1.00000 −0.0554700
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 4.00000 0.220527
\(330\) 0 0
\(331\) 8.44949 0.464426 0.232213 0.972665i \(-0.425403\pi\)
0.232213 + 0.972665i \(0.425403\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −14.8990 −0.814018
\(336\) 0 0
\(337\) 12.6969 0.691646 0.345823 0.938300i \(-0.387600\pi\)
0.345823 + 0.938300i \(0.387600\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −0.202041 −0.0109411
\(342\) 0 0
\(343\) 20.0000 1.07990
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −4.24745 −0.228015 −0.114007 0.993480i \(-0.536369\pi\)
−0.114007 + 0.993480i \(0.536369\pi\)
\(348\) 0 0
\(349\) −8.69694 −0.465536 −0.232768 0.972532i \(-0.574778\pi\)
−0.232768 + 0.972532i \(0.574778\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −20.4949 −1.09083 −0.545417 0.838165i \(-0.683629\pi\)
−0.545417 + 0.838165i \(0.683629\pi\)
\(354\) 0 0
\(355\) 8.44949 0.448452
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −30.2474 −1.59640 −0.798200 0.602393i \(-0.794214\pi\)
−0.798200 + 0.602393i \(0.794214\pi\)
\(360\) 0 0
\(361\) 0.797959 0.0419978
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −14.6969 −0.769273
\(366\) 0 0
\(367\) 18.9444 0.988889 0.494444 0.869209i \(-0.335372\pi\)
0.494444 + 0.869209i \(0.335372\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 21.7980 1.13169
\(372\) 0 0
\(373\) −9.59592 −0.496858 −0.248429 0.968650i \(-0.579914\pi\)
−0.248429 + 0.968650i \(0.579914\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 4.00000 0.206010
\(378\) 0 0
\(379\) 11.5505 0.593310 0.296655 0.954985i \(-0.404129\pi\)
0.296655 + 0.954985i \(0.404129\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 13.5959 0.694719 0.347359 0.937732i \(-0.387078\pi\)
0.347359 + 0.937732i \(0.387078\pi\)
\(384\) 0 0
\(385\) 0.898979 0.0458162
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 37.5959 1.90619 0.953094 0.302673i \(-0.0978791\pi\)
0.953094 + 0.302673i \(0.0978791\pi\)
\(390\) 0 0
\(391\) 4.49490 0.227317
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −4.89898 −0.246494
\(396\) 0 0
\(397\) 1.30306 0.0653988 0.0326994 0.999465i \(-0.489590\pi\)
0.0326994 + 0.999465i \(0.489590\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −6.00000 −0.299626 −0.149813 0.988714i \(-0.547867\pi\)
−0.149813 + 0.988714i \(0.547867\pi\)
\(402\) 0 0
\(403\) 0.449490 0.0223907
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −2.20204 −0.109151
\(408\) 0 0
\(409\) 2.89898 0.143345 0.0716727 0.997428i \(-0.477166\pi\)
0.0716727 + 0.997428i \(0.477166\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 10.6969 0.526362
\(414\) 0 0
\(415\) −2.00000 −0.0981761
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 9.30306 0.454484 0.227242 0.973838i \(-0.427029\pi\)
0.227242 + 0.973838i \(0.427029\pi\)
\(420\) 0 0
\(421\) 15.7980 0.769945 0.384973 0.922928i \(-0.374211\pi\)
0.384973 + 0.922928i \(0.374211\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2.89898 0.140621
\(426\) 0 0
\(427\) −27.5959 −1.33546
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 12.0454 0.580207 0.290103 0.956995i \(-0.406310\pi\)
0.290103 + 0.956995i \(0.406310\pi\)
\(432\) 0 0
\(433\) −7.79796 −0.374746 −0.187373 0.982289i \(-0.559997\pi\)
−0.187373 + 0.982289i \(0.559997\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 6.89898 0.330023
\(438\) 0 0
\(439\) −1.79796 −0.0858119 −0.0429059 0.999079i \(-0.513662\pi\)
−0.0429059 + 0.999079i \(0.513662\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 22.0454 1.04741 0.523704 0.851900i \(-0.324550\pi\)
0.523704 + 0.851900i \(0.324550\pi\)
\(444\) 0 0
\(445\) 6.00000 0.284427
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −8.69694 −0.410434 −0.205217 0.978717i \(-0.565790\pi\)
−0.205217 + 0.978717i \(0.565790\pi\)
\(450\) 0 0
\(451\) −0.494897 −0.0233038
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −2.00000 −0.0937614
\(456\) 0 0
\(457\) 22.0000 1.02912 0.514558 0.857455i \(-0.327956\pi\)
0.514558 + 0.857455i \(0.327956\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 3.30306 0.153839 0.0769195 0.997037i \(-0.475492\pi\)
0.0769195 + 0.997037i \(0.475492\pi\)
\(462\) 0 0
\(463\) 13.1010 0.608856 0.304428 0.952535i \(-0.401535\pi\)
0.304428 + 0.952535i \(0.401535\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −30.9444 −1.43194 −0.715968 0.698133i \(-0.754014\pi\)
−0.715968 + 0.698133i \(0.754014\pi\)
\(468\) 0 0
\(469\) −29.7980 −1.37594
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1.50510 0.0692047
\(474\) 0 0
\(475\) 4.44949 0.204157
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 5.34847 0.244378 0.122189 0.992507i \(-0.461009\pi\)
0.122189 + 0.992507i \(0.461009\pi\)
\(480\) 0 0
\(481\) 4.89898 0.223374
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 11.7980 0.535718
\(486\) 0 0
\(487\) −2.89898 −0.131365 −0.0656826 0.997841i \(-0.520922\pi\)
−0.0656826 + 0.997841i \(0.520922\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 34.2929 1.54761 0.773807 0.633421i \(-0.218350\pi\)
0.773807 + 0.633421i \(0.218350\pi\)
\(492\) 0 0
\(493\) −11.5959 −0.522254
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 16.8990 0.758023
\(498\) 0 0
\(499\) −21.3485 −0.955689 −0.477844 0.878445i \(-0.658582\pi\)
−0.477844 + 0.878445i \(0.658582\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −26.9444 −1.20139 −0.600695 0.799478i \(-0.705110\pi\)
−0.600695 + 0.799478i \(0.705110\pi\)
\(504\) 0 0
\(505\) 3.79796 0.169007
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −26.8990 −1.19228 −0.596138 0.802882i \(-0.703299\pi\)
−0.596138 + 0.802882i \(0.703299\pi\)
\(510\) 0 0
\(511\) −29.3939 −1.30031
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −3.34847 −0.147551
\(516\) 0 0
\(517\) −0.898979 −0.0395371
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −6.20204 −0.271716 −0.135858 0.990728i \(-0.543379\pi\)
−0.135858 + 0.990728i \(0.543379\pi\)
\(522\) 0 0
\(523\) 39.3485 1.72059 0.860294 0.509798i \(-0.170280\pi\)
0.860294 + 0.509798i \(0.170280\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.30306 −0.0567623
\(528\) 0 0
\(529\) −20.5959 −0.895475
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.10102 0.0476905
\(534\) 0 0
\(535\) −12.2474 −0.529503
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −1.34847 −0.0580827
\(540\) 0 0
\(541\) 5.10102 0.219310 0.109655 0.993970i \(-0.465025\pi\)
0.109655 + 0.993970i \(0.465025\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 10.0000 0.428353
\(546\) 0 0
\(547\) −0.651531 −0.0278574 −0.0139287 0.999903i \(-0.504434\pi\)
−0.0139287 + 0.999903i \(0.504434\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −17.7980 −0.758219
\(552\) 0 0
\(553\) −9.79796 −0.416652
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.30306 0.0552125 0.0276062 0.999619i \(-0.491212\pi\)
0.0276062 + 0.999619i \(0.491212\pi\)
\(558\) 0 0
\(559\) −3.34847 −0.141625
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −7.75255 −0.326731 −0.163366 0.986566i \(-0.552235\pi\)
−0.163366 + 0.986566i \(0.552235\pi\)
\(564\) 0 0
\(565\) 10.8990 0.458524
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −10.2020 −0.427692 −0.213846 0.976867i \(-0.568599\pi\)
−0.213846 + 0.976867i \(0.568599\pi\)
\(570\) 0 0
\(571\) −28.4949 −1.19247 −0.596237 0.802808i \(-0.703338\pi\)
−0.596237 + 0.802808i \(0.703338\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1.55051 0.0646607
\(576\) 0 0
\(577\) 27.1010 1.12823 0.564115 0.825696i \(-0.309217\pi\)
0.564115 + 0.825696i \(0.309217\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −4.00000 −0.165948
\(582\) 0 0
\(583\) −4.89898 −0.202895
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −10.8990 −0.449849 −0.224925 0.974376i \(-0.572214\pi\)
−0.224925 + 0.974376i \(0.572214\pi\)
\(588\) 0 0
\(589\) −2.00000 −0.0824086
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −6.00000 −0.246390 −0.123195 0.992382i \(-0.539314\pi\)
−0.123195 + 0.992382i \(0.539314\pi\)
\(594\) 0 0
\(595\) 5.79796 0.237693
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −28.8990 −1.18078 −0.590390 0.807118i \(-0.701026\pi\)
−0.590390 + 0.807118i \(0.701026\pi\)
\(600\) 0 0
\(601\) −33.5959 −1.37041 −0.685203 0.728352i \(-0.740287\pi\)
−0.685203 + 0.728352i \(0.740287\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 10.7980 0.438999
\(606\) 0 0
\(607\) −21.5505 −0.874708 −0.437354 0.899289i \(-0.644084\pi\)
−0.437354 + 0.899289i \(0.644084\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2.00000 0.0809113
\(612\) 0 0
\(613\) 45.1918 1.82528 0.912641 0.408763i \(-0.134040\pi\)
0.912641 + 0.408763i \(0.134040\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 35.3939 1.42490 0.712452 0.701721i \(-0.247585\pi\)
0.712452 + 0.701721i \(0.247585\pi\)
\(618\) 0 0
\(619\) 5.34847 0.214973 0.107487 0.994207i \(-0.465720\pi\)
0.107487 + 0.994207i \(0.465720\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 12.0000 0.480770
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −14.2020 −0.566272
\(630\) 0 0
\(631\) 16.4495 0.654844 0.327422 0.944878i \(-0.393820\pi\)
0.327422 + 0.944878i \(0.393820\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 19.3485 0.767821
\(636\) 0 0
\(637\) 3.00000 0.118864
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 35.3939 1.39797 0.698987 0.715134i \(-0.253634\pi\)
0.698987 + 0.715134i \(0.253634\pi\)
\(642\) 0 0
\(643\) 30.0000 1.18308 0.591542 0.806274i \(-0.298519\pi\)
0.591542 + 0.806274i \(0.298519\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 14.9444 0.587524 0.293762 0.955879i \(-0.405093\pi\)
0.293762 + 0.955879i \(0.405093\pi\)
\(648\) 0 0
\(649\) −2.40408 −0.0943685
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 43.7980 1.71395 0.856973 0.515361i \(-0.172342\pi\)
0.856973 + 0.515361i \(0.172342\pi\)
\(654\) 0 0
\(655\) 19.5959 0.765676
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 14.6969 0.572511 0.286256 0.958153i \(-0.407589\pi\)
0.286256 + 0.958153i \(0.407589\pi\)
\(660\) 0 0
\(661\) 39.7980 1.54796 0.773981 0.633209i \(-0.218263\pi\)
0.773981 + 0.633209i \(0.218263\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 8.89898 0.345088
\(666\) 0 0
\(667\) −6.20204 −0.240144
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 6.20204 0.239427
\(672\) 0 0
\(673\) −1.10102 −0.0424412 −0.0212206 0.999775i \(-0.506755\pi\)
−0.0212206 + 0.999775i \(0.506755\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 40.6969 1.56411 0.782055 0.623209i \(-0.214171\pi\)
0.782055 + 0.623209i \(0.214171\pi\)
\(678\) 0 0
\(679\) 23.5959 0.905528
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −42.4949 −1.62602 −0.813011 0.582248i \(-0.802173\pi\)
−0.813011 + 0.582248i \(0.802173\pi\)
\(684\) 0 0
\(685\) −14.0000 −0.534913
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 10.8990 0.415218
\(690\) 0 0
\(691\) 14.6515 0.557370 0.278685 0.960382i \(-0.410101\pi\)
0.278685 + 0.960382i \(0.410101\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −7.10102 −0.269357
\(696\) 0 0
\(697\) −3.19184 −0.120899
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 37.1918 1.40472 0.702358 0.711824i \(-0.252131\pi\)
0.702358 + 0.711824i \(0.252131\pi\)
\(702\) 0 0
\(703\) −21.7980 −0.822126
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 7.59592 0.285674
\(708\) 0 0
\(709\) −32.2929 −1.21278 −0.606392 0.795166i \(-0.707384\pi\)
−0.606392 + 0.795166i \(0.707384\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −0.696938 −0.0261006
\(714\) 0 0
\(715\) 0.449490 0.0168100
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −20.0000 −0.745874 −0.372937 0.927857i \(-0.621649\pi\)
−0.372937 + 0.927857i \(0.621649\pi\)
\(720\) 0 0
\(721\) −6.69694 −0.249407
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −4.00000 −0.148556
\(726\) 0 0
\(727\) −18.0454 −0.669267 −0.334634 0.942348i \(-0.608613\pi\)
−0.334634 + 0.942348i \(0.608613\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 9.70714 0.359032
\(732\) 0 0
\(733\) −6.00000 −0.221615 −0.110808 0.993842i \(-0.535344\pi\)
−0.110808 + 0.993842i \(0.535344\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 6.69694 0.246685
\(738\) 0 0
\(739\) 6.24745 0.229816 0.114908 0.993376i \(-0.463343\pi\)
0.114908 + 0.993376i \(0.463343\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −35.3939 −1.29848 −0.649238 0.760586i \(-0.724912\pi\)
−0.649238 + 0.760586i \(0.724912\pi\)
\(744\) 0 0
\(745\) −7.79796 −0.285695
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −24.4949 −0.895024
\(750\) 0 0
\(751\) −31.1010 −1.13489 −0.567446 0.823410i \(-0.692069\pi\)
−0.567446 + 0.823410i \(0.692069\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −17.3485 −0.631375
\(756\) 0 0
\(757\) 26.4949 0.962973 0.481487 0.876453i \(-0.340097\pi\)
0.481487 + 0.876453i \(0.340097\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 10.4041 0.377148 0.188574 0.982059i \(-0.439614\pi\)
0.188574 + 0.982059i \(0.439614\pi\)
\(762\) 0 0
\(763\) 20.0000 0.724049
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 5.34847 0.193122
\(768\) 0 0
\(769\) 39.3939 1.42058 0.710290 0.703909i \(-0.248564\pi\)
0.710290 + 0.703909i \(0.248564\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −44.0908 −1.58584 −0.792918 0.609328i \(-0.791439\pi\)
−0.792918 + 0.609328i \(0.791439\pi\)
\(774\) 0 0
\(775\) −0.449490 −0.0161461
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −4.89898 −0.175524
\(780\) 0 0
\(781\) −3.79796 −0.135902
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −10.0000 −0.356915
\(786\) 0 0
\(787\) −38.0000 −1.35455 −0.677277 0.735728i \(-0.736840\pi\)
−0.677277 + 0.735728i \(0.736840\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 21.7980 0.775046
\(792\) 0 0
\(793\) −13.7980 −0.489980
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −27.7980 −0.984654 −0.492327 0.870410i \(-0.663854\pi\)
−0.492327 + 0.870410i \(0.663854\pi\)
\(798\) 0 0
\(799\) −5.79796 −0.205117
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 6.60612 0.233125
\(804\) 0 0
\(805\) 3.10102 0.109297
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −12.0000 −0.421898 −0.210949 0.977497i \(-0.567655\pi\)
−0.210949 + 0.977497i \(0.567655\pi\)
\(810\) 0 0
\(811\) 53.8434 1.89070 0.945348 0.326063i \(-0.105722\pi\)
0.945348 + 0.326063i \(0.105722\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −18.8990 −0.662002
\(816\) 0 0
\(817\) 14.8990 0.521249
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 53.1918 1.85641 0.928204 0.372072i \(-0.121352\pi\)
0.928204 + 0.372072i \(0.121352\pi\)
\(822\) 0 0
\(823\) −30.4495 −1.06140 −0.530701 0.847559i \(-0.678071\pi\)
−0.530701 + 0.847559i \(0.678071\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 57.1918 1.98875 0.994377 0.105893i \(-0.0337702\pi\)
0.994377 + 0.105893i \(0.0337702\pi\)
\(828\) 0 0
\(829\) −20.0000 −0.694629 −0.347314 0.937749i \(-0.612906\pi\)
−0.347314 + 0.937749i \(0.612906\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −8.69694 −0.301331
\(834\) 0 0
\(835\) −18.0000 −0.622916
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −19.5505 −0.674959 −0.337479 0.941333i \(-0.609574\pi\)
−0.337479 + 0.941333i \(0.609574\pi\)
\(840\) 0 0
\(841\) −13.0000 −0.448276
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −1.00000 −0.0344010
\(846\) 0 0
\(847\) 21.5959 0.742045
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −7.59592 −0.260385
\(852\) 0 0
\(853\) −18.6969 −0.640171 −0.320085 0.947389i \(-0.603712\pi\)
−0.320085 + 0.947389i \(0.603712\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −35.3939 −1.20903 −0.604516 0.796593i \(-0.706633\pi\)
−0.604516 + 0.796593i \(0.706633\pi\)
\(858\) 0 0
\(859\) 30.6969 1.04737 0.523683 0.851913i \(-0.324558\pi\)
0.523683 + 0.851913i \(0.324558\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 23.3939 0.796337 0.398168 0.917312i \(-0.369646\pi\)
0.398168 + 0.917312i \(0.369646\pi\)
\(864\) 0 0
\(865\) −2.89898 −0.0985683
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 2.20204 0.0746991
\(870\) 0 0
\(871\) −14.8990 −0.504833
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 2.00000 0.0676123
\(876\) 0 0
\(877\) 17.5959 0.594172 0.297086 0.954851i \(-0.403985\pi\)
0.297086 + 0.954851i \(0.403985\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −9.79796 −0.330102 −0.165051 0.986285i \(-0.552779\pi\)
−0.165051 + 0.986285i \(0.552779\pi\)
\(882\) 0 0
\(883\) 11.3485 0.381906 0.190953 0.981599i \(-0.438842\pi\)
0.190953 + 0.981599i \(0.438842\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 4.24745 0.142615 0.0713077 0.997454i \(-0.477283\pi\)
0.0713077 + 0.997454i \(0.477283\pi\)
\(888\) 0 0
\(889\) 38.6969 1.29785
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −8.89898 −0.297793
\(894\) 0 0
\(895\) −8.00000 −0.267411
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1.79796 0.0599653
\(900\) 0 0
\(901\) −31.5959 −1.05261
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 13.7980 0.458660
\(906\) 0 0
\(907\) −43.8434 −1.45580 −0.727898 0.685686i \(-0.759502\pi\)
−0.727898 + 0.685686i \(0.759502\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −49.3939 −1.63649 −0.818246 0.574868i \(-0.805053\pi\)
−0.818246 + 0.574868i \(0.805053\pi\)
\(912\) 0 0
\(913\) 0.898979 0.0297519
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 39.1918 1.29423
\(918\) 0 0
\(919\) 11.1010 0.366189 0.183094 0.983095i \(-0.441389\pi\)
0.183094 + 0.983095i \(0.441389\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 8.44949 0.278118
\(924\) 0 0
\(925\) −4.89898 −0.161077
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −24.6969 −0.810280 −0.405140 0.914255i \(-0.632777\pi\)
−0.405140 + 0.914255i \(0.632777\pi\)
\(930\) 0 0
\(931\) −13.3485 −0.437478
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −1.30306 −0.0426147
\(936\) 0 0
\(937\) −19.3939 −0.633570 −0.316785 0.948497i \(-0.602603\pi\)
−0.316785 + 0.948497i \(0.602603\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 23.3031 0.759658 0.379829 0.925057i \(-0.375983\pi\)
0.379829 + 0.925057i \(0.375983\pi\)
\(942\) 0 0
\(943\) −1.70714 −0.0555922
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −47.7980 −1.55322 −0.776612 0.629979i \(-0.783064\pi\)
−0.776612 + 0.629979i \(0.783064\pi\)
\(948\) 0 0
\(949\) −14.6969 −0.477083
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 57.1918 1.85263 0.926313 0.376756i \(-0.122960\pi\)
0.926313 + 0.376756i \(0.122960\pi\)
\(954\) 0 0
\(955\) −17.7980 −0.575928
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −28.0000 −0.904167
\(960\) 0 0
\(961\) −30.7980 −0.993483
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −19.7980 −0.637319
\(966\) 0 0
\(967\) −25.1010 −0.807194 −0.403597 0.914937i \(-0.632240\pi\)
−0.403597 + 0.914937i \(0.632240\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 27.5959 0.885595 0.442798 0.896622i \(-0.353986\pi\)
0.442798 + 0.896622i \(0.353986\pi\)
\(972\) 0 0
\(973\) −14.2020 −0.455297
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.30306 0.0416886 0.0208443 0.999783i \(-0.493365\pi\)
0.0208443 + 0.999783i \(0.493365\pi\)
\(978\) 0 0
\(979\) −2.69694 −0.0861945
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 58.8990 1.87859 0.939293 0.343117i \(-0.111483\pi\)
0.939293 + 0.343117i \(0.111483\pi\)
\(984\) 0 0
\(985\) −4.20204 −0.133888
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 5.19184 0.165091
\(990\) 0 0
\(991\) 30.2020 0.959399 0.479700 0.877433i \(-0.340746\pi\)
0.479700 + 0.877433i \(0.340746\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −13.7980 −0.437425
\(996\) 0 0
\(997\) 25.1010 0.794957 0.397479 0.917611i \(-0.369885\pi\)
0.397479 + 0.917611i \(0.369885\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9360.2.a.cc.1.2 2
3.2 odd 2 1040.2.a.k.1.1 2
4.3 odd 2 4680.2.a.z.1.1 2
12.11 even 2 520.2.a.f.1.2 2
15.14 odd 2 5200.2.a.bv.1.2 2
24.5 odd 2 4160.2.a.ba.1.2 2
24.11 even 2 4160.2.a.bg.1.1 2
60.23 odd 4 2600.2.d.h.1249.3 4
60.47 odd 4 2600.2.d.h.1249.2 4
60.59 even 2 2600.2.a.q.1.1 2
156.155 even 2 6760.2.a.s.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
520.2.a.f.1.2 2 12.11 even 2
1040.2.a.k.1.1 2 3.2 odd 2
2600.2.a.q.1.1 2 60.59 even 2
2600.2.d.h.1249.2 4 60.47 odd 4
2600.2.d.h.1249.3 4 60.23 odd 4
4160.2.a.ba.1.2 2 24.5 odd 2
4160.2.a.bg.1.1 2 24.11 even 2
4680.2.a.z.1.1 2 4.3 odd 2
5200.2.a.bv.1.2 2 15.14 odd 2
6760.2.a.s.1.2 2 156.155 even 2
9360.2.a.cc.1.2 2 1.1 even 1 trivial