Properties

Label 9360.2.a.cr.1.2
Level $9360$
Weight $2$
Character 9360.1
Self dual yes
Analytic conductor $74.740$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9360,2,Mod(1,9360)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9360, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9360.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9360 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9360.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(74.7399762919\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 520)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.73205\) of defining polynomial
Character \(\chi\) \(=\) 9360.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{5} +3.46410 q^{7} -0.732051 q^{11} +1.00000 q^{13} -0.535898 q^{17} -0.732051 q^{19} +2.73205 q^{23} +1.00000 q^{25} -2.53590 q^{29} -10.1962 q^{31} +3.46410 q^{35} -7.46410 q^{41} +10.7321 q^{43} +11.4641 q^{47} +5.00000 q^{49} +7.46410 q^{53} -0.732051 q^{55} -11.6603 q^{59} +8.39230 q^{61} +1.00000 q^{65} -0.928203 q^{67} +12.7321 q^{71} +10.9282 q^{73} -2.53590 q^{77} +13.4641 q^{79} +10.3923 q^{83} -0.535898 q^{85} -0.928203 q^{89} +3.46410 q^{91} -0.732051 q^{95} -11.8564 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{5} + 2 q^{11} + 2 q^{13} - 8 q^{17} + 2 q^{19} + 2 q^{23} + 2 q^{25} - 12 q^{29} - 10 q^{31} - 8 q^{41} + 18 q^{43} + 16 q^{47} + 10 q^{49} + 8 q^{53} + 2 q^{55} - 6 q^{59} - 4 q^{61} + 2 q^{65}+ \cdots + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 3.46410 1.30931 0.654654 0.755929i \(-0.272814\pi\)
0.654654 + 0.755929i \(0.272814\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.732051 −0.220722 −0.110361 0.993892i \(-0.535201\pi\)
−0.110361 + 0.993892i \(0.535201\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.535898 −0.129974 −0.0649872 0.997886i \(-0.520701\pi\)
−0.0649872 + 0.997886i \(0.520701\pi\)
\(18\) 0 0
\(19\) −0.732051 −0.167944 −0.0839720 0.996468i \(-0.526761\pi\)
−0.0839720 + 0.996468i \(0.526761\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.73205 0.569672 0.284836 0.958576i \(-0.408061\pi\)
0.284836 + 0.958576i \(0.408061\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.53590 −0.470905 −0.235452 0.971886i \(-0.575657\pi\)
−0.235452 + 0.971886i \(0.575657\pi\)
\(30\) 0 0
\(31\) −10.1962 −1.83128 −0.915642 0.401996i \(-0.868317\pi\)
−0.915642 + 0.401996i \(0.868317\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 3.46410 0.585540
\(36\) 0 0
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −7.46410 −1.16570 −0.582848 0.812581i \(-0.698062\pi\)
−0.582848 + 0.812581i \(0.698062\pi\)
\(42\) 0 0
\(43\) 10.7321 1.63662 0.818311 0.574775i \(-0.194911\pi\)
0.818311 + 0.574775i \(0.194911\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 11.4641 1.67221 0.836106 0.548569i \(-0.184827\pi\)
0.836106 + 0.548569i \(0.184827\pi\)
\(48\) 0 0
\(49\) 5.00000 0.714286
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 7.46410 1.02527 0.512637 0.858606i \(-0.328669\pi\)
0.512637 + 0.858606i \(0.328669\pi\)
\(54\) 0 0
\(55\) −0.732051 −0.0987097
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −11.6603 −1.51804 −0.759018 0.651070i \(-0.774321\pi\)
−0.759018 + 0.651070i \(0.774321\pi\)
\(60\) 0 0
\(61\) 8.39230 1.07452 0.537262 0.843415i \(-0.319459\pi\)
0.537262 + 0.843415i \(0.319459\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.00000 0.124035
\(66\) 0 0
\(67\) −0.928203 −0.113398 −0.0566990 0.998391i \(-0.518058\pi\)
−0.0566990 + 0.998391i \(0.518058\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 12.7321 1.51102 0.755508 0.655139i \(-0.227390\pi\)
0.755508 + 0.655139i \(0.227390\pi\)
\(72\) 0 0
\(73\) 10.9282 1.27905 0.639525 0.768771i \(-0.279131\pi\)
0.639525 + 0.768771i \(0.279131\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.53590 −0.288992
\(78\) 0 0
\(79\) 13.4641 1.51483 0.757415 0.652934i \(-0.226462\pi\)
0.757415 + 0.652934i \(0.226462\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 10.3923 1.14070 0.570352 0.821401i \(-0.306807\pi\)
0.570352 + 0.821401i \(0.306807\pi\)
\(84\) 0 0
\(85\) −0.535898 −0.0581263
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −0.928203 −0.0983893 −0.0491947 0.998789i \(-0.515665\pi\)
−0.0491947 + 0.998789i \(0.515665\pi\)
\(90\) 0 0
\(91\) 3.46410 0.363137
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −0.732051 −0.0751068
\(96\) 0 0
\(97\) −11.8564 −1.20384 −0.601918 0.798558i \(-0.705597\pi\)
−0.601918 + 0.798558i \(0.705597\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 8.92820 0.888389 0.444195 0.895930i \(-0.353490\pi\)
0.444195 + 0.895930i \(0.353490\pi\)
\(102\) 0 0
\(103\) −4.19615 −0.413459 −0.206730 0.978398i \(-0.566282\pi\)
−0.206730 + 0.978398i \(0.566282\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 18.0526 1.74521 0.872603 0.488429i \(-0.162430\pi\)
0.872603 + 0.488429i \(0.162430\pi\)
\(108\) 0 0
\(109\) −11.8564 −1.13564 −0.567819 0.823154i \(-0.692213\pi\)
−0.567819 + 0.823154i \(0.692213\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −2.39230 −0.225049 −0.112525 0.993649i \(-0.535894\pi\)
−0.112525 + 0.993649i \(0.535894\pi\)
\(114\) 0 0
\(115\) 2.73205 0.254765
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.85641 −0.170177
\(120\) 0 0
\(121\) −10.4641 −0.951282
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 12.1962 1.08223 0.541117 0.840947i \(-0.318002\pi\)
0.541117 + 0.840947i \(0.318002\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 10.9282 0.954802 0.477401 0.878686i \(-0.341579\pi\)
0.477401 + 0.878686i \(0.341579\pi\)
\(132\) 0 0
\(133\) −2.53590 −0.219890
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.92820 0.421045 0.210522 0.977589i \(-0.432484\pi\)
0.210522 + 0.977589i \(0.432484\pi\)
\(138\) 0 0
\(139\) 6.53590 0.554368 0.277184 0.960817i \(-0.410599\pi\)
0.277184 + 0.960817i \(0.410599\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −0.732051 −0.0612172
\(144\) 0 0
\(145\) −2.53590 −0.210595
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −19.8564 −1.62670 −0.813350 0.581775i \(-0.802359\pi\)
−0.813350 + 0.581775i \(0.802359\pi\)
\(150\) 0 0
\(151\) −22.1962 −1.80630 −0.903149 0.429328i \(-0.858750\pi\)
−0.903149 + 0.429328i \(0.858750\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −10.1962 −0.818975
\(156\) 0 0
\(157\) 19.8564 1.58471 0.792357 0.610058i \(-0.208854\pi\)
0.792357 + 0.610058i \(0.208854\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 9.46410 0.745876
\(162\) 0 0
\(163\) −4.92820 −0.386007 −0.193003 0.981198i \(-0.561823\pi\)
−0.193003 + 0.981198i \(0.561823\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 13.3205 1.03077 0.515386 0.856958i \(-0.327649\pi\)
0.515386 + 0.856958i \(0.327649\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −18.3923 −1.39834 −0.699171 0.714955i \(-0.746447\pi\)
−0.699171 + 0.714955i \(0.746447\pi\)
\(174\) 0 0
\(175\) 3.46410 0.261861
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 5.85641 0.437728 0.218864 0.975755i \(-0.429765\pi\)
0.218864 + 0.975755i \(0.429765\pi\)
\(180\) 0 0
\(181\) 13.4641 1.00078 0.500389 0.865800i \(-0.333190\pi\)
0.500389 + 0.865800i \(0.333190\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0.392305 0.0286882
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 5.07180 0.366982 0.183491 0.983021i \(-0.441260\pi\)
0.183491 + 0.983021i \(0.441260\pi\)
\(192\) 0 0
\(193\) −2.00000 −0.143963 −0.0719816 0.997406i \(-0.522932\pi\)
−0.0719816 + 0.997406i \(0.522932\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4.92820 0.351120 0.175560 0.984469i \(-0.443826\pi\)
0.175560 + 0.984469i \(0.443826\pi\)
\(198\) 0 0
\(199\) −6.92820 −0.491127 −0.245564 0.969380i \(-0.578973\pi\)
−0.245564 + 0.969380i \(0.578973\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −8.78461 −0.616559
\(204\) 0 0
\(205\) −7.46410 −0.521315
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.535898 0.0370689
\(210\) 0 0
\(211\) 10.9282 0.752329 0.376164 0.926553i \(-0.377243\pi\)
0.376164 + 0.926553i \(0.377243\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 10.7321 0.731920
\(216\) 0 0
\(217\) −35.3205 −2.39771
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −0.535898 −0.0360484
\(222\) 0 0
\(223\) 9.32051 0.624147 0.312074 0.950058i \(-0.398976\pi\)
0.312074 + 0.950058i \(0.398976\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 18.0000 1.19470 0.597351 0.801980i \(-0.296220\pi\)
0.597351 + 0.801980i \(0.296220\pi\)
\(228\) 0 0
\(229\) 12.5359 0.828395 0.414198 0.910187i \(-0.364062\pi\)
0.414198 + 0.910187i \(0.364062\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −18.0000 −1.17922 −0.589610 0.807688i \(-0.700718\pi\)
−0.589610 + 0.807688i \(0.700718\pi\)
\(234\) 0 0
\(235\) 11.4641 0.747836
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 28.7321 1.85852 0.929261 0.369424i \(-0.120445\pi\)
0.929261 + 0.369424i \(0.120445\pi\)
\(240\) 0 0
\(241\) −28.2487 −1.81966 −0.909830 0.414982i \(-0.863788\pi\)
−0.909830 + 0.414982i \(0.863788\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 5.00000 0.319438
\(246\) 0 0
\(247\) −0.732051 −0.0465793
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −11.3205 −0.714544 −0.357272 0.934000i \(-0.616293\pi\)
−0.357272 + 0.934000i \(0.616293\pi\)
\(252\) 0 0
\(253\) −2.00000 −0.125739
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −6.00000 −0.374270 −0.187135 0.982334i \(-0.559920\pi\)
−0.187135 + 0.982334i \(0.559920\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 5.66025 0.349026 0.174513 0.984655i \(-0.444165\pi\)
0.174513 + 0.984655i \(0.444165\pi\)
\(264\) 0 0
\(265\) 7.46410 0.458516
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 27.8564 1.69844 0.849218 0.528043i \(-0.177074\pi\)
0.849218 + 0.528043i \(0.177074\pi\)
\(270\) 0 0
\(271\) −1.12436 −0.0682997 −0.0341499 0.999417i \(-0.510872\pi\)
−0.0341499 + 0.999417i \(0.510872\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.732051 −0.0441443
\(276\) 0 0
\(277\) 13.3205 0.800352 0.400176 0.916438i \(-0.368949\pi\)
0.400176 + 0.916438i \(0.368949\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 11.4641 0.683891 0.341945 0.939720i \(-0.388914\pi\)
0.341945 + 0.939720i \(0.388914\pi\)
\(282\) 0 0
\(283\) −14.0526 −0.835338 −0.417669 0.908599i \(-0.637153\pi\)
−0.417669 + 0.908599i \(0.637153\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −25.8564 −1.52626
\(288\) 0 0
\(289\) −16.7128 −0.983107
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 6.92820 0.404750 0.202375 0.979308i \(-0.435134\pi\)
0.202375 + 0.979308i \(0.435134\pi\)
\(294\) 0 0
\(295\) −11.6603 −0.678886
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2.73205 0.157999
\(300\) 0 0
\(301\) 37.1769 2.14284
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 8.39230 0.480542
\(306\) 0 0
\(307\) 23.4641 1.33917 0.669584 0.742737i \(-0.266473\pi\)
0.669584 + 0.742737i \(0.266473\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −3.32051 −0.188289 −0.0941444 0.995559i \(-0.530012\pi\)
−0.0941444 + 0.995559i \(0.530012\pi\)
\(312\) 0 0
\(313\) −10.3923 −0.587408 −0.293704 0.955896i \(-0.594888\pi\)
−0.293704 + 0.955896i \(0.594888\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −25.8564 −1.45224 −0.726120 0.687568i \(-0.758678\pi\)
−0.726120 + 0.687568i \(0.758678\pi\)
\(318\) 0 0
\(319\) 1.85641 0.103939
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0.392305 0.0218284
\(324\) 0 0
\(325\) 1.00000 0.0554700
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 39.7128 2.18944
\(330\) 0 0
\(331\) −22.5885 −1.24157 −0.620787 0.783979i \(-0.713187\pi\)
−0.620787 + 0.783979i \(0.713187\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −0.928203 −0.0507132
\(336\) 0 0
\(337\) 1.60770 0.0875767 0.0437884 0.999041i \(-0.486057\pi\)
0.0437884 + 0.999041i \(0.486057\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 7.46410 0.404204
\(342\) 0 0
\(343\) −6.92820 −0.374088
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −8.19615 −0.439993 −0.219996 0.975501i \(-0.570605\pi\)
−0.219996 + 0.975501i \(0.570605\pi\)
\(348\) 0 0
\(349\) 19.4641 1.04189 0.520945 0.853590i \(-0.325580\pi\)
0.520945 + 0.853590i \(0.325580\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −6.92820 −0.368751 −0.184376 0.982856i \(-0.559026\pi\)
−0.184376 + 0.982856i \(0.559026\pi\)
\(354\) 0 0
\(355\) 12.7321 0.675747
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −13.1244 −0.692677 −0.346338 0.938110i \(-0.612575\pi\)
−0.346338 + 0.938110i \(0.612575\pi\)
\(360\) 0 0
\(361\) −18.4641 −0.971795
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 10.9282 0.572008
\(366\) 0 0
\(367\) 32.5885 1.70110 0.850552 0.525891i \(-0.176268\pi\)
0.850552 + 0.525891i \(0.176268\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 25.8564 1.34240
\(372\) 0 0
\(373\) 19.8564 1.02813 0.514063 0.857753i \(-0.328140\pi\)
0.514063 + 0.857753i \(0.328140\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −2.53590 −0.130605
\(378\) 0 0
\(379\) 9.80385 0.503590 0.251795 0.967781i \(-0.418979\pi\)
0.251795 + 0.967781i \(0.418979\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −22.3923 −1.14419 −0.572097 0.820186i \(-0.693870\pi\)
−0.572097 + 0.820186i \(0.693870\pi\)
\(384\) 0 0
\(385\) −2.53590 −0.129241
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 18.0000 0.912636 0.456318 0.889817i \(-0.349168\pi\)
0.456318 + 0.889817i \(0.349168\pi\)
\(390\) 0 0
\(391\) −1.46410 −0.0740428
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 13.4641 0.677452
\(396\) 0 0
\(397\) −18.9282 −0.949979 −0.474990 0.879991i \(-0.657548\pi\)
−0.474990 + 0.879991i \(0.657548\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −30.7846 −1.53731 −0.768655 0.639664i \(-0.779074\pi\)
−0.768655 + 0.639664i \(0.779074\pi\)
\(402\) 0 0
\(403\) −10.1962 −0.507907
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −1.32051 −0.0652949 −0.0326475 0.999467i \(-0.510394\pi\)
−0.0326475 + 0.999467i \(0.510394\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −40.3923 −1.98758
\(414\) 0 0
\(415\) 10.3923 0.510138
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −18.5359 −0.905538 −0.452769 0.891628i \(-0.649564\pi\)
−0.452769 + 0.891628i \(0.649564\pi\)
\(420\) 0 0
\(421\) −32.9282 −1.60482 −0.802411 0.596772i \(-0.796450\pi\)
−0.802411 + 0.596772i \(0.796450\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.535898 −0.0259949
\(426\) 0 0
\(427\) 29.0718 1.40688
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 16.0526 0.773225 0.386612 0.922242i \(-0.373645\pi\)
0.386612 + 0.922242i \(0.373645\pi\)
\(432\) 0 0
\(433\) 28.9282 1.39020 0.695100 0.718913i \(-0.255360\pi\)
0.695100 + 0.718913i \(0.255360\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −2.00000 −0.0956730
\(438\) 0 0
\(439\) −13.8564 −0.661330 −0.330665 0.943748i \(-0.607273\pi\)
−0.330665 + 0.943748i \(0.607273\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −30.4449 −1.44648 −0.723240 0.690597i \(-0.757348\pi\)
−0.723240 + 0.690597i \(0.757348\pi\)
\(444\) 0 0
\(445\) −0.928203 −0.0440011
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −6.39230 −0.301672 −0.150836 0.988559i \(-0.548196\pi\)
−0.150836 + 0.988559i \(0.548196\pi\)
\(450\) 0 0
\(451\) 5.46410 0.257294
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 3.46410 0.162400
\(456\) 0 0
\(457\) 10.7846 0.504483 0.252241 0.967664i \(-0.418832\pi\)
0.252241 + 0.967664i \(0.418832\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −36.2487 −1.68827 −0.844135 0.536130i \(-0.819886\pi\)
−0.844135 + 0.536130i \(0.819886\pi\)
\(462\) 0 0
\(463\) −0.143594 −0.00667336 −0.00333668 0.999994i \(-0.501062\pi\)
−0.00333668 + 0.999994i \(0.501062\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −12.5885 −0.582524 −0.291262 0.956643i \(-0.594075\pi\)
−0.291262 + 0.956643i \(0.594075\pi\)
\(468\) 0 0
\(469\) −3.21539 −0.148473
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −7.85641 −0.361238
\(474\) 0 0
\(475\) −0.732051 −0.0335888
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −13.1244 −0.599667 −0.299834 0.953992i \(-0.596931\pi\)
−0.299834 + 0.953992i \(0.596931\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −11.8564 −0.538372
\(486\) 0 0
\(487\) 12.1436 0.550279 0.275139 0.961404i \(-0.411276\pi\)
0.275139 + 0.961404i \(0.411276\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −26.5359 −1.19755 −0.598774 0.800918i \(-0.704345\pi\)
−0.598774 + 0.800918i \(0.704345\pi\)
\(492\) 0 0
\(493\) 1.35898 0.0612056
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 44.1051 1.97838
\(498\) 0 0
\(499\) −13.8038 −0.617945 −0.308973 0.951071i \(-0.599985\pi\)
−0.308973 + 0.951071i \(0.599985\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −16.8756 −0.752448 −0.376224 0.926529i \(-0.622778\pi\)
−0.376224 + 0.926529i \(0.622778\pi\)
\(504\) 0 0
\(505\) 8.92820 0.397300
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −3.46410 −0.153544 −0.0767718 0.997049i \(-0.524461\pi\)
−0.0767718 + 0.997049i \(0.524461\pi\)
\(510\) 0 0
\(511\) 37.8564 1.67467
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −4.19615 −0.184905
\(516\) 0 0
\(517\) −8.39230 −0.369093
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 12.3923 0.542917 0.271458 0.962450i \(-0.412494\pi\)
0.271458 + 0.962450i \(0.412494\pi\)
\(522\) 0 0
\(523\) 27.5167 1.20322 0.601610 0.798790i \(-0.294526\pi\)
0.601610 + 0.798790i \(0.294526\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 5.46410 0.238020
\(528\) 0 0
\(529\) −15.5359 −0.675474
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −7.46410 −0.323306
\(534\) 0 0
\(535\) 18.0526 0.780480
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −3.66025 −0.157658
\(540\) 0 0
\(541\) 17.6077 0.757014 0.378507 0.925598i \(-0.376438\pi\)
0.378507 + 0.925598i \(0.376438\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −11.8564 −0.507873
\(546\) 0 0
\(547\) 25.6603 1.09715 0.548577 0.836100i \(-0.315170\pi\)
0.548577 + 0.836100i \(0.315170\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1.85641 0.0790856
\(552\) 0 0
\(553\) 46.6410 1.98338
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 5.85641 0.248144 0.124072 0.992273i \(-0.460405\pi\)
0.124072 + 0.992273i \(0.460405\pi\)
\(558\) 0 0
\(559\) 10.7321 0.453917
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 37.2679 1.57066 0.785328 0.619079i \(-0.212494\pi\)
0.785328 + 0.619079i \(0.212494\pi\)
\(564\) 0 0
\(565\) −2.39230 −0.100645
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 10.5359 0.441688 0.220844 0.975309i \(-0.429119\pi\)
0.220844 + 0.975309i \(0.429119\pi\)
\(570\) 0 0
\(571\) −7.32051 −0.306354 −0.153177 0.988199i \(-0.548950\pi\)
−0.153177 + 0.988199i \(0.548950\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2.73205 0.113934
\(576\) 0 0
\(577\) 38.6410 1.60865 0.804323 0.594192i \(-0.202528\pi\)
0.804323 + 0.594192i \(0.202528\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 36.0000 1.49353
\(582\) 0 0
\(583\) −5.46410 −0.226300
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 42.7846 1.76591 0.882955 0.469458i \(-0.155551\pi\)
0.882955 + 0.469458i \(0.155551\pi\)
\(588\) 0 0
\(589\) 7.46410 0.307553
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 28.6410 1.17615 0.588073 0.808808i \(-0.299887\pi\)
0.588073 + 0.808808i \(0.299887\pi\)
\(594\) 0 0
\(595\) −1.85641 −0.0761052
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −26.5359 −1.08423 −0.542114 0.840305i \(-0.682376\pi\)
−0.542114 + 0.840305i \(0.682376\pi\)
\(600\) 0 0
\(601\) 23.8564 0.973123 0.486562 0.873646i \(-0.338251\pi\)
0.486562 + 0.873646i \(0.338251\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −10.4641 −0.425426
\(606\) 0 0
\(607\) −31.5167 −1.27922 −0.639611 0.768699i \(-0.720905\pi\)
−0.639611 + 0.768699i \(0.720905\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 11.4641 0.463788
\(612\) 0 0
\(613\) −27.8564 −1.12511 −0.562555 0.826760i \(-0.690181\pi\)
−0.562555 + 0.826760i \(0.690181\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −9.71281 −0.391023 −0.195512 0.980701i \(-0.562637\pi\)
−0.195512 + 0.980701i \(0.562637\pi\)
\(618\) 0 0
\(619\) 35.6603 1.43331 0.716653 0.697430i \(-0.245673\pi\)
0.716653 + 0.697430i \(0.245673\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −3.21539 −0.128822
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 18.1962 0.724377 0.362189 0.932105i \(-0.382030\pi\)
0.362189 + 0.932105i \(0.382030\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 12.1962 0.483990
\(636\) 0 0
\(637\) 5.00000 0.198107
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −12.9282 −0.510633 −0.255317 0.966857i \(-0.582180\pi\)
−0.255317 + 0.966857i \(0.582180\pi\)
\(642\) 0 0
\(643\) 30.3923 1.19856 0.599278 0.800541i \(-0.295455\pi\)
0.599278 + 0.800541i \(0.295455\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 17.6603 0.694296 0.347148 0.937810i \(-0.387150\pi\)
0.347148 + 0.937810i \(0.387150\pi\)
\(648\) 0 0
\(649\) 8.53590 0.335063
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −21.7128 −0.849688 −0.424844 0.905267i \(-0.639671\pi\)
−0.424844 + 0.905267i \(0.639671\pi\)
\(654\) 0 0
\(655\) 10.9282 0.427000
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 4.67949 0.182287 0.0911436 0.995838i \(-0.470948\pi\)
0.0911436 + 0.995838i \(0.470948\pi\)
\(660\) 0 0
\(661\) 7.07180 0.275061 0.137531 0.990498i \(-0.456083\pi\)
0.137531 + 0.990498i \(0.456083\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −2.53590 −0.0983379
\(666\) 0 0
\(667\) −6.92820 −0.268261
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −6.14359 −0.237171
\(672\) 0 0
\(673\) 35.4641 1.36704 0.683520 0.729931i \(-0.260448\pi\)
0.683520 + 0.729931i \(0.260448\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −30.3923 −1.16807 −0.584036 0.811728i \(-0.698527\pi\)
−0.584036 + 0.811728i \(0.698527\pi\)
\(678\) 0 0
\(679\) −41.0718 −1.57619
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 11.0718 0.423651 0.211825 0.977308i \(-0.432059\pi\)
0.211825 + 0.977308i \(0.432059\pi\)
\(684\) 0 0
\(685\) 4.92820 0.188297
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 7.46410 0.284360
\(690\) 0 0
\(691\) 21.9090 0.833456 0.416728 0.909031i \(-0.363177\pi\)
0.416728 + 0.909031i \(0.363177\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 6.53590 0.247921
\(696\) 0 0
\(697\) 4.00000 0.151511
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 25.7128 0.971160 0.485580 0.874192i \(-0.338609\pi\)
0.485580 + 0.874192i \(0.338609\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 30.9282 1.16317
\(708\) 0 0
\(709\) 26.3923 0.991184 0.495592 0.868556i \(-0.334951\pi\)
0.495592 + 0.868556i \(0.334951\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −27.8564 −1.04323
\(714\) 0 0
\(715\) −0.732051 −0.0273771
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 34.6410 1.29189 0.645946 0.763383i \(-0.276463\pi\)
0.645946 + 0.763383i \(0.276463\pi\)
\(720\) 0 0
\(721\) −14.5359 −0.541345
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −2.53590 −0.0941809
\(726\) 0 0
\(727\) −16.9808 −0.629782 −0.314891 0.949128i \(-0.601968\pi\)
−0.314891 + 0.949128i \(0.601968\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −5.75129 −0.212719
\(732\) 0 0
\(733\) 11.8564 0.437926 0.218963 0.975733i \(-0.429733\pi\)
0.218963 + 0.975733i \(0.429733\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0.679492 0.0250294
\(738\) 0 0
\(739\) −4.73205 −0.174071 −0.0870357 0.996205i \(-0.527739\pi\)
−0.0870357 + 0.996205i \(0.527739\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −9.32051 −0.341936 −0.170968 0.985277i \(-0.554690\pi\)
−0.170968 + 0.985277i \(0.554690\pi\)
\(744\) 0 0
\(745\) −19.8564 −0.727482
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 62.5359 2.28501
\(750\) 0 0
\(751\) −38.5359 −1.40619 −0.703097 0.711094i \(-0.748200\pi\)
−0.703097 + 0.711094i \(0.748200\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −22.1962 −0.807801
\(756\) 0 0
\(757\) −16.5359 −0.601007 −0.300504 0.953781i \(-0.597155\pi\)
−0.300504 + 0.953781i \(0.597155\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 14.0000 0.507500 0.253750 0.967270i \(-0.418336\pi\)
0.253750 + 0.967270i \(0.418336\pi\)
\(762\) 0 0
\(763\) −41.0718 −1.48690
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −11.6603 −0.421027
\(768\) 0 0
\(769\) 28.9282 1.04318 0.521589 0.853197i \(-0.325340\pi\)
0.521589 + 0.853197i \(0.325340\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −18.9282 −0.680800 −0.340400 0.940281i \(-0.610563\pi\)
−0.340400 + 0.940281i \(0.610563\pi\)
\(774\) 0 0
\(775\) −10.1962 −0.366257
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 5.46410 0.195772
\(780\) 0 0
\(781\) −9.32051 −0.333514
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 19.8564 0.708706
\(786\) 0 0
\(787\) 2.39230 0.0852765 0.0426382 0.999091i \(-0.486424\pi\)
0.0426382 + 0.999091i \(0.486424\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −8.28719 −0.294658
\(792\) 0 0
\(793\) 8.39230 0.298019
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −5.21539 −0.184739 −0.0923693 0.995725i \(-0.529444\pi\)
−0.0923693 + 0.995725i \(0.529444\pi\)
\(798\) 0 0
\(799\) −6.14359 −0.217345
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −8.00000 −0.282314
\(804\) 0 0
\(805\) 9.46410 0.333566
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −43.3205 −1.52307 −0.761534 0.648125i \(-0.775553\pi\)
−0.761534 + 0.648125i \(0.775553\pi\)
\(810\) 0 0
\(811\) 29.9090 1.05025 0.525123 0.851026i \(-0.324019\pi\)
0.525123 + 0.851026i \(0.324019\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −4.92820 −0.172627
\(816\) 0 0
\(817\) −7.85641 −0.274861
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −0.928203 −0.0323945 −0.0161973 0.999869i \(-0.505156\pi\)
−0.0161973 + 0.999869i \(0.505156\pi\)
\(822\) 0 0
\(823\) 4.58846 0.159944 0.0799718 0.996797i \(-0.474517\pi\)
0.0799718 + 0.996797i \(0.474517\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −3.46410 −0.120459 −0.0602293 0.998185i \(-0.519183\pi\)
−0.0602293 + 0.998185i \(0.519183\pi\)
\(828\) 0 0
\(829\) 23.6077 0.819929 0.409965 0.912101i \(-0.365541\pi\)
0.409965 + 0.912101i \(0.365541\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −2.67949 −0.0928389
\(834\) 0 0
\(835\) 13.3205 0.460975
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −24.4449 −0.843930 −0.421965 0.906612i \(-0.638660\pi\)
−0.421965 + 0.906612i \(0.638660\pi\)
\(840\) 0 0
\(841\) −22.5692 −0.778249
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1.00000 0.0344010
\(846\) 0 0
\(847\) −36.2487 −1.24552
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 47.7128 1.63366 0.816828 0.576882i \(-0.195731\pi\)
0.816828 + 0.576882i \(0.195731\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 31.8564 1.08819 0.544097 0.839022i \(-0.316872\pi\)
0.544097 + 0.839022i \(0.316872\pi\)
\(858\) 0 0
\(859\) −8.39230 −0.286342 −0.143171 0.989698i \(-0.545730\pi\)
−0.143171 + 0.989698i \(0.545730\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −54.3923 −1.85154 −0.925768 0.378093i \(-0.876580\pi\)
−0.925768 + 0.378093i \(0.876580\pi\)
\(864\) 0 0
\(865\) −18.3923 −0.625357
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −9.85641 −0.334356
\(870\) 0 0
\(871\) −0.928203 −0.0314510
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 3.46410 0.117108
\(876\) 0 0
\(877\) 13.7128 0.463049 0.231524 0.972829i \(-0.425629\pi\)
0.231524 + 0.972829i \(0.425629\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1.46410 0.0493268 0.0246634 0.999696i \(-0.492149\pi\)
0.0246634 + 0.999696i \(0.492149\pi\)
\(882\) 0 0
\(883\) 8.58846 0.289025 0.144512 0.989503i \(-0.453839\pi\)
0.144512 + 0.989503i \(0.453839\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −46.4449 −1.55947 −0.779733 0.626112i \(-0.784645\pi\)
−0.779733 + 0.626112i \(0.784645\pi\)
\(888\) 0 0
\(889\) 42.2487 1.41698
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −8.39230 −0.280838
\(894\) 0 0
\(895\) 5.85641 0.195758
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 25.8564 0.862359
\(900\) 0 0
\(901\) −4.00000 −0.133259
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 13.4641 0.447562
\(906\) 0 0
\(907\) −42.8372 −1.42238 −0.711192 0.702997i \(-0.751845\pi\)
−0.711192 + 0.702997i \(0.751845\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 20.7846 0.688625 0.344312 0.938855i \(-0.388112\pi\)
0.344312 + 0.938855i \(0.388112\pi\)
\(912\) 0 0
\(913\) −7.60770 −0.251778
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 37.8564 1.25013
\(918\) 0 0
\(919\) −4.67949 −0.154362 −0.0771811 0.997017i \(-0.524592\pi\)
−0.0771811 + 0.997017i \(0.524592\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 12.7321 0.419081
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 19.1769 0.629174 0.314587 0.949229i \(-0.398134\pi\)
0.314587 + 0.949229i \(0.398134\pi\)
\(930\) 0 0
\(931\) −3.66025 −0.119960
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0.392305 0.0128297
\(936\) 0 0
\(937\) −40.9282 −1.33707 −0.668533 0.743682i \(-0.733077\pi\)
−0.668533 + 0.743682i \(0.733077\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −1.60770 −0.0524094 −0.0262047 0.999657i \(-0.508342\pi\)
−0.0262047 + 0.999657i \(0.508342\pi\)
\(942\) 0 0
\(943\) −20.3923 −0.664065
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.60770 0.0522431 0.0261215 0.999659i \(-0.491684\pi\)
0.0261215 + 0.999659i \(0.491684\pi\)
\(948\) 0 0
\(949\) 10.9282 0.354744
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 42.7846 1.38593 0.692965 0.720971i \(-0.256304\pi\)
0.692965 + 0.720971i \(0.256304\pi\)
\(954\) 0 0
\(955\) 5.07180 0.164119
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 17.0718 0.551277
\(960\) 0 0
\(961\) 72.9615 2.35360
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −2.00000 −0.0643823
\(966\) 0 0
\(967\) 18.0000 0.578841 0.289420 0.957202i \(-0.406537\pi\)
0.289420 + 0.957202i \(0.406537\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −11.7128 −0.375882 −0.187941 0.982180i \(-0.560181\pi\)
−0.187941 + 0.982180i \(0.560181\pi\)
\(972\) 0 0
\(973\) 22.6410 0.725838
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −10.9282 −0.349624 −0.174812 0.984602i \(-0.555932\pi\)
−0.174812 + 0.984602i \(0.555932\pi\)
\(978\) 0 0
\(979\) 0.679492 0.0217167
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 11.8564 0.378161 0.189080 0.981962i \(-0.439449\pi\)
0.189080 + 0.981962i \(0.439449\pi\)
\(984\) 0 0
\(985\) 4.92820 0.157026
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 29.3205 0.932338
\(990\) 0 0
\(991\) 26.1436 0.830479 0.415239 0.909712i \(-0.363698\pi\)
0.415239 + 0.909712i \(0.363698\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −6.92820 −0.219639
\(996\) 0 0
\(997\) 25.3205 0.801909 0.400954 0.916098i \(-0.368679\pi\)
0.400954 + 0.916098i \(0.368679\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9360.2.a.cr.1.2 2
3.2 odd 2 1040.2.a.l.1.2 2
4.3 odd 2 4680.2.a.bd.1.1 2
12.11 even 2 520.2.a.e.1.1 2
15.14 odd 2 5200.2.a.bn.1.1 2
24.5 odd 2 4160.2.a.w.1.1 2
24.11 even 2 4160.2.a.bk.1.2 2
60.23 odd 4 2600.2.d.m.1249.1 4
60.47 odd 4 2600.2.d.m.1249.4 4
60.59 even 2 2600.2.a.v.1.2 2
156.155 even 2 6760.2.a.o.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
520.2.a.e.1.1 2 12.11 even 2
1040.2.a.l.1.2 2 3.2 odd 2
2600.2.a.v.1.2 2 60.59 even 2
2600.2.d.m.1249.1 4 60.23 odd 4
2600.2.d.m.1249.4 4 60.47 odd 4
4160.2.a.w.1.1 2 24.5 odd 2
4160.2.a.bk.1.2 2 24.11 even 2
4680.2.a.bd.1.1 2 4.3 odd 2
5200.2.a.bn.1.1 2 15.14 odd 2
6760.2.a.o.1.1 2 156.155 even 2
9360.2.a.cr.1.2 2 1.1 even 1 trivial