Properties

Label 9360.2.a.cu
Level 93609360
Weight 22
Character orbit 9360.a
Self dual yes
Analytic conductor 74.74074.740
Analytic rank 00
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9360,2,Mod(1,9360)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9360, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9360.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 9360=2432513 9360 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 9360.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 74.739976291974.7399762919
Analytic rank: 00
Dimension: 22
Coefficient field: Q(73)\Q(\sqrt{73})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x18 x^{2} - x - 18 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 780)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=12(1+73)\beta = \frac{1}{2}(1 + \sqrt{73}). We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+q5+βq7+βq11q13+βq176q19+(β+2)q23+q252q296q31+βq35+βq37+(β+4)q418q43+6q47++(3β4)q97+O(q100) q + q^{5} + \beta q^{7} + \beta q^{11} - q^{13} + \beta q^{17} - 6 q^{19} + (\beta + 2) q^{23} + q^{25} - 2 q^{29} - 6 q^{31} + \beta q^{35} + \beta q^{37} + (\beta + 4) q^{41} - 8 q^{43} + 6 q^{47}+ \cdots + (3 \beta - 4) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q5+q7+q112q13+q1712q19+5q23+2q254q2912q31+q35+q37+9q4116q43+12q47+23q49+q53+q55+10q59+5q97+O(q100) 2 q + 2 q^{5} + q^{7} + q^{11} - 2 q^{13} + q^{17} - 12 q^{19} + 5 q^{23} + 2 q^{25} - 4 q^{29} - 12 q^{31} + q^{35} + q^{37} + 9 q^{41} - 16 q^{43} + 12 q^{47} + 23 q^{49} + q^{53} + q^{55} + 10 q^{59}+ \cdots - 5 q^{97}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−3.77200
4.77200
0 0 0 1.00000 0 −3.77200 0 0 0
1.2 0 0 0 1.00000 0 4.77200 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 1 -1
55 1 -1
1313 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9360.2.a.cu 2
3.b odd 2 1 3120.2.a.be 2
4.b odd 2 1 2340.2.a.l 2
12.b even 2 1 780.2.a.e 2
60.h even 2 1 3900.2.a.s 2
60.l odd 4 2 3900.2.h.i 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
780.2.a.e 2 12.b even 2 1
2340.2.a.l 2 4.b odd 2 1
3120.2.a.be 2 3.b odd 2 1
3900.2.a.s 2 60.h even 2 1
3900.2.h.i 4 60.l odd 4 2
9360.2.a.cu 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(9360))S_{2}^{\mathrm{new}}(\Gamma_0(9360)):

T72T718 T_{7}^{2} - T_{7} - 18 Copy content Toggle raw display
T112T1118 T_{11}^{2} - T_{11} - 18 Copy content Toggle raw display
T172T1718 T_{17}^{2} - T_{17} - 18 Copy content Toggle raw display
T19+6 T_{19} + 6 Copy content Toggle raw display
T31+6 T_{31} + 6 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 (T1)2 (T - 1)^{2} Copy content Toggle raw display
77 T2T18 T^{2} - T - 18 Copy content Toggle raw display
1111 T2T18 T^{2} - T - 18 Copy content Toggle raw display
1313 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
1717 T2T18 T^{2} - T - 18 Copy content Toggle raw display
1919 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
2323 T25T12 T^{2} - 5T - 12 Copy content Toggle raw display
2929 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
3131 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
3737 T2T18 T^{2} - T - 18 Copy content Toggle raw display
4141 T29T+2 T^{2} - 9T + 2 Copy content Toggle raw display
4343 (T+8)2 (T + 8)^{2} Copy content Toggle raw display
4747 (T6)2 (T - 6)^{2} Copy content Toggle raw display
5353 T2T18 T^{2} - T - 18 Copy content Toggle raw display
5959 T210T48 T^{2} - 10T - 48 Copy content Toggle raw display
6161 T2+T18 T^{2} + T - 18 Copy content Toggle raw display
6767 T22T72 T^{2} - 2T - 72 Copy content Toggle raw display
7171 T25T158 T^{2} - 5T - 158 Copy content Toggle raw display
7373 (T10)2 (T - 10)^{2} Copy content Toggle raw display
7979 T2+11T+12 T^{2} + 11T + 12 Copy content Toggle raw display
8383 T2+2T72 T^{2} + 2T - 72 Copy content Toggle raw display
8989 T2+T18 T^{2} + T - 18 Copy content Toggle raw display
9797 T2+5T158 T^{2} + 5T - 158 Copy content Toggle raw display
show more
show less