Properties

Label 9408.2.a.bp.1.1
Level $9408$
Weight $2$
Character 9408.1
Self dual yes
Analytic conductor $75.123$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9408,2,Mod(1,9408)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9408, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9408.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9408 = 2^{6} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9408.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(75.1232582216\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 672)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 9408.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +4.00000 q^{5} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{3} +4.00000 q^{5} +1.00000 q^{9} +6.00000 q^{11} -5.00000 q^{13} -4.00000 q^{15} +2.00000 q^{17} +1.00000 q^{19} +6.00000 q^{23} +11.0000 q^{25} -1.00000 q^{27} +3.00000 q^{31} -6.00000 q^{33} -3.00000 q^{37} +5.00000 q^{39} -6.00000 q^{41} +5.00000 q^{43} +4.00000 q^{45} +4.00000 q^{47} -2.00000 q^{51} +6.00000 q^{53} +24.0000 q^{55} -1.00000 q^{57} -6.00000 q^{59} +2.00000 q^{61} -20.0000 q^{65} +7.00000 q^{67} -6.00000 q^{69} -16.0000 q^{71} -3.00000 q^{73} -11.0000 q^{75} -11.0000 q^{79} +1.00000 q^{81} +12.0000 q^{83} +8.00000 q^{85} +4.00000 q^{89} -3.00000 q^{93} +4.00000 q^{95} -6.00000 q^{97} +6.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 4.00000 1.78885 0.894427 0.447214i \(-0.147584\pi\)
0.894427 + 0.447214i \(0.147584\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 6.00000 1.80907 0.904534 0.426401i \(-0.140219\pi\)
0.904534 + 0.426401i \(0.140219\pi\)
\(12\) 0 0
\(13\) −5.00000 −1.38675 −0.693375 0.720577i \(-0.743877\pi\)
−0.693375 + 0.720577i \(0.743877\pi\)
\(14\) 0 0
\(15\) −4.00000 −1.03280
\(16\) 0 0
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416 0.114708 0.993399i \(-0.463407\pi\)
0.114708 + 0.993399i \(0.463407\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.00000 1.25109 0.625543 0.780189i \(-0.284877\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) 0 0
\(25\) 11.0000 2.20000
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 3.00000 0.538816 0.269408 0.963026i \(-0.413172\pi\)
0.269408 + 0.963026i \(0.413172\pi\)
\(32\) 0 0
\(33\) −6.00000 −1.04447
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −3.00000 −0.493197 −0.246598 0.969118i \(-0.579313\pi\)
−0.246598 + 0.969118i \(0.579313\pi\)
\(38\) 0 0
\(39\) 5.00000 0.800641
\(40\) 0 0
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) 5.00000 0.762493 0.381246 0.924473i \(-0.375495\pi\)
0.381246 + 0.924473i \(0.375495\pi\)
\(44\) 0 0
\(45\) 4.00000 0.596285
\(46\) 0 0
\(47\) 4.00000 0.583460 0.291730 0.956501i \(-0.405769\pi\)
0.291730 + 0.956501i \(0.405769\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −2.00000 −0.280056
\(52\) 0 0
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) 24.0000 3.23616
\(56\) 0 0
\(57\) −1.00000 −0.132453
\(58\) 0 0
\(59\) −6.00000 −0.781133 −0.390567 0.920575i \(-0.627721\pi\)
−0.390567 + 0.920575i \(0.627721\pi\)
\(60\) 0 0
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −20.0000 −2.48069
\(66\) 0 0
\(67\) 7.00000 0.855186 0.427593 0.903971i \(-0.359362\pi\)
0.427593 + 0.903971i \(0.359362\pi\)
\(68\) 0 0
\(69\) −6.00000 −0.722315
\(70\) 0 0
\(71\) −16.0000 −1.89885 −0.949425 0.313993i \(-0.898333\pi\)
−0.949425 + 0.313993i \(0.898333\pi\)
\(72\) 0 0
\(73\) −3.00000 −0.351123 −0.175562 0.984468i \(-0.556174\pi\)
−0.175562 + 0.984468i \(0.556174\pi\)
\(74\) 0 0
\(75\) −11.0000 −1.27017
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −11.0000 −1.23760 −0.618798 0.785550i \(-0.712380\pi\)
−0.618798 + 0.785550i \(0.712380\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) 0 0
\(85\) 8.00000 0.867722
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.00000 0.423999 0.212000 0.977270i \(-0.432002\pi\)
0.212000 + 0.977270i \(0.432002\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −3.00000 −0.311086
\(94\) 0 0
\(95\) 4.00000 0.410391
\(96\) 0 0
\(97\) −6.00000 −0.609208 −0.304604 0.952479i \(-0.598524\pi\)
−0.304604 + 0.952479i \(0.598524\pi\)
\(98\) 0 0
\(99\) 6.00000 0.603023
\(100\) 0 0
\(101\) −2.00000 −0.199007 −0.0995037 0.995037i \(-0.531726\pi\)
−0.0995037 + 0.995037i \(0.531726\pi\)
\(102\) 0 0
\(103\) 11.0000 1.08386 0.541931 0.840423i \(-0.317693\pi\)
0.541931 + 0.840423i \(0.317693\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 10.0000 0.966736 0.483368 0.875417i \(-0.339413\pi\)
0.483368 + 0.875417i \(0.339413\pi\)
\(108\) 0 0
\(109\) 15.0000 1.43674 0.718370 0.695662i \(-0.244889\pi\)
0.718370 + 0.695662i \(0.244889\pi\)
\(110\) 0 0
\(111\) 3.00000 0.284747
\(112\) 0 0
\(113\) −16.0000 −1.50515 −0.752577 0.658505i \(-0.771189\pi\)
−0.752577 + 0.658505i \(0.771189\pi\)
\(114\) 0 0
\(115\) 24.0000 2.23801
\(116\) 0 0
\(117\) −5.00000 −0.462250
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 25.0000 2.27273
\(122\) 0 0
\(123\) 6.00000 0.541002
\(124\) 0 0
\(125\) 24.0000 2.14663
\(126\) 0 0
\(127\) 7.00000 0.621150 0.310575 0.950549i \(-0.399478\pi\)
0.310575 + 0.950549i \(0.399478\pi\)
\(128\) 0 0
\(129\) −5.00000 −0.440225
\(130\) 0 0
\(131\) 6.00000 0.524222 0.262111 0.965038i \(-0.415581\pi\)
0.262111 + 0.965038i \(0.415581\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −4.00000 −0.344265
\(136\) 0 0
\(137\) −12.0000 −1.02523 −0.512615 0.858619i \(-0.671323\pi\)
−0.512615 + 0.858619i \(0.671323\pi\)
\(138\) 0 0
\(139\) 5.00000 0.424094 0.212047 0.977259i \(-0.431987\pi\)
0.212047 + 0.977259i \(0.431987\pi\)
\(140\) 0 0
\(141\) −4.00000 −0.336861
\(142\) 0 0
\(143\) −30.0000 −2.50873
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 4.00000 0.327693 0.163846 0.986486i \(-0.447610\pi\)
0.163846 + 0.986486i \(0.447610\pi\)
\(150\) 0 0
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) 0 0
\(153\) 2.00000 0.161690
\(154\) 0 0
\(155\) 12.0000 0.963863
\(156\) 0 0
\(157\) −10.0000 −0.798087 −0.399043 0.916932i \(-0.630658\pi\)
−0.399043 + 0.916932i \(0.630658\pi\)
\(158\) 0 0
\(159\) −6.00000 −0.475831
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 20.0000 1.56652 0.783260 0.621694i \(-0.213555\pi\)
0.783260 + 0.621694i \(0.213555\pi\)
\(164\) 0 0
\(165\) −24.0000 −1.86840
\(166\) 0 0
\(167\) 8.00000 0.619059 0.309529 0.950890i \(-0.399829\pi\)
0.309529 + 0.950890i \(0.399829\pi\)
\(168\) 0 0
\(169\) 12.0000 0.923077
\(170\) 0 0
\(171\) 1.00000 0.0764719
\(172\) 0 0
\(173\) −22.0000 −1.67263 −0.836315 0.548250i \(-0.815294\pi\)
−0.836315 + 0.548250i \(0.815294\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 6.00000 0.450988
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) −25.0000 −1.85824 −0.929118 0.369784i \(-0.879432\pi\)
−0.929118 + 0.369784i \(0.879432\pi\)
\(182\) 0 0
\(183\) −2.00000 −0.147844
\(184\) 0 0
\(185\) −12.0000 −0.882258
\(186\) 0 0
\(187\) 12.0000 0.877527
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) −1.00000 −0.0719816 −0.0359908 0.999352i \(-0.511459\pi\)
−0.0359908 + 0.999352i \(0.511459\pi\)
\(194\) 0 0
\(195\) 20.0000 1.43223
\(196\) 0 0
\(197\) −18.0000 −1.28245 −0.641223 0.767354i \(-0.721573\pi\)
−0.641223 + 0.767354i \(0.721573\pi\)
\(198\) 0 0
\(199\) −20.0000 −1.41776 −0.708881 0.705328i \(-0.750800\pi\)
−0.708881 + 0.705328i \(0.750800\pi\)
\(200\) 0 0
\(201\) −7.00000 −0.493742
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −24.0000 −1.67623
\(206\) 0 0
\(207\) 6.00000 0.417029
\(208\) 0 0
\(209\) 6.00000 0.415029
\(210\) 0 0
\(211\) 12.0000 0.826114 0.413057 0.910705i \(-0.364461\pi\)
0.413057 + 0.910705i \(0.364461\pi\)
\(212\) 0 0
\(213\) 16.0000 1.09630
\(214\) 0 0
\(215\) 20.0000 1.36399
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 3.00000 0.202721
\(220\) 0 0
\(221\) −10.0000 −0.672673
\(222\) 0 0
\(223\) −16.0000 −1.07144 −0.535720 0.844396i \(-0.679960\pi\)
−0.535720 + 0.844396i \(0.679960\pi\)
\(224\) 0 0
\(225\) 11.0000 0.733333
\(226\) 0 0
\(227\) 22.0000 1.46019 0.730096 0.683345i \(-0.239475\pi\)
0.730096 + 0.683345i \(0.239475\pi\)
\(228\) 0 0
\(229\) 11.0000 0.726900 0.363450 0.931614i \(-0.381599\pi\)
0.363450 + 0.931614i \(0.381599\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −8.00000 −0.524097 −0.262049 0.965055i \(-0.584398\pi\)
−0.262049 + 0.965055i \(0.584398\pi\)
\(234\) 0 0
\(235\) 16.0000 1.04372
\(236\) 0 0
\(237\) 11.0000 0.714527
\(238\) 0 0
\(239\) −2.00000 −0.129369 −0.0646846 0.997906i \(-0.520604\pi\)
−0.0646846 + 0.997906i \(0.520604\pi\)
\(240\) 0 0
\(241\) 10.0000 0.644157 0.322078 0.946713i \(-0.395619\pi\)
0.322078 + 0.946713i \(0.395619\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −5.00000 −0.318142
\(248\) 0 0
\(249\) −12.0000 −0.760469
\(250\) 0 0
\(251\) −14.0000 −0.883672 −0.441836 0.897096i \(-0.645673\pi\)
−0.441836 + 0.897096i \(0.645673\pi\)
\(252\) 0 0
\(253\) 36.0000 2.26330
\(254\) 0 0
\(255\) −8.00000 −0.500979
\(256\) 0 0
\(257\) −12.0000 −0.748539 −0.374270 0.927320i \(-0.622107\pi\)
−0.374270 + 0.927320i \(0.622107\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 24.0000 1.47431
\(266\) 0 0
\(267\) −4.00000 −0.244796
\(268\) 0 0
\(269\) 2.00000 0.121942 0.0609711 0.998140i \(-0.480580\pi\)
0.0609711 + 0.998140i \(0.480580\pi\)
\(270\) 0 0
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 66.0000 3.97995
\(276\) 0 0
\(277\) −1.00000 −0.0600842 −0.0300421 0.999549i \(-0.509564\pi\)
−0.0300421 + 0.999549i \(0.509564\pi\)
\(278\) 0 0
\(279\) 3.00000 0.179605
\(280\) 0 0
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 0 0
\(283\) −11.0000 −0.653882 −0.326941 0.945045i \(-0.606018\pi\)
−0.326941 + 0.945045i \(0.606018\pi\)
\(284\) 0 0
\(285\) −4.00000 −0.236940
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 6.00000 0.351726
\(292\) 0 0
\(293\) 12.0000 0.701047 0.350524 0.936554i \(-0.386004\pi\)
0.350524 + 0.936554i \(0.386004\pi\)
\(294\) 0 0
\(295\) −24.0000 −1.39733
\(296\) 0 0
\(297\) −6.00000 −0.348155
\(298\) 0 0
\(299\) −30.0000 −1.73494
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 2.00000 0.114897
\(304\) 0 0
\(305\) 8.00000 0.458079
\(306\) 0 0
\(307\) 11.0000 0.627803 0.313902 0.949456i \(-0.398364\pi\)
0.313902 + 0.949456i \(0.398364\pi\)
\(308\) 0 0
\(309\) −11.0000 −0.625768
\(310\) 0 0
\(311\) 2.00000 0.113410 0.0567048 0.998391i \(-0.481941\pi\)
0.0567048 + 0.998391i \(0.481941\pi\)
\(312\) 0 0
\(313\) 31.0000 1.75222 0.876112 0.482108i \(-0.160129\pi\)
0.876112 + 0.482108i \(0.160129\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 20.0000 1.12331 0.561656 0.827371i \(-0.310164\pi\)
0.561656 + 0.827371i \(0.310164\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −10.0000 −0.558146
\(322\) 0 0
\(323\) 2.00000 0.111283
\(324\) 0 0
\(325\) −55.0000 −3.05085
\(326\) 0 0
\(327\) −15.0000 −0.829502
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −5.00000 −0.274825 −0.137412 0.990514i \(-0.543879\pi\)
−0.137412 + 0.990514i \(0.543879\pi\)
\(332\) 0 0
\(333\) −3.00000 −0.164399
\(334\) 0 0
\(335\) 28.0000 1.52980
\(336\) 0 0
\(337\) 1.00000 0.0544735 0.0272367 0.999629i \(-0.491329\pi\)
0.0272367 + 0.999629i \(0.491329\pi\)
\(338\) 0 0
\(339\) 16.0000 0.869001
\(340\) 0 0
\(341\) 18.0000 0.974755
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −24.0000 −1.29212
\(346\) 0 0
\(347\) −22.0000 −1.18102 −0.590511 0.807030i \(-0.701074\pi\)
−0.590511 + 0.807030i \(0.701074\pi\)
\(348\) 0 0
\(349\) −26.0000 −1.39175 −0.695874 0.718164i \(-0.744983\pi\)
−0.695874 + 0.718164i \(0.744983\pi\)
\(350\) 0 0
\(351\) 5.00000 0.266880
\(352\) 0 0
\(353\) −4.00000 −0.212899 −0.106449 0.994318i \(-0.533948\pi\)
−0.106449 + 0.994318i \(0.533948\pi\)
\(354\) 0 0
\(355\) −64.0000 −3.39677
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 24.0000 1.26667 0.633336 0.773877i \(-0.281685\pi\)
0.633336 + 0.773877i \(0.281685\pi\)
\(360\) 0 0
\(361\) −18.0000 −0.947368
\(362\) 0 0
\(363\) −25.0000 −1.31216
\(364\) 0 0
\(365\) −12.0000 −0.628109
\(366\) 0 0
\(367\) −27.0000 −1.40939 −0.704694 0.709511i \(-0.748916\pi\)
−0.704694 + 0.709511i \(0.748916\pi\)
\(368\) 0 0
\(369\) −6.00000 −0.312348
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 29.0000 1.50156 0.750782 0.660551i \(-0.229677\pi\)
0.750782 + 0.660551i \(0.229677\pi\)
\(374\) 0 0
\(375\) −24.0000 −1.23935
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 27.0000 1.38690 0.693448 0.720506i \(-0.256091\pi\)
0.693448 + 0.720506i \(0.256091\pi\)
\(380\) 0 0
\(381\) −7.00000 −0.358621
\(382\) 0 0
\(383\) −26.0000 −1.32854 −0.664269 0.747494i \(-0.731257\pi\)
−0.664269 + 0.747494i \(0.731257\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 5.00000 0.254164
\(388\) 0 0
\(389\) 4.00000 0.202808 0.101404 0.994845i \(-0.467667\pi\)
0.101404 + 0.994845i \(0.467667\pi\)
\(390\) 0 0
\(391\) 12.0000 0.606866
\(392\) 0 0
\(393\) −6.00000 −0.302660
\(394\) 0 0
\(395\) −44.0000 −2.21388
\(396\) 0 0
\(397\) 21.0000 1.05396 0.526980 0.849878i \(-0.323324\pi\)
0.526980 + 0.849878i \(0.323324\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2.00000 −0.0998752 −0.0499376 0.998752i \(-0.515902\pi\)
−0.0499376 + 0.998752i \(0.515902\pi\)
\(402\) 0 0
\(403\) −15.0000 −0.747203
\(404\) 0 0
\(405\) 4.00000 0.198762
\(406\) 0 0
\(407\) −18.0000 −0.892227
\(408\) 0 0
\(409\) 13.0000 0.642809 0.321404 0.946942i \(-0.395845\pi\)
0.321404 + 0.946942i \(0.395845\pi\)
\(410\) 0 0
\(411\) 12.0000 0.591916
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 48.0000 2.35623
\(416\) 0 0
\(417\) −5.00000 −0.244851
\(418\) 0 0
\(419\) −26.0000 −1.27018 −0.635092 0.772437i \(-0.719038\pi\)
−0.635092 + 0.772437i \(0.719038\pi\)
\(420\) 0 0
\(421\) −17.0000 −0.828529 −0.414265 0.910156i \(-0.635961\pi\)
−0.414265 + 0.910156i \(0.635961\pi\)
\(422\) 0 0
\(423\) 4.00000 0.194487
\(424\) 0 0
\(425\) 22.0000 1.06716
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 30.0000 1.44841
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) −25.0000 −1.20142 −0.600712 0.799466i \(-0.705116\pi\)
−0.600712 + 0.799466i \(0.705116\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 6.00000 0.287019
\(438\) 0 0
\(439\) −24.0000 −1.14546 −0.572729 0.819745i \(-0.694115\pi\)
−0.572729 + 0.819745i \(0.694115\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −26.0000 −1.23530 −0.617649 0.786454i \(-0.711915\pi\)
−0.617649 + 0.786454i \(0.711915\pi\)
\(444\) 0 0
\(445\) 16.0000 0.758473
\(446\) 0 0
\(447\) −4.00000 −0.189194
\(448\) 0 0
\(449\) 36.0000 1.69895 0.849473 0.527633i \(-0.176920\pi\)
0.849473 + 0.527633i \(0.176920\pi\)
\(450\) 0 0
\(451\) −36.0000 −1.69517
\(452\) 0 0
\(453\) −8.00000 −0.375873
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 25.0000 1.16945 0.584725 0.811231i \(-0.301202\pi\)
0.584725 + 0.811231i \(0.301202\pi\)
\(458\) 0 0
\(459\) −2.00000 −0.0933520
\(460\) 0 0
\(461\) 4.00000 0.186299 0.0931493 0.995652i \(-0.470307\pi\)
0.0931493 + 0.995652i \(0.470307\pi\)
\(462\) 0 0
\(463\) 5.00000 0.232370 0.116185 0.993228i \(-0.462933\pi\)
0.116185 + 0.993228i \(0.462933\pi\)
\(464\) 0 0
\(465\) −12.0000 −0.556487
\(466\) 0 0
\(467\) 8.00000 0.370196 0.185098 0.982720i \(-0.440740\pi\)
0.185098 + 0.982720i \(0.440740\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 10.0000 0.460776
\(472\) 0 0
\(473\) 30.0000 1.37940
\(474\) 0 0
\(475\) 11.0000 0.504715
\(476\) 0 0
\(477\) 6.00000 0.274721
\(478\) 0 0
\(479\) −2.00000 −0.0913823 −0.0456912 0.998956i \(-0.514549\pi\)
−0.0456912 + 0.998956i \(0.514549\pi\)
\(480\) 0 0
\(481\) 15.0000 0.683941
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −24.0000 −1.08978
\(486\) 0 0
\(487\) 1.00000 0.0453143 0.0226572 0.999743i \(-0.492787\pi\)
0.0226572 + 0.999743i \(0.492787\pi\)
\(488\) 0 0
\(489\) −20.0000 −0.904431
\(490\) 0 0
\(491\) 8.00000 0.361035 0.180517 0.983572i \(-0.442223\pi\)
0.180517 + 0.983572i \(0.442223\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 24.0000 1.07872
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 29.0000 1.29822 0.649109 0.760695i \(-0.275142\pi\)
0.649109 + 0.760695i \(0.275142\pi\)
\(500\) 0 0
\(501\) −8.00000 −0.357414
\(502\) 0 0
\(503\) −18.0000 −0.802580 −0.401290 0.915951i \(-0.631438\pi\)
−0.401290 + 0.915951i \(0.631438\pi\)
\(504\) 0 0
\(505\) −8.00000 −0.355995
\(506\) 0 0
\(507\) −12.0000 −0.532939
\(508\) 0 0
\(509\) 24.0000 1.06378 0.531891 0.846813i \(-0.321482\pi\)
0.531891 + 0.846813i \(0.321482\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −1.00000 −0.0441511
\(514\) 0 0
\(515\) 44.0000 1.93887
\(516\) 0 0
\(517\) 24.0000 1.05552
\(518\) 0 0
\(519\) 22.0000 0.965693
\(520\) 0 0
\(521\) 24.0000 1.05146 0.525730 0.850652i \(-0.323792\pi\)
0.525730 + 0.850652i \(0.323792\pi\)
\(522\) 0 0
\(523\) −17.0000 −0.743358 −0.371679 0.928361i \(-0.621218\pi\)
−0.371679 + 0.928361i \(0.621218\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6.00000 0.261364
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) −6.00000 −0.260378
\(532\) 0 0
\(533\) 30.0000 1.29944
\(534\) 0 0
\(535\) 40.0000 1.72935
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −37.0000 −1.59075 −0.795377 0.606115i \(-0.792727\pi\)
−0.795377 + 0.606115i \(0.792727\pi\)
\(542\) 0 0
\(543\) 25.0000 1.07285
\(544\) 0 0
\(545\) 60.0000 2.57012
\(546\) 0 0
\(547\) 28.0000 1.19719 0.598597 0.801050i \(-0.295725\pi\)
0.598597 + 0.801050i \(0.295725\pi\)
\(548\) 0 0
\(549\) 2.00000 0.0853579
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 12.0000 0.509372
\(556\) 0 0
\(557\) 6.00000 0.254228 0.127114 0.991888i \(-0.459429\pi\)
0.127114 + 0.991888i \(0.459429\pi\)
\(558\) 0 0
\(559\) −25.0000 −1.05739
\(560\) 0 0
\(561\) −12.0000 −0.506640
\(562\) 0 0
\(563\) 24.0000 1.01148 0.505740 0.862686i \(-0.331220\pi\)
0.505740 + 0.862686i \(0.331220\pi\)
\(564\) 0 0
\(565\) −64.0000 −2.69250
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 18.0000 0.754599 0.377300 0.926091i \(-0.376853\pi\)
0.377300 + 0.926091i \(0.376853\pi\)
\(570\) 0 0
\(571\) 29.0000 1.21361 0.606806 0.794850i \(-0.292450\pi\)
0.606806 + 0.794850i \(0.292450\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 66.0000 2.75239
\(576\) 0 0
\(577\) 23.0000 0.957503 0.478751 0.877951i \(-0.341090\pi\)
0.478751 + 0.877951i \(0.341090\pi\)
\(578\) 0 0
\(579\) 1.00000 0.0415586
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 36.0000 1.49097
\(584\) 0 0
\(585\) −20.0000 −0.826898
\(586\) 0 0
\(587\) 40.0000 1.65098 0.825488 0.564419i \(-0.190900\pi\)
0.825488 + 0.564419i \(0.190900\pi\)
\(588\) 0 0
\(589\) 3.00000 0.123613
\(590\) 0 0
\(591\) 18.0000 0.740421
\(592\) 0 0
\(593\) −26.0000 −1.06769 −0.533846 0.845582i \(-0.679254\pi\)
−0.533846 + 0.845582i \(0.679254\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 20.0000 0.818546
\(598\) 0 0
\(599\) −20.0000 −0.817178 −0.408589 0.912719i \(-0.633979\pi\)
−0.408589 + 0.912719i \(0.633979\pi\)
\(600\) 0 0
\(601\) −21.0000 −0.856608 −0.428304 0.903635i \(-0.640889\pi\)
−0.428304 + 0.903635i \(0.640889\pi\)
\(602\) 0 0
\(603\) 7.00000 0.285062
\(604\) 0 0
\(605\) 100.000 4.06558
\(606\) 0 0
\(607\) 5.00000 0.202944 0.101472 0.994838i \(-0.467645\pi\)
0.101472 + 0.994838i \(0.467645\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −20.0000 −0.809113
\(612\) 0 0
\(613\) 46.0000 1.85792 0.928961 0.370177i \(-0.120703\pi\)
0.928961 + 0.370177i \(0.120703\pi\)
\(614\) 0 0
\(615\) 24.0000 0.967773
\(616\) 0 0
\(617\) −14.0000 −0.563619 −0.281809 0.959470i \(-0.590935\pi\)
−0.281809 + 0.959470i \(0.590935\pi\)
\(618\) 0 0
\(619\) −25.0000 −1.00483 −0.502417 0.864625i \(-0.667556\pi\)
−0.502417 + 0.864625i \(0.667556\pi\)
\(620\) 0 0
\(621\) −6.00000 −0.240772
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 41.0000 1.64000
\(626\) 0 0
\(627\) −6.00000 −0.239617
\(628\) 0 0
\(629\) −6.00000 −0.239236
\(630\) 0 0
\(631\) −28.0000 −1.11466 −0.557331 0.830290i \(-0.688175\pi\)
−0.557331 + 0.830290i \(0.688175\pi\)
\(632\) 0 0
\(633\) −12.0000 −0.476957
\(634\) 0 0
\(635\) 28.0000 1.11115
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −16.0000 −0.632950
\(640\) 0 0
\(641\) 38.0000 1.50091 0.750455 0.660922i \(-0.229834\pi\)
0.750455 + 0.660922i \(0.229834\pi\)
\(642\) 0 0
\(643\) −23.0000 −0.907031 −0.453516 0.891248i \(-0.649830\pi\)
−0.453516 + 0.891248i \(0.649830\pi\)
\(644\) 0 0
\(645\) −20.0000 −0.787499
\(646\) 0 0
\(647\) −10.0000 −0.393141 −0.196570 0.980490i \(-0.562980\pi\)
−0.196570 + 0.980490i \(0.562980\pi\)
\(648\) 0 0
\(649\) −36.0000 −1.41312
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −34.0000 −1.33052 −0.665261 0.746611i \(-0.731680\pi\)
−0.665261 + 0.746611i \(0.731680\pi\)
\(654\) 0 0
\(655\) 24.0000 0.937758
\(656\) 0 0
\(657\) −3.00000 −0.117041
\(658\) 0 0
\(659\) 6.00000 0.233727 0.116863 0.993148i \(-0.462716\pi\)
0.116863 + 0.993148i \(0.462716\pi\)
\(660\) 0 0
\(661\) −3.00000 −0.116686 −0.0583432 0.998297i \(-0.518582\pi\)
−0.0583432 + 0.998297i \(0.518582\pi\)
\(662\) 0 0
\(663\) 10.0000 0.388368
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 16.0000 0.618596
\(670\) 0 0
\(671\) 12.0000 0.463255
\(672\) 0 0
\(673\) −29.0000 −1.11787 −0.558934 0.829212i \(-0.688789\pi\)
−0.558934 + 0.829212i \(0.688789\pi\)
\(674\) 0 0
\(675\) −11.0000 −0.423390
\(676\) 0 0
\(677\) 12.0000 0.461197 0.230599 0.973049i \(-0.425932\pi\)
0.230599 + 0.973049i \(0.425932\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −22.0000 −0.843042
\(682\) 0 0
\(683\) 18.0000 0.688751 0.344375 0.938832i \(-0.388091\pi\)
0.344375 + 0.938832i \(0.388091\pi\)
\(684\) 0 0
\(685\) −48.0000 −1.83399
\(686\) 0 0
\(687\) −11.0000 −0.419676
\(688\) 0 0
\(689\) −30.0000 −1.14291
\(690\) 0 0
\(691\) 23.0000 0.874961 0.437481 0.899228i \(-0.355871\pi\)
0.437481 + 0.899228i \(0.355871\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 20.0000 0.758643
\(696\) 0 0
\(697\) −12.0000 −0.454532
\(698\) 0 0
\(699\) 8.00000 0.302588
\(700\) 0 0
\(701\) −22.0000 −0.830929 −0.415464 0.909610i \(-0.636381\pi\)
−0.415464 + 0.909610i \(0.636381\pi\)
\(702\) 0 0
\(703\) −3.00000 −0.113147
\(704\) 0 0
\(705\) −16.0000 −0.602595
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 6.00000 0.225335 0.112667 0.993633i \(-0.464061\pi\)
0.112667 + 0.993633i \(0.464061\pi\)
\(710\) 0 0
\(711\) −11.0000 −0.412532
\(712\) 0 0
\(713\) 18.0000 0.674105
\(714\) 0 0
\(715\) −120.000 −4.48775
\(716\) 0 0
\(717\) 2.00000 0.0746914
\(718\) 0 0
\(719\) −30.0000 −1.11881 −0.559406 0.828894i \(-0.688971\pi\)
−0.559406 + 0.828894i \(0.688971\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −10.0000 −0.371904
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 41.0000 1.52061 0.760303 0.649569i \(-0.225051\pi\)
0.760303 + 0.649569i \(0.225051\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 10.0000 0.369863
\(732\) 0 0
\(733\) −21.0000 −0.775653 −0.387826 0.921732i \(-0.626774\pi\)
−0.387826 + 0.921732i \(0.626774\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 42.0000 1.54709
\(738\) 0 0
\(739\) −51.0000 −1.87607 −0.938033 0.346547i \(-0.887354\pi\)
−0.938033 + 0.346547i \(0.887354\pi\)
\(740\) 0 0
\(741\) 5.00000 0.183680
\(742\) 0 0
\(743\) 18.0000 0.660356 0.330178 0.943919i \(-0.392891\pi\)
0.330178 + 0.943919i \(0.392891\pi\)
\(744\) 0 0
\(745\) 16.0000 0.586195
\(746\) 0 0
\(747\) 12.0000 0.439057
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 7.00000 0.255434 0.127717 0.991811i \(-0.459235\pi\)
0.127717 + 0.991811i \(0.459235\pi\)
\(752\) 0 0
\(753\) 14.0000 0.510188
\(754\) 0 0
\(755\) 32.0000 1.16460
\(756\) 0 0
\(757\) 26.0000 0.944986 0.472493 0.881334i \(-0.343354\pi\)
0.472493 + 0.881334i \(0.343354\pi\)
\(758\) 0 0
\(759\) −36.0000 −1.30672
\(760\) 0 0
\(761\) 50.0000 1.81250 0.906249 0.422744i \(-0.138933\pi\)
0.906249 + 0.422744i \(0.138933\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 8.00000 0.289241
\(766\) 0 0
\(767\) 30.0000 1.08324
\(768\) 0 0
\(769\) 31.0000 1.11789 0.558944 0.829205i \(-0.311207\pi\)
0.558944 + 0.829205i \(0.311207\pi\)
\(770\) 0 0
\(771\) 12.0000 0.432169
\(772\) 0 0
\(773\) 22.0000 0.791285 0.395643 0.918405i \(-0.370522\pi\)
0.395643 + 0.918405i \(0.370522\pi\)
\(774\) 0 0
\(775\) 33.0000 1.18539
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −6.00000 −0.214972
\(780\) 0 0
\(781\) −96.0000 −3.43515
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −40.0000 −1.42766
\(786\) 0 0
\(787\) 32.0000 1.14068 0.570338 0.821410i \(-0.306812\pi\)
0.570338 + 0.821410i \(0.306812\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −10.0000 −0.355110
\(794\) 0 0
\(795\) −24.0000 −0.851192
\(796\) 0 0
\(797\) 46.0000 1.62940 0.814702 0.579880i \(-0.196901\pi\)
0.814702 + 0.579880i \(0.196901\pi\)
\(798\) 0 0
\(799\) 8.00000 0.283020
\(800\) 0 0
\(801\) 4.00000 0.141333
\(802\) 0 0
\(803\) −18.0000 −0.635206
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −2.00000 −0.0704033
\(808\) 0 0
\(809\) 8.00000 0.281265 0.140633 0.990062i \(-0.455086\pi\)
0.140633 + 0.990062i \(0.455086\pi\)
\(810\) 0 0
\(811\) 28.0000 0.983213 0.491606 0.870817i \(-0.336410\pi\)
0.491606 + 0.870817i \(0.336410\pi\)
\(812\) 0 0
\(813\) 16.0000 0.561144
\(814\) 0 0
\(815\) 80.0000 2.80228
\(816\) 0 0
\(817\) 5.00000 0.174928
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −4.00000 −0.139601 −0.0698005 0.997561i \(-0.522236\pi\)
−0.0698005 + 0.997561i \(0.522236\pi\)
\(822\) 0 0
\(823\) 24.0000 0.836587 0.418294 0.908312i \(-0.362628\pi\)
0.418294 + 0.908312i \(0.362628\pi\)
\(824\) 0 0
\(825\) −66.0000 −2.29783
\(826\) 0 0
\(827\) 12.0000 0.417281 0.208640 0.977992i \(-0.433096\pi\)
0.208640 + 0.977992i \(0.433096\pi\)
\(828\) 0 0
\(829\) −5.00000 −0.173657 −0.0868286 0.996223i \(-0.527673\pi\)
−0.0868286 + 0.996223i \(0.527673\pi\)
\(830\) 0 0
\(831\) 1.00000 0.0346896
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 32.0000 1.10741
\(836\) 0 0
\(837\) −3.00000 −0.103695
\(838\) 0 0
\(839\) −12.0000 −0.414286 −0.207143 0.978311i \(-0.566417\pi\)
−0.207143 + 0.978311i \(0.566417\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) −6.00000 −0.206651
\(844\) 0 0
\(845\) 48.0000 1.65125
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 11.0000 0.377519
\(850\) 0 0
\(851\) −18.0000 −0.617032
\(852\) 0 0
\(853\) 33.0000 1.12990 0.564949 0.825126i \(-0.308896\pi\)
0.564949 + 0.825126i \(0.308896\pi\)
\(854\) 0 0
\(855\) 4.00000 0.136797
\(856\) 0 0
\(857\) 24.0000 0.819824 0.409912 0.912125i \(-0.365559\pi\)
0.409912 + 0.912125i \(0.365559\pi\)
\(858\) 0 0
\(859\) 52.0000 1.77422 0.887109 0.461561i \(-0.152710\pi\)
0.887109 + 0.461561i \(0.152710\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −54.0000 −1.83818 −0.919091 0.394046i \(-0.871075\pi\)
−0.919091 + 0.394046i \(0.871075\pi\)
\(864\) 0 0
\(865\) −88.0000 −2.99209
\(866\) 0 0
\(867\) 13.0000 0.441503
\(868\) 0 0
\(869\) −66.0000 −2.23890
\(870\) 0 0
\(871\) −35.0000 −1.18593
\(872\) 0 0
\(873\) −6.00000 −0.203069
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −2.00000 −0.0675352 −0.0337676 0.999430i \(-0.510751\pi\)
−0.0337676 + 0.999430i \(0.510751\pi\)
\(878\) 0 0
\(879\) −12.0000 −0.404750
\(880\) 0 0
\(881\) −42.0000 −1.41502 −0.707508 0.706705i \(-0.750181\pi\)
−0.707508 + 0.706705i \(0.750181\pi\)
\(882\) 0 0
\(883\) 7.00000 0.235569 0.117784 0.993039i \(-0.462421\pi\)
0.117784 + 0.993039i \(0.462421\pi\)
\(884\) 0 0
\(885\) 24.0000 0.806751
\(886\) 0 0
\(887\) −34.0000 −1.14161 −0.570804 0.821086i \(-0.693368\pi\)
−0.570804 + 0.821086i \(0.693368\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 6.00000 0.201008
\(892\) 0 0
\(893\) 4.00000 0.133855
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 30.0000 1.00167
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 12.0000 0.399778
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −100.000 −3.32411
\(906\) 0 0
\(907\) 43.0000 1.42779 0.713896 0.700252i \(-0.246929\pi\)
0.713896 + 0.700252i \(0.246929\pi\)
\(908\) 0 0
\(909\) −2.00000 −0.0663358
\(910\) 0 0
\(911\) 26.0000 0.861418 0.430709 0.902491i \(-0.358263\pi\)
0.430709 + 0.902491i \(0.358263\pi\)
\(912\) 0 0
\(913\) 72.0000 2.38285
\(914\) 0 0
\(915\) −8.00000 −0.264472
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −43.0000 −1.41844 −0.709220 0.704988i \(-0.750953\pi\)
−0.709220 + 0.704988i \(0.750953\pi\)
\(920\) 0 0
\(921\) −11.0000 −0.362462
\(922\) 0 0
\(923\) 80.0000 2.63323
\(924\) 0 0
\(925\) −33.0000 −1.08503
\(926\) 0 0
\(927\) 11.0000 0.361287
\(928\) 0 0
\(929\) −36.0000 −1.18112 −0.590561 0.806993i \(-0.701093\pi\)
−0.590561 + 0.806993i \(0.701093\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −2.00000 −0.0654771
\(934\) 0 0
\(935\) 48.0000 1.56977
\(936\) 0 0
\(937\) 51.0000 1.66610 0.833049 0.553200i \(-0.186593\pi\)
0.833049 + 0.553200i \(0.186593\pi\)
\(938\) 0 0
\(939\) −31.0000 −1.01165
\(940\) 0 0
\(941\) −54.0000 −1.76035 −0.880175 0.474650i \(-0.842575\pi\)
−0.880175 + 0.474650i \(0.842575\pi\)
\(942\) 0 0
\(943\) −36.0000 −1.17232
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −30.0000 −0.974869 −0.487435 0.873160i \(-0.662067\pi\)
−0.487435 + 0.873160i \(0.662067\pi\)
\(948\) 0 0
\(949\) 15.0000 0.486921
\(950\) 0 0
\(951\) −20.0000 −0.648544
\(952\) 0 0
\(953\) −6.00000 −0.194359 −0.0971795 0.995267i \(-0.530982\pi\)
−0.0971795 + 0.995267i \(0.530982\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −22.0000 −0.709677
\(962\) 0 0
\(963\) 10.0000 0.322245
\(964\) 0 0
\(965\) −4.00000 −0.128765
\(966\) 0 0
\(967\) 53.0000 1.70437 0.852183 0.523245i \(-0.175279\pi\)
0.852183 + 0.523245i \(0.175279\pi\)
\(968\) 0 0
\(969\) −2.00000 −0.0642493
\(970\) 0 0
\(971\) −26.0000 −0.834380 −0.417190 0.908819i \(-0.636985\pi\)
−0.417190 + 0.908819i \(0.636985\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 55.0000 1.76141
\(976\) 0 0
\(977\) 30.0000 0.959785 0.479893 0.877327i \(-0.340676\pi\)
0.479893 + 0.877327i \(0.340676\pi\)
\(978\) 0 0
\(979\) 24.0000 0.767043
\(980\) 0 0
\(981\) 15.0000 0.478913
\(982\) 0 0
\(983\) −26.0000 −0.829271 −0.414636 0.909988i \(-0.636091\pi\)
−0.414636 + 0.909988i \(0.636091\pi\)
\(984\) 0 0
\(985\) −72.0000 −2.29411
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 30.0000 0.953945
\(990\) 0 0
\(991\) −25.0000 −0.794151 −0.397076 0.917786i \(-0.629975\pi\)
−0.397076 + 0.917786i \(0.629975\pi\)
\(992\) 0 0
\(993\) 5.00000 0.158670
\(994\) 0 0
\(995\) −80.0000 −2.53617
\(996\) 0 0
\(997\) 5.00000 0.158352 0.0791758 0.996861i \(-0.474771\pi\)
0.0791758 + 0.996861i \(0.474771\pi\)
\(998\) 0 0
\(999\) 3.00000 0.0949158
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9408.2.a.bp.1.1 1
4.3 odd 2 9408.2.a.dd.1.1 1
7.2 even 3 1344.2.q.l.193.1 2
7.4 even 3 1344.2.q.l.961.1 2
7.6 odd 2 9408.2.a.bs.1.1 1
8.3 odd 2 4704.2.a.a.1.1 1
8.5 even 2 4704.2.a.r.1.1 1
28.11 odd 6 1344.2.q.a.961.1 2
28.23 odd 6 1344.2.q.a.193.1 2
28.27 even 2 9408.2.a.a.1.1 1
56.11 odd 6 672.2.q.j.289.1 yes 2
56.13 odd 2 4704.2.a.p.1.1 1
56.27 even 2 4704.2.a.bh.1.1 1
56.37 even 6 672.2.q.e.193.1 2
56.51 odd 6 672.2.q.j.193.1 yes 2
56.53 even 6 672.2.q.e.289.1 yes 2
168.11 even 6 2016.2.s.a.289.1 2
168.53 odd 6 2016.2.s.b.289.1 2
168.107 even 6 2016.2.s.a.865.1 2
168.149 odd 6 2016.2.s.b.865.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
672.2.q.e.193.1 2 56.37 even 6
672.2.q.e.289.1 yes 2 56.53 even 6
672.2.q.j.193.1 yes 2 56.51 odd 6
672.2.q.j.289.1 yes 2 56.11 odd 6
1344.2.q.a.193.1 2 28.23 odd 6
1344.2.q.a.961.1 2 28.11 odd 6
1344.2.q.l.193.1 2 7.2 even 3
1344.2.q.l.961.1 2 7.4 even 3
2016.2.s.a.289.1 2 168.11 even 6
2016.2.s.a.865.1 2 168.107 even 6
2016.2.s.b.289.1 2 168.53 odd 6
2016.2.s.b.865.1 2 168.149 odd 6
4704.2.a.a.1.1 1 8.3 odd 2
4704.2.a.p.1.1 1 56.13 odd 2
4704.2.a.r.1.1 1 8.5 even 2
4704.2.a.bh.1.1 1 56.27 even 2
9408.2.a.a.1.1 1 28.27 even 2
9408.2.a.bp.1.1 1 1.1 even 1 trivial
9408.2.a.bs.1.1 1 7.6 odd 2
9408.2.a.dd.1.1 1 4.3 odd 2