Properties

Label 95.4.e.c.26.7
Level $95$
Weight $4$
Character 95.26
Analytic conductor $5.605$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [95,4,Mod(11,95)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(95, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("95.11");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 95 = 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 95.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60518145055\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 3 x^{19} + 66 x^{18} - 125 x^{17} + 2555 x^{16} - 3995 x^{15} + 60229 x^{14} + \cdots + 2336368896 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 26.7
Root \(-1.09984 + 1.90498i\) of defining polynomial
Character \(\chi\) \(=\) 95.26
Dual form 95.4.e.c.11.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.09984 + 1.90498i) q^{2} +(-4.37756 - 7.58215i) q^{3} +(1.58071 - 2.73786i) q^{4} +(2.50000 + 4.33013i) q^{5} +(9.62922 - 16.6783i) q^{6} -33.5680 q^{7} +24.5515 q^{8} +(-24.8260 + 43.0000i) q^{9} +O(q^{10})\) \(q+(1.09984 + 1.90498i) q^{2} +(-4.37756 - 7.58215i) q^{3} +(1.58071 - 2.73786i) q^{4} +(2.50000 + 4.33013i) q^{5} +(9.62922 - 16.6783i) q^{6} -33.5680 q^{7} +24.5515 q^{8} +(-24.8260 + 43.0000i) q^{9} +(-5.49920 + 9.52489i) q^{10} -52.8293 q^{11} -27.6785 q^{12} +(23.5896 - 40.8584i) q^{13} +(-36.9194 - 63.9463i) q^{14} +(21.8878 - 37.9108i) q^{15} +(14.3571 + 24.8672i) q^{16} +(-19.3309 - 33.4821i) q^{17} -109.219 q^{18} +(-57.7308 + 59.3814i) q^{19} +15.8071 q^{20} +(146.946 + 254.518i) q^{21} +(-58.1037 - 100.639i) q^{22} +(94.9663 - 164.486i) q^{23} +(-107.476 - 186.153i) q^{24} +(-12.5000 + 21.6506i) q^{25} +103.779 q^{26} +198.322 q^{27} +(-53.0611 + 91.9045i) q^{28} +(51.2938 - 88.8434i) q^{29} +96.2922 q^{30} +62.8629 q^{31} +(66.6251 - 115.398i) q^{32} +(231.263 + 400.560i) q^{33} +(42.5218 - 73.6500i) q^{34} +(-83.9199 - 145.354i) q^{35} +(78.4853 + 135.941i) q^{36} -121.050 q^{37} +(-176.615 - 44.6659i) q^{38} -413.060 q^{39} +(61.3788 + 106.311i) q^{40} +(18.6460 + 32.2958i) q^{41} +(-323.234 + 559.857i) q^{42} +(-92.8180 - 160.765i) q^{43} +(-83.5076 + 144.639i) q^{44} -248.260 q^{45} +417.791 q^{46} +(-142.854 + 247.430i) q^{47} +(125.698 - 217.715i) q^{48} +783.809 q^{49} -54.9920 q^{50} +(-169.245 + 293.140i) q^{51} +(-74.5765 - 129.170i) q^{52} +(139.396 - 241.441i) q^{53} +(218.122 + 377.798i) q^{54} +(-132.073 - 228.758i) q^{55} -824.145 q^{56} +(702.959 + 177.778i) q^{57} +225.660 q^{58} +(49.5587 + 85.8381i) q^{59} +(-69.1963 - 119.852i) q^{60} +(192.118 - 332.758i) q^{61} +(69.1391 + 119.752i) q^{62} +(833.360 - 1443.42i) q^{63} +522.821 q^{64} +235.896 q^{65} +(-508.705 + 881.103i) q^{66} +(275.126 - 476.532i) q^{67} -122.226 q^{68} -1662.88 q^{69} +(184.597 - 319.731i) q^{70} +(-446.673 - 773.660i) q^{71} +(-609.517 + 1055.71i) q^{72} +(97.1143 + 168.207i) q^{73} +(-133.135 - 230.597i) q^{74} +218.878 q^{75} +(71.3227 + 251.924i) q^{76} +1773.37 q^{77} +(-454.299 - 786.869i) q^{78} +(318.203 + 551.144i) q^{79} +(-71.7854 + 124.336i) q^{80} +(-197.861 - 342.705i) q^{81} +(-41.0152 + 71.0405i) q^{82} -465.318 q^{83} +929.112 q^{84} +(96.6546 - 167.411i) q^{85} +(204.170 - 353.632i) q^{86} -898.166 q^{87} -1297.04 q^{88} +(-617.121 + 1068.88i) q^{89} +(-273.047 - 472.930i) q^{90} +(-791.855 + 1371.53i) q^{91} +(-300.228 - 520.010i) q^{92} +(-275.186 - 476.636i) q^{93} -628.464 q^{94} +(-401.456 - 101.528i) q^{95} -1166.62 q^{96} +(-355.282 - 615.367i) q^{97} +(862.064 + 1493.14i) q^{98} +(1311.54 - 2271.66i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 3 q^{2} - 5 q^{3} - 43 q^{4} + 50 q^{5} + 9 q^{6} + 6 q^{7} + 96 q^{8} - 97 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 20 q - 3 q^{2} - 5 q^{3} - 43 q^{4} + 50 q^{5} + 9 q^{6} + 6 q^{7} + 96 q^{8} - 97 q^{9} + 15 q^{10} - 36 q^{11} + 186 q^{12} + 14 q^{13} + 68 q^{14} + 25 q^{15} + 9 q^{16} - 144 q^{17} - 22 q^{18} + 96 q^{19} - 430 q^{20} + 46 q^{21} - 136 q^{22} + 321 q^{23} - 416 q^{24} - 250 q^{25} - 46 q^{26} + 1006 q^{27} + 130 q^{28} - 178 q^{29} + 90 q^{30} + 604 q^{31} - 202 q^{32} + 1099 q^{33} - 751 q^{34} + 15 q^{35} - 526 q^{36} - 774 q^{37} - 12 q^{38} - 1216 q^{39} + 240 q^{40} - 388 q^{41} + 143 q^{42} - 514 q^{43} - 1246 q^{44} - 970 q^{45} + 3650 q^{46} + 522 q^{47} + 4 q^{48} + 1582 q^{49} + 150 q^{50} - 1080 q^{51} + 569 q^{52} - 681 q^{53} - 321 q^{54} - 90 q^{55} - 3184 q^{56} + 514 q^{57} + 1198 q^{58} - 891 q^{59} + 465 q^{60} + 1110 q^{61} - 1921 q^{62} - 727 q^{63} + 952 q^{64} + 140 q^{65} + 3312 q^{66} - 691 q^{67} - 228 q^{68} + 172 q^{69} - 340 q^{70} + 382 q^{71} - 2678 q^{72} - 797 q^{73} + 404 q^{74} + 250 q^{75} + 462 q^{76} + 2390 q^{77} + 1000 q^{78} - 660 q^{79} - 45 q^{80} - 2454 q^{81} - 1155 q^{82} - 2026 q^{83} + 10756 q^{84} + 720 q^{85} + 858 q^{86} + 312 q^{87} - 98 q^{88} - 2957 q^{89} - 55 q^{90} - 3110 q^{91} + 98 q^{92} + 1500 q^{93} - 6374 q^{94} + 945 q^{95} - 584 q^{96} - 2881 q^{97} + 4062 q^{98} + 2723 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/95\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.09984 + 1.90498i 0.388852 + 0.673511i 0.992295 0.123894i \(-0.0395384\pi\)
−0.603443 + 0.797406i \(0.706205\pi\)
\(3\) −4.37756 7.58215i −0.842462 1.45919i −0.887808 0.460215i \(-0.847772\pi\)
0.0453461 0.998971i \(-0.485561\pi\)
\(4\) 1.58071 2.73786i 0.197588 0.342233i
\(5\) 2.50000 + 4.33013i 0.223607 + 0.387298i
\(6\) 9.62922 16.6783i 0.655186 1.13481i
\(7\) −33.5680 −1.81250 −0.906250 0.422742i \(-0.861068\pi\)
−0.906250 + 0.422742i \(0.861068\pi\)
\(8\) 24.5515 1.08503
\(9\) −24.8260 + 43.0000i −0.919483 + 1.59259i
\(10\) −5.49920 + 9.52489i −0.173900 + 0.301203i
\(11\) −52.8293 −1.44806 −0.724029 0.689770i \(-0.757712\pi\)
−0.724029 + 0.689770i \(0.757712\pi\)
\(12\) −27.6785 −0.665842
\(13\) 23.5896 40.8584i 0.503275 0.871699i −0.496717 0.867912i \(-0.665461\pi\)
0.999993 0.00378625i \(-0.00120520\pi\)
\(14\) −36.9194 63.9463i −0.704794 1.22074i
\(15\) 21.8878 37.9108i 0.376760 0.652568i
\(16\) 14.3571 + 24.8672i 0.224330 + 0.388550i
\(17\) −19.3309 33.4821i −0.275790 0.477683i 0.694544 0.719450i \(-0.255606\pi\)
−0.970334 + 0.241767i \(0.922273\pi\)
\(18\) −109.219 −1.43017
\(19\) −57.7308 + 59.3814i −0.697071 + 0.717002i
\(20\) 15.8071 0.176728
\(21\) 146.946 + 254.518i 1.52696 + 2.64478i
\(22\) −58.1037 100.639i −0.563080 0.975283i
\(23\) 94.9663 164.486i 0.860950 1.49121i −0.0100635 0.999949i \(-0.503203\pi\)
0.871013 0.491259i \(-0.163463\pi\)
\(24\) −107.476 186.153i −0.914100 1.58327i
\(25\) −12.5000 + 21.6506i −0.100000 + 0.173205i
\(26\) 103.779 0.782799
\(27\) 198.322 1.41359
\(28\) −53.0611 + 91.9045i −0.358129 + 0.620297i
\(29\) 51.2938 88.8434i 0.328449 0.568890i −0.653755 0.756706i \(-0.726807\pi\)
0.982204 + 0.187816i \(0.0601408\pi\)
\(30\) 96.2922 0.586016
\(31\) 62.8629 0.364210 0.182105 0.983279i \(-0.441709\pi\)
0.182105 + 0.983279i \(0.441709\pi\)
\(32\) 66.6251 115.398i 0.368055 0.637490i
\(33\) 231.263 + 400.560i 1.21993 + 2.11299i
\(34\) 42.5218 73.6500i 0.214483 0.371496i
\(35\) −83.9199 145.354i −0.405287 0.701978i
\(36\) 78.4853 + 135.941i 0.363358 + 0.629354i
\(37\) −121.050 −0.537851 −0.268925 0.963161i \(-0.586669\pi\)
−0.268925 + 0.963161i \(0.586669\pi\)
\(38\) −176.615 44.6659i −0.753966 0.190678i
\(39\) −413.060 −1.69596
\(40\) 61.3788 + 106.311i 0.242621 + 0.420232i
\(41\) 18.6460 + 32.2958i 0.0710248 + 0.123019i 0.899351 0.437228i \(-0.144040\pi\)
−0.828326 + 0.560247i \(0.810706\pi\)
\(42\) −323.234 + 559.857i −1.18752 + 2.05685i
\(43\) −92.8180 160.765i −0.329177 0.570151i 0.653172 0.757210i \(-0.273438\pi\)
−0.982349 + 0.187058i \(0.940105\pi\)
\(44\) −83.5076 + 144.639i −0.286119 + 0.495573i
\(45\) −248.260 −0.822410
\(46\) 417.791 1.33913
\(47\) −142.854 + 247.430i −0.443348 + 0.767901i −0.997935 0.0642246i \(-0.979543\pi\)
0.554588 + 0.832125i \(0.312876\pi\)
\(48\) 125.698 217.715i 0.377978 0.654677i
\(49\) 783.809 2.28516
\(50\) −54.9920 −0.155541
\(51\) −169.245 + 293.140i −0.464686 + 0.804859i
\(52\) −74.5765 129.170i −0.198883 0.344475i
\(53\) 139.396 241.441i 0.361274 0.625746i −0.626896 0.779103i \(-0.715675\pi\)
0.988171 + 0.153357i \(0.0490084\pi\)
\(54\) 218.122 + 377.798i 0.549678 + 0.952071i
\(55\) −132.073 228.758i −0.323795 0.560830i
\(56\) −824.145 −1.96663
\(57\) 702.959 + 177.778i 1.63349 + 0.413111i
\(58\) 225.660 0.510872
\(59\) 49.5587 + 85.8381i 0.109356 + 0.189410i 0.915509 0.402296i \(-0.131788\pi\)
−0.806154 + 0.591706i \(0.798455\pi\)
\(60\) −69.1963 119.852i −0.148887 0.257879i
\(61\) 192.118 332.758i 0.403249 0.698448i −0.590867 0.806769i \(-0.701214\pi\)
0.994116 + 0.108321i \(0.0345475\pi\)
\(62\) 69.1391 + 119.752i 0.141624 + 0.245300i
\(63\) 833.360 1443.42i 1.66656 2.88657i
\(64\) 522.821 1.02114
\(65\) 235.896 0.450143
\(66\) −508.705 + 881.103i −0.948747 + 1.64328i
\(67\) 275.126 476.532i 0.501672 0.868921i −0.498327 0.866989i \(-0.666052\pi\)
0.999998 0.00193131i \(-0.000614756\pi\)
\(68\) −122.226 −0.217972
\(69\) −1662.88 −2.90127
\(70\) 184.597 319.731i 0.315194 0.545931i
\(71\) −446.673 773.660i −0.746624 1.29319i −0.949432 0.313973i \(-0.898340\pi\)
0.202808 0.979219i \(-0.434993\pi\)
\(72\) −609.517 + 1055.71i −0.997670 + 1.72802i
\(73\) 97.1143 + 168.207i 0.155704 + 0.269687i 0.933315 0.359059i \(-0.116902\pi\)
−0.777611 + 0.628745i \(0.783569\pi\)
\(74\) −133.135 230.597i −0.209144 0.362249i
\(75\) 218.878 0.336985
\(76\) 71.3227 + 251.924i 0.107648 + 0.380232i
\(77\) 1773.37 2.62460
\(78\) −454.299 786.869i −0.659478 1.14225i
\(79\) 318.203 + 551.144i 0.453173 + 0.784919i 0.998581 0.0532519i \(-0.0169586\pi\)
−0.545408 + 0.838171i \(0.683625\pi\)
\(80\) −71.7854 + 124.336i −0.100323 + 0.173765i
\(81\) −197.861 342.705i −0.271414 0.470104i
\(82\) −41.0152 + 71.0405i −0.0552363 + 0.0956720i
\(83\) −465.318 −0.615365 −0.307683 0.951489i \(-0.599554\pi\)
−0.307683 + 0.951489i \(0.599554\pi\)
\(84\) 929.112 1.20684
\(85\) 96.6546 167.411i 0.123337 0.213626i
\(86\) 204.170 353.632i 0.256002 0.443409i
\(87\) −898.166 −1.10682
\(88\) −1297.04 −1.57119
\(89\) −617.121 + 1068.88i −0.734996 + 1.27305i 0.219728 + 0.975561i \(0.429483\pi\)
−0.954725 + 0.297490i \(0.903850\pi\)
\(90\) −273.047 472.930i −0.319796 0.553903i
\(91\) −791.855 + 1371.53i −0.912187 + 1.57995i
\(92\) −300.228 520.010i −0.340227 0.589291i
\(93\) −275.186 476.636i −0.306833 0.531450i
\(94\) −628.464 −0.689586
\(95\) −401.456 101.528i −0.433563 0.109648i
\(96\) −1166.62 −1.24029
\(97\) −355.282 615.367i −0.371891 0.644135i 0.617965 0.786205i \(-0.287957\pi\)
−0.989857 + 0.142071i \(0.954624\pi\)
\(98\) 862.064 + 1493.14i 0.888588 + 1.53908i
\(99\) 1311.54 2271.66i 1.33146 2.30616i
\(100\) 39.5176 + 68.4466i 0.0395176 + 0.0684466i
\(101\) −192.743 + 333.840i −0.189887 + 0.328894i −0.945212 0.326456i \(-0.894146\pi\)
0.755325 + 0.655350i \(0.227479\pi\)
\(102\) −744.567 −0.722776
\(103\) −237.487 −0.227187 −0.113594 0.993527i \(-0.536236\pi\)
−0.113594 + 0.993527i \(0.536236\pi\)
\(104\) 579.161 1003.14i 0.546071 0.945823i
\(105\) −734.729 + 1272.59i −0.682878 + 1.18278i
\(106\) 613.254 0.561929
\(107\) −150.931 −0.136365 −0.0681826 0.997673i \(-0.521720\pi\)
−0.0681826 + 0.997673i \(0.521720\pi\)
\(108\) 313.488 542.977i 0.279309 0.483778i
\(109\) −197.545 342.158i −0.173590 0.300668i 0.766082 0.642743i \(-0.222204\pi\)
−0.939673 + 0.342075i \(0.888870\pi\)
\(110\) 290.519 503.193i 0.251817 0.436160i
\(111\) 529.903 + 917.819i 0.453119 + 0.784825i
\(112\) −481.938 834.742i −0.406597 0.704247i
\(113\) −1310.50 −1.09099 −0.545495 0.838114i \(-0.683658\pi\)
−0.545495 + 0.838114i \(0.683658\pi\)
\(114\) 434.478 + 1534.65i 0.356953 + 1.26082i
\(115\) 949.663 0.770057
\(116\) −162.161 280.871i −0.129795 0.224812i
\(117\) 1171.27 + 2028.70i 0.925506 + 1.60302i
\(118\) −109.013 + 188.816i −0.0850464 + 0.147305i
\(119\) 648.900 + 1123.93i 0.499870 + 0.865801i
\(120\) 537.379 930.767i 0.408798 0.708059i
\(121\) 1459.93 1.09687
\(122\) 845.196 0.627217
\(123\) 163.248 282.754i 0.119671 0.207277i
\(124\) 99.3678 172.110i 0.0719637 0.124645i
\(125\) −125.000 −0.0894427
\(126\) 3666.25 2.59219
\(127\) −954.294 + 1652.89i −0.666771 + 1.15488i 0.312031 + 0.950072i \(0.398991\pi\)
−0.978802 + 0.204809i \(0.934343\pi\)
\(128\) 42.0185 + 72.7782i 0.0290152 + 0.0502558i
\(129\) −812.632 + 1407.52i −0.554638 + 0.960661i
\(130\) 259.448 + 449.377i 0.175039 + 0.303177i
\(131\) −620.371 1074.51i −0.413756 0.716647i 0.581541 0.813517i \(-0.302450\pi\)
−0.995297 + 0.0968702i \(0.969117\pi\)
\(132\) 1462.24 0.964177
\(133\) 1937.91 1993.31i 1.26344 1.29957i
\(134\) 1210.38 0.780304
\(135\) 495.804 + 858.757i 0.316089 + 0.547482i
\(136\) −474.604 822.038i −0.299242 0.518303i
\(137\) −390.802 + 676.889i −0.243712 + 0.422121i −0.961769 0.273863i \(-0.911698\pi\)
0.718057 + 0.695984i \(0.245032\pi\)
\(138\) −1828.90 3167.75i −1.12816 1.95404i
\(139\) −245.493 + 425.206i −0.149802 + 0.259464i −0.931154 0.364626i \(-0.881197\pi\)
0.781352 + 0.624090i \(0.214530\pi\)
\(140\) −530.611 −0.320320
\(141\) 2501.40 1.49401
\(142\) 982.537 1701.80i 0.580653 1.00572i
\(143\) −1246.22 + 2158.52i −0.728772 + 1.26227i
\(144\) −1425.72 −0.825069
\(145\) 512.938 0.293774
\(146\) −213.620 + 370.001i −0.121091 + 0.209736i
\(147\) −3431.17 5942.96i −1.92516 3.33447i
\(148\) −191.344 + 331.418i −0.106273 + 0.184070i
\(149\) −1150.47 1992.67i −0.632552 1.09561i −0.987028 0.160547i \(-0.948674\pi\)
0.354476 0.935065i \(-0.384659\pi\)
\(150\) 240.731 + 416.958i 0.131037 + 0.226963i
\(151\) 1088.03 0.586376 0.293188 0.956055i \(-0.405284\pi\)
0.293188 + 0.956055i \(0.405284\pi\)
\(152\) −1417.38 + 1457.90i −0.756346 + 0.777971i
\(153\) 1919.64 1.01434
\(154\) 1950.43 + 3378.24i 1.02058 + 1.76770i
\(155\) 157.157 + 272.204i 0.0814399 + 0.141058i
\(156\) −652.926 + 1130.90i −0.335102 + 0.580413i
\(157\) 944.065 + 1635.17i 0.479902 + 0.831215i 0.999734 0.0230538i \(-0.00733890\pi\)
−0.519832 + 0.854268i \(0.674006\pi\)
\(158\) −699.945 + 1212.34i −0.352434 + 0.610434i
\(159\) −2440.86 −1.21744
\(160\) 666.251 0.329199
\(161\) −3187.83 + 5521.48i −1.56047 + 2.70282i
\(162\) 435.231 753.842i 0.211080 0.365601i
\(163\) 2939.53 1.41253 0.706263 0.707950i \(-0.250380\pi\)
0.706263 + 0.707950i \(0.250380\pi\)
\(164\) 117.895 0.0561347
\(165\) −1156.32 + 2002.80i −0.545570 + 0.944956i
\(166\) −511.776 886.421i −0.239286 0.414456i
\(167\) 484.227 838.706i 0.224375 0.388629i −0.731757 0.681566i \(-0.761299\pi\)
0.956132 + 0.292937i \(0.0946326\pi\)
\(168\) 3607.74 + 6248.79i 1.65681 + 2.86967i
\(169\) −14.4393 25.0095i −0.00657226 0.0113835i
\(170\) 425.218 0.191840
\(171\) −1120.17 3956.63i −0.500945 1.76942i
\(172\) −586.872 −0.260166
\(173\) −252.819 437.895i −0.111107 0.192443i 0.805110 0.593125i \(-0.202106\pi\)
−0.916217 + 0.400683i \(0.868773\pi\)
\(174\) −987.839 1710.99i −0.430390 0.745457i
\(175\) 419.600 726.768i 0.181250 0.313934i
\(176\) −758.475 1313.72i −0.324842 0.562643i
\(177\) 433.892 751.523i 0.184256 0.319141i
\(178\) −2714.94 −1.14322
\(179\) 1467.79 0.612894 0.306447 0.951888i \(-0.400860\pi\)
0.306447 + 0.951888i \(0.400860\pi\)
\(180\) −392.427 + 679.703i −0.162499 + 0.281456i
\(181\) 223.681 387.427i 0.0918569 0.159101i −0.816436 0.577436i \(-0.804053\pi\)
0.908292 + 0.418336i \(0.137386\pi\)
\(182\) −3483.66 −1.41882
\(183\) −3364.03 −1.35889
\(184\) 2331.57 4038.39i 0.934160 1.61801i
\(185\) −302.625 524.162i −0.120267 0.208309i
\(186\) 605.321 1048.45i 0.238625 0.413311i
\(187\) 1021.24 + 1768.84i 0.399360 + 0.691713i
\(188\) 451.619 + 782.227i 0.175201 + 0.303456i
\(189\) −6657.25 −2.56214
\(190\) −248.128 876.430i −0.0947427 0.334647i
\(191\) 1763.01 0.667889 0.333944 0.942593i \(-0.391620\pi\)
0.333944 + 0.942593i \(0.391620\pi\)
\(192\) −2288.68 3964.11i −0.860267 1.49003i
\(193\) −1630.63 2824.34i −0.608164 1.05337i −0.991543 0.129780i \(-0.958573\pi\)
0.383379 0.923591i \(-0.374760\pi\)
\(194\) 781.507 1353.61i 0.289221 0.500946i
\(195\) −1032.65 1788.60i −0.379228 0.656843i
\(196\) 1238.97 2145.96i 0.451520 0.782056i
\(197\) 3612.79 1.30660 0.653301 0.757098i \(-0.273384\pi\)
0.653301 + 0.757098i \(0.273384\pi\)
\(198\) 5769.94 2.07097
\(199\) 2332.57 4040.13i 0.830912 1.43918i −0.0664044 0.997793i \(-0.521153\pi\)
0.897316 0.441389i \(-0.145514\pi\)
\(200\) −306.894 + 531.556i −0.108503 + 0.187933i
\(201\) −4817.52 −1.69056
\(202\) −847.944 −0.295352
\(203\) −1721.83 + 2982.29i −0.595314 + 1.03111i
\(204\) 535.052 + 926.737i 0.183633 + 0.318061i
\(205\) −93.2300 + 161.479i −0.0317633 + 0.0550156i
\(206\) −261.198 452.407i −0.0883422 0.153013i
\(207\) 4715.27 + 8167.09i 1.58326 + 2.74228i
\(208\) 1354.71 0.451598
\(209\) 3049.88 3137.08i 1.00940 1.03826i
\(210\) −3232.34 −1.06215
\(211\) 1021.28 + 1768.92i 0.333214 + 0.577143i 0.983140 0.182854i \(-0.0585336\pi\)
−0.649926 + 0.759997i \(0.725200\pi\)
\(212\) −440.689 763.296i −0.142767 0.247280i
\(213\) −3910.67 + 6773.49i −1.25800 + 2.17893i
\(214\) −166.000 287.521i −0.0530258 0.0918435i
\(215\) 464.090 803.827i 0.147212 0.254979i
\(216\) 4869.10 1.53380
\(217\) −2110.18 −0.660131
\(218\) 434.535 752.637i 0.135002 0.233830i
\(219\) 850.247 1472.67i 0.262349 0.454401i
\(220\) −835.076 −0.255913
\(221\) −1824.04 −0.555194
\(222\) −1165.62 + 2018.91i −0.352392 + 0.610361i
\(223\) 2894.33 + 5013.12i 0.869141 + 1.50540i 0.862876 + 0.505415i \(0.168661\pi\)
0.00626455 + 0.999980i \(0.498006\pi\)
\(224\) −2236.47 + 3873.68i −0.667100 + 1.15545i
\(225\) −620.651 1075.00i −0.183897 0.318518i
\(226\) −1441.34 2496.48i −0.424233 0.734794i
\(227\) 1033.17 0.302087 0.151043 0.988527i \(-0.451737\pi\)
0.151043 + 0.988527i \(0.451737\pi\)
\(228\) 1597.90 1643.59i 0.464139 0.477410i
\(229\) −5757.42 −1.66140 −0.830701 0.556719i \(-0.812060\pi\)
−0.830701 + 0.556719i \(0.812060\pi\)
\(230\) 1044.48 + 1809.09i 0.299438 + 0.518642i
\(231\) −7763.04 13446.0i −2.21113 3.82979i
\(232\) 1259.34 2181.24i 0.356378 0.617265i
\(233\) −1720.22 2979.51i −0.483671 0.837743i 0.516153 0.856497i \(-0.327364\pi\)
−0.999824 + 0.0187532i \(0.994030\pi\)
\(234\) −2576.42 + 4462.50i −0.719770 + 1.24668i
\(235\) −1428.54 −0.396542
\(236\) 313.351 0.0864296
\(237\) 2785.91 4825.33i 0.763562 1.32253i
\(238\) −1427.37 + 2472.28i −0.388751 + 0.673337i
\(239\) 2674.35 0.723806 0.361903 0.932216i \(-0.382127\pi\)
0.361903 + 0.932216i \(0.382127\pi\)
\(240\) 1256.98 0.338074
\(241\) −401.622 + 695.630i −0.107347 + 0.185931i −0.914695 0.404145i \(-0.867569\pi\)
0.807347 + 0.590076i \(0.200902\pi\)
\(242\) 1605.69 + 2781.14i 0.426520 + 0.738755i
\(243\) 945.044 1636.86i 0.249484 0.432119i
\(244\) −607.364 1051.99i −0.159355 0.276010i
\(245\) 1959.52 + 3393.99i 0.510977 + 0.885038i
\(246\) 718.186 0.186138
\(247\) 1064.38 + 3759.57i 0.274190 + 0.968485i
\(248\) 1543.38 0.395181
\(249\) 2036.96 + 3528.12i 0.518422 + 0.897933i
\(250\) −137.480 238.122i −0.0347800 0.0602407i
\(251\) 1659.00 2873.48i 0.417192 0.722598i −0.578463 0.815708i \(-0.696347\pi\)
0.995656 + 0.0931099i \(0.0296808\pi\)
\(252\) −2634.59 4563.25i −0.658586 1.14071i
\(253\) −5017.00 + 8689.70i −1.24670 + 2.15936i
\(254\) −4198.28 −1.03710
\(255\) −1692.45 −0.415628
\(256\) 1998.86 3462.12i 0.488002 0.845245i
\(257\) 2277.91 3945.46i 0.552888 0.957629i −0.445177 0.895443i \(-0.646859\pi\)
0.998065 0.0621867i \(-0.0198074\pi\)
\(258\) −3575.06 −0.862688
\(259\) 4063.40 0.974855
\(260\) 372.882 645.851i 0.0889430 0.154054i
\(261\) 2546.84 + 4411.26i 0.604006 + 1.04617i
\(262\) 1364.62 2363.59i 0.321780 0.557339i
\(263\) −1869.96 3238.87i −0.438429 0.759382i 0.559139 0.829074i \(-0.311132\pi\)
−0.997569 + 0.0696919i \(0.977798\pi\)
\(264\) 5677.87 + 9834.35i 1.32367 + 2.29266i
\(265\) 1393.96 0.323134
\(266\) 5928.61 + 1499.34i 1.36656 + 0.345604i
\(267\) 10805.9 2.47682
\(268\) −869.787 1506.52i −0.198249 0.343377i
\(269\) 1075.30 + 1862.47i 0.243726 + 0.422145i 0.961773 0.273850i \(-0.0882971\pi\)
−0.718047 + 0.695995i \(0.754964\pi\)
\(270\) −1090.61 + 1888.99i −0.245824 + 0.425779i
\(271\) −664.544 1151.02i −0.148960 0.258006i 0.781883 0.623425i \(-0.214259\pi\)
−0.930843 + 0.365418i \(0.880926\pi\)
\(272\) 555.072 961.412i 0.123736 0.214317i
\(273\) 13865.6 3.07393
\(274\) −1719.28 −0.379071
\(275\) 660.366 1143.79i 0.144806 0.250811i
\(276\) −2628.53 + 4552.74i −0.573256 + 0.992909i
\(277\) −1576.45 −0.341948 −0.170974 0.985276i \(-0.554691\pi\)
−0.170974 + 0.985276i \(0.554691\pi\)
\(278\) −1080.01 −0.233003
\(279\) −1560.64 + 2703.10i −0.334885 + 0.580038i
\(280\) −2060.36 3568.65i −0.439751 0.761671i
\(281\) 1690.19 2927.50i 0.358821 0.621495i −0.628944 0.777451i \(-0.716512\pi\)
0.987764 + 0.155956i \(0.0498457\pi\)
\(282\) 2751.14 + 4765.11i 0.580950 + 1.00623i
\(283\) −1207.16 2090.86i −0.253563 0.439184i 0.710941 0.703251i \(-0.248269\pi\)
−0.964504 + 0.264068i \(0.914936\pi\)
\(284\) −2824.23 −0.590097
\(285\) 987.595 + 3488.35i 0.205263 + 0.725024i
\(286\) −5482.58 −1.13354
\(287\) −625.909 1084.11i −0.128732 0.222971i
\(288\) 3308.07 + 5729.75i 0.676841 + 1.17232i
\(289\) 1709.13 2960.30i 0.347879 0.602545i
\(290\) 564.149 + 977.135i 0.114234 + 0.197860i
\(291\) −3110.54 + 5387.61i −0.626608 + 1.08532i
\(292\) 614.037 0.123061
\(293\) −7587.26 −1.51281 −0.756403 0.654106i \(-0.773045\pi\)
−0.756403 + 0.654106i \(0.773045\pi\)
\(294\) 7547.47 13072.6i 1.49720 2.59323i
\(295\) −247.793 + 429.191i −0.0489054 + 0.0847066i
\(296\) −2971.96 −0.583587
\(297\) −10477.2 −2.04696
\(298\) 2530.67 4383.24i 0.491938 0.852062i
\(299\) −4480.44 7760.34i −0.866590 1.50098i
\(300\) 345.982 599.258i 0.0665842 0.115327i
\(301\) 3115.71 + 5396.57i 0.596633 + 1.03340i
\(302\) 1196.66 + 2072.68i 0.228014 + 0.394931i
\(303\) 3374.97 0.639891
\(304\) −2305.50 583.060i −0.434965 0.110003i
\(305\) 1921.18 0.360677
\(306\) 2111.30 + 3656.87i 0.394427 + 0.683168i
\(307\) −890.420 1542.25i −0.165534 0.286714i 0.771311 0.636459i \(-0.219601\pi\)
−0.936845 + 0.349745i \(0.886268\pi\)
\(308\) 2803.18 4855.25i 0.518591 0.898226i
\(309\) 1039.61 + 1800.66i 0.191396 + 0.331508i
\(310\) −345.696 + 598.762i −0.0633361 + 0.109701i
\(311\) −2594.78 −0.473108 −0.236554 0.971618i \(-0.576018\pi\)
−0.236554 + 0.971618i \(0.576018\pi\)
\(312\) −10141.2 −1.84018
\(313\) −788.294 + 1365.36i −0.142355 + 0.246565i −0.928383 0.371625i \(-0.878801\pi\)
0.786028 + 0.618191i \(0.212134\pi\)
\(314\) −2076.64 + 3596.85i −0.373222 + 0.646439i
\(315\) 8333.60 1.49062
\(316\) 2011.94 0.358167
\(317\) −2136.44 + 3700.42i −0.378531 + 0.655634i −0.990849 0.134977i \(-0.956904\pi\)
0.612318 + 0.790612i \(0.290237\pi\)
\(318\) −2684.56 4649.79i −0.473404 0.819959i
\(319\) −2709.81 + 4693.54i −0.475613 + 0.823785i
\(320\) 1307.05 + 2263.88i 0.228333 + 0.395484i
\(321\) 660.710 + 1144.38i 0.114882 + 0.198982i
\(322\) −14024.4 −2.42717
\(323\) 3104.21 + 785.054i 0.534745 + 0.135237i
\(324\) −1251.04 −0.214513
\(325\) 589.740 + 1021.46i 0.100655 + 0.174340i
\(326\) 3233.01 + 5599.74i 0.549263 + 0.951352i
\(327\) −1729.53 + 2995.63i −0.292487 + 0.506602i
\(328\) 457.788 + 792.912i 0.0770643 + 0.133479i
\(329\) 4795.31 8305.71i 0.803568 1.39182i
\(330\) −5087.05 −0.848585
\(331\) 10622.8 1.76399 0.881996 0.471258i \(-0.156200\pi\)
0.881996 + 0.471258i \(0.156200\pi\)
\(332\) −735.532 + 1273.98i −0.121589 + 0.210598i
\(333\) 3005.19 5205.14i 0.494545 0.856577i
\(334\) 2130.29 0.348995
\(335\) 2751.26 0.448709
\(336\) −4219.43 + 7308.26i −0.685085 + 1.18660i
\(337\) −2194.73 3801.38i −0.354761 0.614464i 0.632316 0.774711i \(-0.282104\pi\)
−0.987077 + 0.160246i \(0.948771\pi\)
\(338\) 31.7617 55.0130i 0.00511128 0.00885299i
\(339\) 5736.80 + 9936.44i 0.919116 + 1.59196i
\(340\) −305.565 529.254i −0.0487400 0.0844201i
\(341\) −3321.00 −0.527397
\(342\) 6305.28 6485.56i 0.996931 1.02543i
\(343\) −14797.1 −2.32935
\(344\) −2278.82 3947.04i −0.357168 0.618634i
\(345\) −4157.21 7200.49i −0.648743 1.12366i
\(346\) 556.120 963.229i 0.0864082 0.149663i
\(347\) −680.517 1178.69i −0.105280 0.182350i 0.808573 0.588396i \(-0.200240\pi\)
−0.913852 + 0.406046i \(0.866907\pi\)
\(348\) −1419.74 + 2459.06i −0.218695 + 0.378791i
\(349\) 5738.02 0.880084 0.440042 0.897977i \(-0.354964\pi\)
0.440042 + 0.897977i \(0.354964\pi\)
\(350\) 1845.97 0.281918
\(351\) 4678.33 8103.10i 0.711426 1.23223i
\(352\) −3519.76 + 6096.40i −0.532965 + 0.923123i
\(353\) −7246.04 −1.09254 −0.546272 0.837608i \(-0.683953\pi\)
−0.546272 + 0.837608i \(0.683953\pi\)
\(354\) 1908.85 0.286593
\(355\) 2233.36 3868.30i 0.333901 0.578333i
\(356\) 1950.97 + 3379.19i 0.290453 + 0.503080i
\(357\) 5681.20 9840.12i 0.842243 1.45881i
\(358\) 1614.34 + 2796.11i 0.238325 + 0.412791i
\(359\) −2417.54 4187.31i −0.355412 0.615592i 0.631776 0.775151i \(-0.282326\pi\)
−0.987188 + 0.159559i \(0.948993\pi\)
\(360\) −6095.17 −0.892344
\(361\) −193.306 6856.28i −0.0281828 0.999603i
\(362\) 984.054 0.142875
\(363\) −6390.95 11069.4i −0.924071 1.60054i
\(364\) 2503.38 + 4335.98i 0.360475 + 0.624361i
\(365\) −485.571 + 841.034i −0.0696328 + 0.120608i
\(366\) −3699.89 6408.40i −0.528406 0.915226i
\(367\) −6158.49 + 10666.8i −0.875941 + 1.51718i −0.0201850 + 0.999796i \(0.506426\pi\)
−0.855756 + 0.517379i \(0.826908\pi\)
\(368\) 5453.76 0.772546
\(369\) −1851.63 −0.261224
\(370\) 665.677 1152.99i 0.0935322 0.162003i
\(371\) −4679.25 + 8104.70i −0.654810 + 1.13416i
\(372\) −1739.95 −0.242506
\(373\) 7876.55 1.09338 0.546692 0.837334i \(-0.315887\pi\)
0.546692 + 0.837334i \(0.315887\pi\)
\(374\) −2246.40 + 3890.88i −0.310584 + 0.537948i
\(375\) 547.195 + 947.769i 0.0753520 + 0.130514i
\(376\) −3507.27 + 6074.78i −0.481047 + 0.833199i
\(377\) −2420.00 4191.56i −0.330600 0.572617i
\(378\) −7321.91 12681.9i −0.996292 1.72563i
\(379\) −2533.59 −0.343382 −0.171691 0.985151i \(-0.554923\pi\)
−0.171691 + 0.985151i \(0.554923\pi\)
\(380\) −912.554 + 938.646i −0.123192 + 0.126714i
\(381\) 16709.9 2.24692
\(382\) 1939.03 + 3358.49i 0.259710 + 0.449831i
\(383\) −3190.88 5526.77i −0.425708 0.737349i 0.570778 0.821105i \(-0.306642\pi\)
−0.996486 + 0.0837558i \(0.973308\pi\)
\(384\) 367.877 637.181i 0.0488884 0.0846772i
\(385\) 4433.43 + 7678.93i 0.586879 + 1.01650i
\(386\) 3586.87 6212.65i 0.472972 0.819211i
\(387\) 9217.21 1.21069
\(388\) −2246.39 −0.293925
\(389\) 7359.94 12747.8i 0.959290 1.66154i 0.235059 0.971981i \(-0.424472\pi\)
0.724231 0.689557i \(-0.242195\pi\)
\(390\) 2271.50 3934.35i 0.294927 0.510829i
\(391\) −7343.15 −0.949767
\(392\) 19243.7 2.47947
\(393\) −5431.42 + 9407.50i −0.697148 + 1.20750i
\(394\) 3973.49 + 6882.28i 0.508075 + 0.880011i
\(395\) −1591.02 + 2755.72i −0.202665 + 0.351026i
\(396\) −4146.32 7181.64i −0.526163 0.911341i
\(397\) −4044.15 7004.67i −0.511259 0.885527i −0.999915 0.0130502i \(-0.995846\pi\)
0.488656 0.872477i \(-0.337487\pi\)
\(398\) 10261.8 1.29241
\(399\) −23596.9 5967.66i −2.96071 0.748763i
\(400\) −717.854 −0.0897318
\(401\) 1567.31 + 2714.66i 0.195182 + 0.338064i 0.946960 0.321351i \(-0.104137\pi\)
−0.751778 + 0.659416i \(0.770804\pi\)
\(402\) −5298.50 9177.27i −0.657376 1.13861i
\(403\) 1482.91 2568.48i 0.183298 0.317481i
\(404\) 609.339 + 1055.41i 0.0750390 + 0.129971i
\(405\) 989.305 1713.53i 0.121380 0.210237i
\(406\) −7574.94 −0.925955
\(407\) 6394.98 0.778839
\(408\) −4155.21 + 7197.04i −0.504200 + 0.873300i
\(409\) −7719.88 + 13371.2i −0.933309 + 1.61654i −0.155688 + 0.987806i \(0.549759\pi\)
−0.777621 + 0.628733i \(0.783574\pi\)
\(410\) −410.152 −0.0494048
\(411\) 6843.04 0.821271
\(412\) −375.397 + 650.207i −0.0448895 + 0.0777509i
\(413\) −1663.58 2881.41i −0.198207 0.343305i
\(414\) −10372.1 + 17965.0i −1.23131 + 2.13268i
\(415\) −1163.30 2014.89i −0.137600 0.238330i
\(416\) −3143.32 5444.39i −0.370466 0.641666i
\(417\) 4298.63 0.504808
\(418\) 9330.44 + 2359.67i 1.09179 + 0.276113i
\(419\) −767.138 −0.0894442 −0.0447221 0.998999i \(-0.514240\pi\)
−0.0447221 + 0.998999i \(0.514240\pi\)
\(420\) 2322.78 + 4023.17i 0.269857 + 0.467407i
\(421\) 7115.75 + 12324.8i 0.823754 + 1.42678i 0.902868 + 0.429918i \(0.141457\pi\)
−0.0791144 + 0.996866i \(0.525209\pi\)
\(422\) −2246.50 + 3891.05i −0.259142 + 0.448847i
\(423\) −7092.98 12285.4i −0.815301 1.41214i
\(424\) 3422.39 5927.75i 0.391995 0.678956i
\(425\) 966.546 0.110316
\(426\) −17204.5 −1.95671
\(427\) −6449.01 + 11170.0i −0.730889 + 1.26594i
\(428\) −238.578 + 413.229i −0.0269441 + 0.0466686i
\(429\) 21821.6 2.45585
\(430\) 2041.70 0.228975
\(431\) 2211.29 3830.07i 0.247132 0.428046i −0.715597 0.698514i \(-0.753845\pi\)
0.962729 + 0.270468i \(0.0871784\pi\)
\(432\) 2847.32 + 4931.70i 0.317111 + 0.549252i
\(433\) 5356.73 9278.13i 0.594522 1.02974i −0.399092 0.916911i \(-0.630675\pi\)
0.993614 0.112831i \(-0.0359919\pi\)
\(434\) −2320.86 4019.85i −0.256693 0.444606i
\(435\) −2245.42 3889.17i −0.247493 0.428670i
\(436\) −1249.04 −0.137198
\(437\) 4284.96 + 15135.2i 0.469056 + 1.65678i
\(438\) 3740.54 0.408059
\(439\) 3397.02 + 5883.81i 0.369318 + 0.639678i 0.989459 0.144812i \(-0.0462579\pi\)
−0.620141 + 0.784491i \(0.712925\pi\)
\(440\) −3242.60 5616.35i −0.351329 0.608520i
\(441\) −19458.9 + 33703.7i −2.10116 + 3.63932i
\(442\) −2006.15 3474.75i −0.215888 0.373930i
\(443\) 1014.91 1757.87i 0.108848 0.188531i −0.806456 0.591295i \(-0.798617\pi\)
0.915304 + 0.402764i \(0.131950\pi\)
\(444\) 3350.48 0.358124
\(445\) −6171.21 −0.657401
\(446\) −6366.59 + 11027.3i −0.675934 + 1.17075i
\(447\) −10072.5 + 17446.1i −1.06580 + 1.84602i
\(448\) −17550.0 −1.85081
\(449\) 7113.41 0.747667 0.373834 0.927496i \(-0.378043\pi\)
0.373834 + 0.927496i \(0.378043\pi\)
\(450\) 1365.23 2364.65i 0.143017 0.247713i
\(451\) −985.055 1706.17i −0.102848 0.178138i
\(452\) −2071.52 + 3587.98i −0.215567 + 0.373372i
\(453\) −4762.93 8249.63i −0.494000 0.855632i
\(454\) 1136.32 + 1968.16i 0.117467 + 0.203459i
\(455\) −7918.55 −0.815885
\(456\) 17258.7 + 4364.73i 1.77240 + 0.448239i
\(457\) −10681.0 −1.09330 −0.546650 0.837361i \(-0.684097\pi\)
−0.546650 + 0.837361i \(0.684097\pi\)
\(458\) −6332.24 10967.8i −0.646039 1.11897i
\(459\) −3833.74 6640.23i −0.389855 0.675249i
\(460\) 1501.14 2600.05i 0.152154 0.263539i
\(461\) −1701.77 2947.55i −0.171929 0.297790i 0.767165 0.641449i \(-0.221667\pi\)
−0.939094 + 0.343660i \(0.888333\pi\)
\(462\) 17076.2 29576.8i 1.71960 2.97844i
\(463\) 16242.7 1.63038 0.815188 0.579196i \(-0.196633\pi\)
0.815188 + 0.579196i \(0.196633\pi\)
\(464\) 2945.72 0.294723
\(465\) 1375.93 2383.18i 0.137220 0.237672i
\(466\) 3783.93 6553.97i 0.376153 0.651516i
\(467\) 13443.3 1.33208 0.666040 0.745916i \(-0.267988\pi\)
0.666040 + 0.745916i \(0.267988\pi\)
\(468\) 7405.75 0.731477
\(469\) −9235.43 + 15996.2i −0.909280 + 1.57492i
\(470\) −1571.16 2721.33i −0.154196 0.267076i
\(471\) 8265.40 14316.1i 0.808598 1.40053i
\(472\) 1216.74 + 2107.46i 0.118655 + 0.205516i
\(473\) 4903.51 + 8493.13i 0.476667 + 0.825612i
\(474\) 12256.2 1.18765
\(475\) −564.010 1992.18i −0.0544812 0.192436i
\(476\) 4102.88 0.395074
\(477\) 6921.31 + 11988.1i 0.664371 + 1.15072i
\(478\) 2941.36 + 5094.59i 0.281453 + 0.487492i
\(479\) −1386.57 + 2401.61i −0.132263 + 0.229087i −0.924549 0.381064i \(-0.875558\pi\)
0.792285 + 0.610151i \(0.208891\pi\)
\(480\) −2916.55 5051.62i −0.277337 0.480362i
\(481\) −2855.52 + 4945.91i −0.270687 + 0.468844i
\(482\) −1766.88 −0.166969
\(483\) 55819.6 5.25855
\(484\) 2307.73 3997.10i 0.216729 0.375385i
\(485\) 1776.41 3076.84i 0.166315 0.288066i
\(486\) 4157.59 0.388049
\(487\) −15018.1 −1.39740 −0.698700 0.715415i \(-0.746238\pi\)
−0.698700 + 0.715415i \(0.746238\pi\)
\(488\) 4716.79 8169.72i 0.437539 0.757840i
\(489\) −12868.0 22288.0i −1.19000 2.06114i
\(490\) −4310.32 + 7465.69i −0.397389 + 0.688297i
\(491\) −5124.95 8876.67i −0.471050 0.815883i 0.528402 0.848995i \(-0.322792\pi\)
−0.999452 + 0.0331120i \(0.989458\pi\)
\(492\) −516.094 893.901i −0.0472913 0.0819109i
\(493\) −3966.22 −0.362332
\(494\) −5991.25 + 6162.55i −0.545667 + 0.561268i
\(495\) 13115.4 1.19090
\(496\) 902.529 + 1563.23i 0.0817031 + 0.141514i
\(497\) 14993.9 + 25970.2i 1.35326 + 2.34391i
\(498\) −4480.66 + 7760.72i −0.403179 + 0.698326i
\(499\) −235.153 407.297i −0.0210960 0.0365393i 0.855285 0.518158i \(-0.173382\pi\)
−0.876381 + 0.481619i \(0.840049\pi\)
\(500\) −197.588 + 342.233i −0.0176728 + 0.0306102i
\(501\) −8478.93 −0.756109
\(502\) 7298.55 0.648904
\(503\) −1979.91 + 3429.31i −0.175507 + 0.303987i −0.940337 0.340246i \(-0.889490\pi\)
0.764830 + 0.644232i \(0.222823\pi\)
\(504\) 20460.3 35438.2i 1.80828 3.13203i
\(505\) −1927.43 −0.169840
\(506\) −22071.6 −1.93913
\(507\) −126.417 + 218.961i −0.0110738 + 0.0191803i
\(508\) 3016.92 + 5225.45i 0.263492 + 0.456382i
\(509\) −1863.91 + 3228.38i −0.162311 + 0.281131i −0.935697 0.352805i \(-0.885228\pi\)
0.773386 + 0.633935i \(0.218561\pi\)
\(510\) −1861.42 3224.07i −0.161618 0.279930i
\(511\) −3259.93 5646.36i −0.282213 0.488807i
\(512\) 9465.99 0.817073
\(513\) −11449.3 + 11776.6i −0.985375 + 1.01355i
\(514\) 10021.3 0.859966
\(515\) −593.717 1028.35i −0.0508006 0.0879892i
\(516\) 2569.07 + 4449.75i 0.219180 + 0.379631i
\(517\) 7546.85 13071.5i 0.641993 1.11196i
\(518\) 4469.09 + 7740.69i 0.379074 + 0.656576i
\(519\) −2213.46 + 3833.82i −0.187206 + 0.324251i
\(520\) 5791.61 0.488421
\(521\) 895.157 0.0752736 0.0376368 0.999291i \(-0.488017\pi\)
0.0376368 + 0.999291i \(0.488017\pi\)
\(522\) −5602.24 + 9703.36i −0.469738 + 0.813610i
\(523\) −4418.42 + 7652.92i −0.369415 + 0.639845i −0.989474 0.144710i \(-0.953775\pi\)
0.620059 + 0.784555i \(0.287108\pi\)
\(524\) −3922.50 −0.327014
\(525\) −7347.29 −0.610785
\(526\) 4113.32 7124.48i 0.340968 0.590574i
\(527\) −1215.20 2104.79i −0.100446 0.173977i
\(528\) −6640.54 + 11501.7i −0.547334 + 0.948010i
\(529\) −11953.7 20704.4i −0.982469 1.70169i
\(530\) 1533.14 + 2655.47i 0.125651 + 0.217634i
\(531\) −4921.38 −0.402203
\(532\) −2394.16 8456.57i −0.195113 0.689170i
\(533\) 1759.41 0.142980
\(534\) 11884.8 + 20585.1i 0.963118 + 1.66817i
\(535\) −377.328 653.551i −0.0304922 0.0528140i
\(536\) 6754.76 11699.6i 0.544331 0.942809i
\(537\) −6425.35 11129.0i −0.516340 0.894327i
\(538\) −2365.31 + 4096.84i −0.189546 + 0.328304i
\(539\) −41408.1 −3.30904
\(540\) 3134.88 0.249822
\(541\) 605.044 1047.97i 0.0480830 0.0832822i −0.840982 0.541063i \(-0.818022\pi\)
0.889065 + 0.457781i \(0.151355\pi\)
\(542\) 1461.78 2531.88i 0.115847 0.200653i
\(543\) −3916.71 −0.309543
\(544\) −5151.70 −0.406024
\(545\) 987.724 1710.79i 0.0776320 0.134463i
\(546\) 15249.9 + 26413.6i 1.19530 + 2.07033i
\(547\) 3265.72 5656.40i 0.255269 0.442139i −0.709700 0.704505i \(-0.751169\pi\)
0.964969 + 0.262366i \(0.0845026\pi\)
\(548\) 1235.49 + 2139.93i 0.0963091 + 0.166812i
\(549\) 9539.06 + 16522.1i 0.741561 + 1.28442i
\(550\) 2905.19 0.225232
\(551\) 2314.42 + 8174.90i 0.178943 + 0.632055i
\(552\) −40826.3 −3.14798
\(553\) −10681.4 18500.8i −0.821376 1.42267i
\(554\) −1733.84 3003.10i −0.132967 0.230306i
\(555\) −2649.52 + 4589.10i −0.202641 + 0.350984i
\(556\) 776.104 + 1344.25i 0.0591981 + 0.102534i
\(557\) 7949.35 13768.7i 0.604712 1.04739i −0.387384 0.921918i \(-0.626621\pi\)
0.992097 0.125474i \(-0.0400453\pi\)
\(558\) −6865.80 −0.520883
\(559\) −8758.16 −0.662667
\(560\) 2409.69 4173.71i 0.181836 0.314949i
\(561\) 8941.07 15486.4i 0.672892 1.16548i
\(562\) 7435.77 0.558112
\(563\) −21833.4 −1.63440 −0.817202 0.576352i \(-0.804476\pi\)
−0.817202 + 0.576352i \(0.804476\pi\)
\(564\) 3953.98 6848.49i 0.295199 0.511300i
\(565\) −3276.26 5674.65i −0.243953 0.422538i
\(566\) 2655.37 4599.23i 0.197197 0.341555i
\(567\) 6641.80 + 11503.9i 0.491939 + 0.852063i
\(568\) −10966.5 18994.5i −0.810113 1.40316i
\(569\) −12370.9 −0.911448 −0.455724 0.890121i \(-0.650620\pi\)
−0.455724 + 0.890121i \(0.650620\pi\)
\(570\) −5559.03 + 5717.97i −0.408495 + 0.420174i
\(571\) 15169.6 1.11178 0.555892 0.831254i \(-0.312377\pi\)
0.555892 + 0.831254i \(0.312377\pi\)
\(572\) 3939.82 + 6823.97i 0.287993 + 0.498819i
\(573\) −7717.67 13367.4i −0.562671 0.974574i
\(574\) 1376.80 2384.68i 0.100116 0.173406i
\(575\) 2374.16 + 4112.16i 0.172190 + 0.298242i
\(576\) −12979.6 + 22481.3i −0.938916 + 1.62625i
\(577\) 18083.0 1.30469 0.652343 0.757924i \(-0.273786\pi\)
0.652343 + 0.757924i \(0.273786\pi\)
\(578\) 7519.08 0.541094
\(579\) −14276.4 + 24727.4i −1.02471 + 1.77485i
\(580\) 810.804 1404.35i 0.0580462 0.100539i
\(581\) 15619.8 1.11535
\(582\) −13684.4 −0.974632
\(583\) −7364.21 + 12755.2i −0.523146 + 0.906116i
\(584\) 2384.30 + 4129.74i 0.168944 + 0.292619i
\(585\) −5856.36 + 10143.5i −0.413899 + 0.716894i
\(586\) −8344.77 14453.6i −0.588258 1.01889i
\(587\) −8771.98 15193.5i −0.616794 1.06832i −0.990067 0.140597i \(-0.955098\pi\)
0.373272 0.927722i \(-0.378236\pi\)
\(588\) −21694.7 −1.52155
\(589\) −3629.13 + 3732.89i −0.253881 + 0.261139i
\(590\) −1090.13 −0.0760678
\(591\) −15815.2 27392.7i −1.10076 1.90657i
\(592\) −1737.92 3010.17i −0.120656 0.208982i
\(593\) −1422.39 + 2463.65i −0.0985000 + 0.170607i −0.911064 0.412265i \(-0.864738\pi\)
0.812564 + 0.582872i \(0.198071\pi\)
\(594\) −11523.2 19958.8i −0.795966 1.37865i
\(595\) −3244.50 + 5619.64i −0.223549 + 0.387198i
\(596\) −7274.22 −0.499939
\(597\) −40843.8 −2.80004
\(598\) 9855.52 17070.3i 0.673950 1.16732i
\(599\) −1217.27 + 2108.38i −0.0830324 + 0.143816i −0.904551 0.426365i \(-0.859794\pi\)
0.821519 + 0.570182i \(0.193127\pi\)
\(600\) 5373.79 0.365640
\(601\) −2976.95 −0.202051 −0.101025 0.994884i \(-0.532212\pi\)
−0.101025 + 0.994884i \(0.532212\pi\)
\(602\) −6853.57 + 11870.7i −0.464004 + 0.803679i
\(603\) 13660.6 + 23660.8i 0.922557 + 1.59792i
\(604\) 1719.86 2978.88i 0.115861 0.200677i
\(605\) 3649.84 + 6321.70i 0.245268 + 0.424816i
\(606\) 3711.92 + 6429.24i 0.248823 + 0.430974i
\(607\) −10120.6 −0.676739 −0.338370 0.941013i \(-0.609875\pi\)
−0.338370 + 0.941013i \(0.609875\pi\)
\(608\) 3006.18 + 10618.3i 0.200521 + 0.708272i
\(609\) 30149.6 2.00612
\(610\) 2112.99 + 3659.81i 0.140250 + 0.242920i
\(611\) 6739.72 + 11673.5i 0.446252 + 0.772931i
\(612\) 3034.39 5255.71i 0.200421 0.347140i
\(613\) 12304.4 + 21311.8i 0.810717 + 1.40420i 0.912363 + 0.409382i \(0.134256\pi\)
−0.101646 + 0.994821i \(0.532411\pi\)
\(614\) 1958.64 3392.46i 0.128737 0.222978i
\(615\) 1632.48 0.107037
\(616\) 43539.0 2.84779
\(617\) 13331.8 23091.4i 0.869886 1.50669i 0.00777269 0.999970i \(-0.497526\pi\)
0.862113 0.506716i \(-0.169141\pi\)
\(618\) −2286.81 + 3960.88i −0.148850 + 0.257815i
\(619\) 17935.1 1.16458 0.582288 0.812983i \(-0.302158\pi\)
0.582288 + 0.812983i \(0.302158\pi\)
\(620\) 993.678 0.0643662
\(621\) 18833.9 32621.2i 1.21703 2.10796i
\(622\) −2853.84 4943.00i −0.183969 0.318644i
\(623\) 20715.5 35880.3i 1.33218 2.30741i
\(624\) −5930.33 10271.6i −0.380454 0.658966i
\(625\) −312.500 541.266i −0.0200000 0.0346410i
\(626\) −3467.99 −0.221419
\(627\) −37136.8 9391.90i −2.36539 0.598208i
\(628\) 5969.16 0.379292
\(629\) 2340.01 + 4053.01i 0.148334 + 0.256922i
\(630\) 9165.62 + 15875.3i 0.579630 + 1.00395i
\(631\) −11866.4 + 20553.3i −0.748646 + 1.29669i 0.199826 + 0.979831i \(0.435962\pi\)
−0.948472 + 0.316861i \(0.897371\pi\)
\(632\) 7812.38 + 13531.4i 0.491708 + 0.851664i
\(633\) 8941.46 15487.1i 0.561440 0.972442i
\(634\) −9398.95 −0.588770
\(635\) −9542.94 −0.596378
\(636\) −3858.28 + 6682.74i −0.240552 + 0.416648i
\(637\) 18489.7 32025.2i 1.15006 1.99197i
\(638\) −11921.4 −0.739772
\(639\) 44356.5 2.74603
\(640\) −210.093 + 363.891i −0.0129760 + 0.0224751i
\(641\) −9004.39 15596.1i −0.554840 0.961010i −0.997916 0.0645264i \(-0.979446\pi\)
0.443076 0.896484i \(-0.353887\pi\)
\(642\) −1453.35 + 2517.28i −0.0893445 + 0.154749i
\(643\) 8763.10 + 15178.1i 0.537454 + 0.930897i 0.999040 + 0.0438022i \(0.0139471\pi\)
−0.461586 + 0.887095i \(0.652720\pi\)
\(644\) 10078.0 + 17455.7i 0.616662 + 1.06809i
\(645\) −8126.32 −0.496083
\(646\) 1918.62 + 6776.88i 0.116853 + 0.412744i
\(647\) −19408.8 −1.17935 −0.589673 0.807642i \(-0.700743\pi\)
−0.589673 + 0.807642i \(0.700743\pi\)
\(648\) −4857.79 8413.94i −0.294494 0.510078i
\(649\) −2618.15 4534.77i −0.158353 0.274276i
\(650\) −1297.24 + 2246.88i −0.0782799 + 0.135585i
\(651\) 9237.44 + 15999.7i 0.556135 + 0.963254i
\(652\) 4646.53 8048.02i 0.279098 0.483413i
\(653\) −21561.7 −1.29215 −0.646075 0.763274i \(-0.723591\pi\)
−0.646075 + 0.763274i \(0.723591\pi\)
\(654\) −7608.81 −0.454936
\(655\) 3101.86 5372.57i 0.185038 0.320494i
\(656\) −535.405 + 927.348i −0.0318659 + 0.0551934i
\(657\) −9643.85 −0.572667
\(658\) 21096.3 1.24988
\(659\) −4081.97 + 7070.18i −0.241291 + 0.417929i −0.961082 0.276262i \(-0.910904\pi\)
0.719791 + 0.694191i \(0.244238\pi\)
\(660\) 3655.59 + 6331.67i 0.215597 + 0.373424i
\(661\) 8599.69 14895.1i 0.506035 0.876478i −0.493941 0.869496i \(-0.664444\pi\)
0.999976 0.00698260i \(-0.00222265\pi\)
\(662\) 11683.4 + 20236.2i 0.685931 + 1.18807i
\(663\) 7984.82 + 13830.1i 0.467730 + 0.810132i
\(664\) −11424.3 −0.667693
\(665\) 13476.1 + 3408.10i 0.785834 + 0.198737i
\(666\) 13220.9 0.769219
\(667\) −9742.36 16874.3i −0.565556 0.979571i
\(668\) −1530.84 2651.50i −0.0886678 0.153577i
\(669\) 25340.2 43890.4i 1.46444 2.53648i
\(670\) 3025.95 + 5241.09i 0.174481 + 0.302210i
\(671\) −10149.5 + 17579.4i −0.583928 + 1.01139i
\(672\) 39161.1 2.24802
\(673\) −26519.7 −1.51896 −0.759478 0.650533i \(-0.774546\pi\)
−0.759478 + 0.650533i \(0.774546\pi\)
\(674\) 4827.70 8361.82i 0.275899 0.477871i
\(675\) −2479.02 + 4293.79i −0.141359 + 0.244841i
\(676\) −91.2969 −0.00519441
\(677\) 16854.5 0.956824 0.478412 0.878135i \(-0.341213\pi\)
0.478412 + 0.878135i \(0.341213\pi\)
\(678\) −12619.1 + 21857.0i −0.714800 + 1.23807i
\(679\) 11926.1 + 20656.6i 0.674053 + 1.16749i
\(680\) 2373.02 4110.19i 0.133825 0.231792i
\(681\) −4522.75 7833.63i −0.254496 0.440801i
\(682\) −3652.57 6326.44i −0.205079 0.355208i
\(683\) 22859.4 1.28066 0.640330 0.768100i \(-0.278798\pi\)
0.640330 + 0.768100i \(0.278798\pi\)
\(684\) −12603.4 3187.39i −0.704535 0.178177i
\(685\) −3908.02 −0.217982
\(686\) −16274.4 28188.1i −0.905772 1.56884i
\(687\) 25203.4 + 43653.6i 1.39967 + 2.42429i
\(688\) 2665.19 4616.25i 0.147688 0.255804i
\(689\) −6576.61 11391.0i −0.363641 0.629845i
\(690\) 9144.52 15838.8i 0.504530 0.873872i
\(691\) −3489.61 −0.192114 −0.0960572 0.995376i \(-0.530623\pi\)
−0.0960572 + 0.995376i \(0.530623\pi\)
\(692\) −1598.53 −0.0878135
\(693\) −44025.8 + 76254.9i −2.41328 + 4.17992i
\(694\) 1496.92 2592.74i 0.0818764 0.141814i
\(695\) −2454.93 −0.133987
\(696\) −22051.3 −1.20094
\(697\) 720.889 1248.62i 0.0391759 0.0678547i
\(698\) 6310.90 + 10930.8i 0.342222 + 0.592747i
\(699\) −15060.7 + 26086.0i −0.814949 + 1.41153i
\(700\) −1326.53 2297.61i −0.0716258 0.124059i
\(701\) −488.502 846.110i −0.0263202 0.0455879i 0.852565 0.522621i \(-0.175046\pi\)
−0.878885 + 0.477033i \(0.841712\pi\)
\(702\) 20581.6 1.10656
\(703\) 6988.31 7188.12i 0.374921 0.385640i
\(704\) −27620.3 −1.47866
\(705\) 6253.50 + 10831.4i 0.334072 + 0.578629i
\(706\) −7969.48 13803.6i −0.424838 0.735841i
\(707\) 6469.98 11206.3i 0.344171 0.596121i
\(708\) −1371.71 2375.87i −0.0728136 0.126117i
\(709\) −2196.86 + 3805.07i −0.116368 + 0.201555i −0.918326 0.395826i \(-0.870458\pi\)
0.801958 + 0.597380i \(0.203792\pi\)
\(710\) 9825.37 0.519352
\(711\) −31598.9 −1.66674
\(712\) −15151.3 + 26242.7i −0.797496 + 1.38130i
\(713\) 5969.86 10340.1i 0.313567 0.543113i
\(714\) 24993.6 1.31003
\(715\) −12462.2 −0.651833
\(716\) 2320.15 4018.62i 0.121101 0.209752i
\(717\) −11707.1 20277.4i −0.609779 1.05617i
\(718\) 5317.82 9210.73i 0.276406 0.478749i
\(719\) 16137.8 + 27951.5i 0.837050 + 1.44981i 0.892350 + 0.451344i \(0.149055\pi\)
−0.0552997 + 0.998470i \(0.517611\pi\)
\(720\) −3564.30 6173.54i −0.184491 0.319548i
\(721\) 7971.96 0.411777
\(722\) 12848.4 7909.05i 0.662285 0.407679i
\(723\) 7032.49 0.361745
\(724\) −707.148 1224.82i −0.0362997 0.0628729i
\(725\) 1282.34 + 2221.09i 0.0656898 + 0.113778i
\(726\) 14058.0 24349.2i 0.718654 1.24474i
\(727\) 6895.02 + 11942.5i 0.351750 + 0.609248i 0.986556 0.163423i \(-0.0522535\pi\)
−0.634806 + 0.772671i \(0.718920\pi\)
\(728\) −19441.3 + 33673.2i −0.989754 + 1.71430i
\(729\) −27232.4 −1.38355
\(730\) −2136.20 −0.108307
\(731\) −3588.52 + 6215.49i −0.181568 + 0.314485i
\(732\) −5317.54 + 9210.26i −0.268500 + 0.465056i
\(733\) 31204.5 1.57240 0.786198 0.617975i \(-0.212047\pi\)
0.786198 + 0.617975i \(0.212047\pi\)
\(734\) −27093.4 −1.36245
\(735\) 17155.8 29714.8i 0.860956 1.49122i
\(736\) −12654.3 21917.9i −0.633754 1.09769i
\(737\) −14534.7 + 25174.9i −0.726449 + 1.25825i
\(738\) −2036.49 3527.31i −0.101578 0.175938i
\(739\) −1349.20 2336.88i −0.0671598 0.116324i 0.830490 0.557033i \(-0.188060\pi\)
−0.897650 + 0.440709i \(0.854727\pi\)
\(740\) −1913.44 −0.0950535
\(741\) 23846.3 24528.1i 1.18221 1.21601i
\(742\) −20585.7 −1.01850
\(743\) 10259.2 + 17769.4i 0.506558 + 0.877384i 0.999971 + 0.00758908i \(0.00241570\pi\)
−0.493413 + 0.869795i \(0.664251\pi\)
\(744\) −6756.24 11702.1i −0.332924 0.576642i
\(745\) 5752.35 9963.37i 0.282886 0.489972i
\(746\) 8662.94 + 15004.7i 0.425165 + 0.736407i
\(747\) 11552.0 20008.7i 0.565818 0.980025i
\(748\) 6457.12 0.315636
\(749\) 5066.45 0.247162
\(750\) −1203.65 + 2084.79i −0.0586016 + 0.101501i
\(751\) −3646.10 + 6315.24i −0.177161 + 0.306853i −0.940907 0.338665i \(-0.890025\pi\)
0.763746 + 0.645517i \(0.223358\pi\)
\(752\) −8203.85 −0.397824
\(753\) −29049.5 −1.40587
\(754\) 5323.22 9220.09i 0.257109 0.445326i
\(755\) 2720.08 + 4711.32i 0.131118 + 0.227103i
\(756\) −10523.2 + 18226.6i −0.506248 + 0.876847i
\(757\) 5277.93 + 9141.64i 0.253408 + 0.438915i 0.964462 0.264222i \(-0.0851153\pi\)
−0.711054 + 0.703137i \(0.751782\pi\)
\(758\) −2786.55 4826.44i −0.133525 0.231272i
\(759\) 87848.9 4.20120
\(760\) −9856.36 2492.67i −0.470431 0.118972i
\(761\) −9699.72 −0.462043 −0.231021 0.972949i \(-0.574207\pi\)
−0.231021 + 0.972949i \(0.574207\pi\)
\(762\) 18378.2 + 31832.0i 0.873717 + 1.51332i
\(763\) 6631.18 + 11485.5i 0.314633 + 0.544960i
\(764\) 2786.80 4826.87i 0.131967 0.228573i
\(765\) 4799.10 + 8312.29i 0.226813 + 0.392852i
\(766\) 7018.91 12157.1i 0.331075 0.573439i
\(767\) 4676.28 0.220144
\(768\) −35000.5 −1.64449
\(769\) −13647.8 + 23638.8i −0.639992 + 1.10850i 0.345442 + 0.938440i \(0.387729\pi\)
−0.985434 + 0.170059i \(0.945604\pi\)
\(770\) −9752.13 + 16891.2i −0.456418 + 0.790540i
\(771\) −39886.7 −1.86315
\(772\) −10310.2 −0.480664
\(773\) 11898.4 20608.7i 0.553631 0.958916i −0.444378 0.895839i \(-0.646575\pi\)
0.998009 0.0630769i \(-0.0200913\pi\)
\(774\) 10137.5 + 17558.6i 0.470779 + 0.815414i
\(775\) −785.787 + 1361.02i −0.0364210 + 0.0630831i
\(776\) −8722.72 15108.2i −0.403515 0.698908i
\(777\) −17787.8 30809.3i −0.821278 1.42249i
\(778\) 32379.0 1.49209
\(779\) −2994.22 757.238i −0.137714 0.0348278i
\(780\) −6529.26 −0.299724
\(781\) 23597.4 + 40871.9i 1.08115 + 1.87262i
\(782\) −8076.28 13988.5i −0.369319 0.639679i
\(783\) 10172.7 17619.6i 0.464293 0.804179i
\(784\) 11253.2 + 19491.1i 0.512628 + 0.887898i
\(785\) −4720.33 + 8175.84i −0.214619 + 0.371730i
\(786\) −23894.8 −1.08435
\(787\) 38347.5 1.73690 0.868451 0.495775i \(-0.165116\pi\)
0.868451 + 0.495775i \(0.165116\pi\)
\(788\) 5710.76 9891.32i 0.258169 0.447162i
\(789\) −16371.8 + 28356.7i −0.738720 + 1.27950i
\(790\) −6999.45 −0.315227
\(791\) 43990.9 1.97742
\(792\) 32200.4 55772.6i 1.44468 2.50227i
\(793\) −9063.98 15699.3i −0.405891 0.703023i
\(794\) 8895.83 15408.0i 0.397608 0.688678i
\(795\) −6102.15 10569.2i −0.272228 0.471512i
\(796\) −7374.21 12772.5i −0.328357 0.568731i
\(797\) 10845.2 0.482006 0.241003 0.970524i \(-0.422524\pi\)
0.241003 + 0.970524i \(0.422524\pi\)
\(798\) −14584.6 51515.1i −0.646977 2.28523i
\(799\) 11046.0 0.489084
\(800\) 1665.63 + 2884.95i 0.0736110 + 0.127498i
\(801\) −30641.3 53072.3i −1.35163 2.34110i
\(802\) −3447.58 + 5971.39i −0.151793 + 0.262914i
\(803\) −5130.48 8886.25i −0.225468 0.390522i
\(804\) −7615.09 + 13189.7i −0.334034 + 0.578564i
\(805\) −31878.3 −1.39573
\(806\) 6523.86 0.285103
\(807\) 9414.37 16306.2i 0.410659 0.711282i
\(808\) −4732.13 + 8196.28i −0.206034 + 0.356862i
\(809\) −25939.8 −1.12731 −0.563656 0.826009i \(-0.690606\pi\)
−0.563656 + 0.826009i \(0.690606\pi\)
\(810\) 4352.31 0.188796
\(811\) −12557.6 + 21750.4i −0.543720 + 0.941750i 0.454966 + 0.890509i \(0.349651\pi\)
−0.998686 + 0.0512418i \(0.983682\pi\)
\(812\) 5443.41 + 9428.26i 0.235254 + 0.407472i
\(813\) −5818.16 + 10077.3i −0.250986 + 0.434721i
\(814\) 7033.45 + 12182.3i 0.302853 + 0.524557i
\(815\) 7348.82 + 12728.5i 0.315850 + 0.547069i
\(816\) −9719.43 −0.416971
\(817\) 14904.9 + 3769.46i 0.638259 + 0.161416i
\(818\) −33962.5 −1.45168
\(819\) −39317.3 68099.5i −1.67748 2.90548i
\(820\) 294.739 + 510.502i 0.0125521 + 0.0217409i
\(821\) 843.782 1461.47i 0.0358687 0.0621264i −0.847534 0.530741i \(-0.821914\pi\)
0.883402 + 0.468615i \(0.155247\pi\)
\(822\) 7526.25 + 13035.8i 0.319353 + 0.553135i
\(823\) −5845.12 + 10124.0i −0.247567 + 0.428799i −0.962850 0.270036i \(-0.912965\pi\)
0.715283 + 0.698835i \(0.246298\pi\)
\(824\) −5830.67 −0.246506
\(825\) −11563.2 −0.487973
\(826\) 3659.35 6338.18i 0.154147 0.266990i
\(827\) −23331.4 + 40411.2i −0.981032 + 1.69920i −0.322643 + 0.946521i \(0.604571\pi\)
−0.658390 + 0.752677i \(0.728762\pi\)
\(828\) 29813.8 1.25133
\(829\) 38751.9 1.62353 0.811767 0.583982i \(-0.198506\pi\)
0.811767 + 0.583982i \(0.198506\pi\)
\(830\) 2558.88 4432.11i 0.107012 0.185350i
\(831\) 6901.00 + 11952.9i 0.288078 + 0.498966i
\(832\) 12333.1 21361.6i 0.513912 0.890122i
\(833\) −15151.8 26243.6i −0.630225 1.09158i
\(834\) 4727.81 + 8188.80i 0.196296 + 0.339994i
\(835\) 4842.27 0.200687
\(836\) −3767.93 13308.9i −0.155881 0.550598i
\(837\) 12467.1 0.514845
\(838\) −843.728 1461.38i −0.0347806 0.0602417i
\(839\) −11551.6 20008.0i −0.475336 0.823306i 0.524265 0.851555i \(-0.324340\pi\)
−0.999601 + 0.0282492i \(0.991007\pi\)
\(840\) −18038.7 + 31244.0i −0.740946 + 1.28336i
\(841\) 6932.40 + 12007.3i 0.284243 + 0.492323i
\(842\) −15652.4 + 27110.7i −0.640637 + 1.10961i
\(843\) −29595.7 −1.20917
\(844\) 6457.40 0.263357
\(845\) 72.1963 125.048i 0.00293921 0.00509085i
\(846\) 15602.3 27023.9i 0.634063 1.09823i
\(847\) −49007.0 −1.98808
\(848\) 8005.30 0.324178
\(849\) −10568.8 + 18305.8i −0.427234 + 0.739990i
\(850\) 1063.05 + 1841.25i 0.0428967 + 0.0742992i
\(851\) −11495.7 + 19911.1i −0.463063 + 0.802048i
\(852\) 12363.3 + 21413.8i 0.497134 + 0.861061i
\(853\) 17640.0 + 30553.3i 0.708066 + 1.22641i 0.965574 + 0.260130i \(0.0837655\pi\)
−0.257507 + 0.966276i \(0.582901\pi\)
\(854\) −28371.5 −1.13683
\(855\) 14332.3 14742.1i 0.573279 0.589670i
\(856\) −3705.59 −0.147961
\(857\) 696.225 + 1205.90i 0.0277510 + 0.0480661i 0.879567 0.475774i \(-0.157832\pi\)
−0.851816 + 0.523841i \(0.824499\pi\)
\(858\) 24000.3 + 41569.8i 0.954962 + 1.65404i
\(859\) 20190.4 34970.8i 0.801964 1.38904i −0.116358 0.993207i \(-0.537122\pi\)
0.918322 0.395835i \(-0.129545\pi\)
\(860\) −1467.18 2541.23i −0.0581749 0.100762i
\(861\) −5479.90 + 9491.47i −0.216904 + 0.375689i
\(862\) 9728.25 0.384392
\(863\) −23185.3 −0.914527 −0.457263 0.889331i \(-0.651170\pi\)
−0.457263 + 0.889331i \(0.651170\pi\)
\(864\) 13213.2 22885.9i 0.520280 0.901151i
\(865\) 1264.09 2189.48i 0.0496884 0.0860629i
\(866\) 23566.2 0.924724
\(867\) −29927.3 −1.17230
\(868\) −3335.58 + 5777.39i −0.130434 + 0.225919i
\(869\) −16810.5 29116.6i −0.656221 1.13661i
\(870\) 4939.19 8554.93i 0.192476 0.333379i
\(871\) −12980.2 22482.4i −0.504958 0.874613i
\(872\) −4850.03 8400.49i −0.188352 0.326235i
\(873\) 35281.0 1.36779
\(874\) −24119.4 + 24809.0i −0.933468 + 0.960157i
\(875\) 4196.00 0.162115
\(876\) −2687.98 4655.72i −0.103674 0.179569i
\(877\) −19168.1 33200.1i −0.738038 1.27832i −0.953378 0.301780i \(-0.902419\pi\)
0.215339 0.976539i \(-0.430914\pi\)
\(878\) −7472.35 + 12942.5i −0.287220 + 0.497480i
\(879\) 33213.7 + 57527.8i 1.27448 + 2.20747i
\(880\) 3792.37 6568.59i 0.145274 0.251622i
\(881\) 39178.2 1.49824 0.749120 0.662435i \(-0.230477\pi\)
0.749120 + 0.662435i \(0.230477\pi\)
\(882\) −85606.5 −3.26817
\(883\) 13737.3 23793.8i 0.523554 0.906822i −0.476070 0.879407i \(-0.657939\pi\)
0.999624 0.0274144i \(-0.00872738\pi\)
\(884\) −2883.26 + 4993.96i −0.109700 + 0.190006i
\(885\) 4338.92 0.164804
\(886\) 4464.95 0.169304
\(887\) 25920.2 44895.0i 0.981188 1.69947i 0.323405 0.946261i \(-0.395173\pi\)
0.657784 0.753207i \(-0.271494\pi\)
\(888\) 13009.9 + 22533.9i 0.491649 + 0.851562i
\(889\) 32033.7 55484.0i 1.20852 2.09322i
\(890\) −6787.34 11756.0i −0.255632 0.442767i
\(891\) 10452.9 + 18104.9i 0.393024 + 0.680737i
\(892\) 18300.3 0.686928
\(893\) −6445.67 22767.2i −0.241541 0.853163i
\(894\) −44312.5 −1.65776
\(895\) 3669.48 + 6355.73i 0.137047 + 0.237373i
\(896\) −1410.48 2443.02i −0.0525901 0.0910887i
\(897\) −39226.7 + 67942.7i −1.46014 + 2.52903i
\(898\) 7823.61 + 13550.9i 0.290732 + 0.503562i
\(899\) 3224.48 5584.96i 0.119624 0.207196i
\(900\) −3924.27 −0.145343
\(901\) −10778.6 −0.398544
\(902\) 2166.81 3753.02i 0.0799853 0.138539i
\(903\) 27278.4 47247.6i 1.00528 1.74120i
\(904\) −32174.9 −1.18376
\(905\) 2236.81 0.0821593
\(906\) 10476.9 18146.5i 0.384185 0.665429i
\(907\) −9593.37 16616.2i −0.351205 0.608304i 0.635256 0.772302i \(-0.280895\pi\)
−0.986461 + 0.163997i \(0.947561\pi\)
\(908\) 1633.13 2828.67i 0.0596888 0.103384i
\(909\) −9570.07 16575.9i −0.349196 0.604825i
\(910\) −8709.14 15084.7i −0.317258 0.549508i
\(911\) 15917.9 0.578906 0.289453 0.957192i \(-0.406527\pi\)
0.289453 + 0.957192i \(0.406527\pi\)
\(912\) 5671.60 + 20033.0i 0.205927 + 0.727368i
\(913\) 24582.4 0.891085
\(914\) −11747.4 20347.2i −0.425132 0.736350i
\(915\) −8410.08 14566.7i −0.303856 0.526295i
\(916\) −9100.79 + 15763.0i −0.328273 + 0.568586i
\(917\) 20824.6 + 36069.3i 0.749934 + 1.29892i
\(918\) 8432.99 14606.4i 0.303192 0.525144i
\(919\) −980.295 −0.0351871 −0.0175936 0.999845i \(-0.505600\pi\)
−0.0175936 + 0.999845i \(0.505600\pi\)
\(920\) 23315.7 0.835538
\(921\) −7795.73 + 13502.6i −0.278912 + 0.483090i
\(922\) 3743.34 6483.66i 0.133710 0.231592i
\(923\) −42147.4 −1.50303
\(924\) −49084.3 −1.74757
\(925\) 1513.12 2620.81i 0.0537851 0.0931585i
\(926\) 17864.4 + 30942.1i 0.633975 + 1.09808i
\(927\) 5895.86 10211.9i 0.208895 0.361816i
\(928\) −6834.91 11838.4i −0.241775 0.418766i
\(929\) 22729.3 + 39368.3i 0.802718 + 1.39035i 0.917821 + 0.396995i \(0.129947\pi\)
−0.115103 + 0.993354i \(0.536720\pi\)
\(930\) 6053.21 0.213433
\(931\) −45249.9 + 46543.7i −1.59292 + 1.63846i
\(932\) −10876.7 −0.382271
\(933\) 11358.8 + 19674.0i 0.398575 + 0.690352i
\(934\) 14785.5 + 25609.2i 0.517982 + 0.897171i
\(935\) −5106.20 + 8844.19i −0.178599 + 0.309343i
\(936\) 28756.5 + 49807.8i 1.00421 + 1.73934i
\(937\) 18517.2 32072.7i 0.645604 1.11822i −0.338558 0.940946i \(-0.609939\pi\)
0.984162 0.177273i \(-0.0567276\pi\)
\(938\) −40629.9 −1.41430
\(939\) 13803.2 0.479713
\(940\) −2258.10 + 3911.14i −0.0783521 + 0.135710i
\(941\) −13043.1 + 22591.2i −0.451851 + 0.782629i −0.998501 0.0547324i \(-0.982569\pi\)
0.546650 + 0.837361i \(0.315903\pi\)
\(942\) 36362.5 1.25770
\(943\) 7082.97 0.244595
\(944\) −1423.04 + 2464.77i −0.0490634 + 0.0849804i
\(945\) −16643.1 28826.7i −0.572911 0.992311i
\(946\) −10786.1 + 18682.2i −0.370706 + 0.642082i
\(947\) −21419.6 37099.9i −0.734999 1.27306i −0.954724 0.297494i \(-0.903849\pi\)
0.219725 0.975562i \(-0.429484\pi\)
\(948\) −8807.40 15254.9i −0.301742 0.522632i
\(949\) 9163.55 0.313447
\(950\) 3174.73 3265.50i 0.108423 0.111523i
\(951\) 37409.5 1.27559
\(952\) 15931.5 + 27594.1i 0.542376 + 0.939424i
\(953\) 24043.7 + 41644.9i 0.817262 + 1.41554i 0.907692 + 0.419637i \(0.137843\pi\)
−0.0904297 + 0.995903i \(0.528824\pi\)
\(954\) −15224.7 + 26369.9i −0.516684 + 0.894923i
\(955\) 4407.52 + 7634.05i 0.149344 + 0.258672i
\(956\) 4227.37 7322.02i 0.143016 0.247710i
\(957\) 47449.5 1.60274
\(958\) −6100.03 −0.205723
\(959\) 13118.4 22721.8i 0.441727 0.765094i
\(960\) 11443.4 19820.6i 0.384723 0.666360i
\(961\) −25839.3 −0.867351
\(962\) −12562.5 −0.421029
\(963\) 3747.02 6490.03i 0.125385 0.217174i
\(964\) 1269.69 + 2199.17i 0.0424212 + 0.0734757i
\(965\) 8153.17 14121.7i 0.271979 0.471082i
\(966\) 61392.6 + 106335.i 2.04480 + 3.54169i
\(967\) 29688.3 + 51421.6i 0.987291 + 1.71004i 0.631277 + 0.775558i \(0.282531\pi\)
0.356014 + 0.934481i \(0.384135\pi\)
\(968\) 35843.6 1.19014
\(969\) −7636.45 26973.2i −0.253166 0.894225i
\(970\) 7815.07 0.258687
\(971\) 18380.4 + 31835.8i 0.607473 + 1.05217i 0.991655 + 0.128916i \(0.0411499\pi\)
−0.384183 + 0.923257i \(0.625517\pi\)
\(972\) −2987.67 5174.80i −0.0985901 0.170763i
\(973\) 8240.69 14273.3i 0.271515 0.470278i
\(974\) −16517.5 28609.1i −0.543382 0.941165i
\(975\) 5163.24 8943.00i 0.169596 0.293749i
\(976\) 11033.0 0.361843
\(977\) −18904.8 −0.619056 −0.309528 0.950890i \(-0.600171\pi\)
−0.309528 + 0.950890i \(0.600171\pi\)
\(978\) 28305.4 49026.3i 0.925466 1.60295i
\(979\) 32602.1 56468.4i 1.06432 1.84345i
\(980\) 12389.7 0.403852
\(981\) 19617.0 0.638454
\(982\) 11273.2 19525.8i 0.366337 0.634515i
\(983\) 10770.5 + 18655.0i 0.349466 + 0.605292i 0.986155 0.165828i \(-0.0530298\pi\)
−0.636689 + 0.771121i \(0.719696\pi\)
\(984\) 4007.99 6942.04i 0.129847 0.224902i
\(985\) 9031.97 + 15643.8i 0.292165 + 0.506045i
\(986\) −4362.21 7555.57i −0.140894 0.244035i
\(987\) −83966.9 −2.70790
\(988\) 11975.7 + 3028.65i 0.385624 + 0.0975244i
\(989\) −35258.3 −1.13362
\(990\) 14424.9 + 24984.6i 0.463083 + 0.802083i
\(991\) −23250.3 40270.7i −0.745277 1.29086i −0.950065 0.312051i \(-0.898984\pi\)
0.204788 0.978806i \(-0.434349\pi\)
\(992\) 4188.25 7254.26i 0.134049 0.232180i
\(993\) −46501.9 80543.6i −1.48609 2.57399i
\(994\) −32981.8 + 57126.1i −1.05243 + 1.82287i
\(995\) 23325.7 0.743190
\(996\) 12879.3 0.409736
\(997\) −27345.1 + 47363.2i −0.868635 + 1.50452i −0.00524355 + 0.999986i \(0.501669\pi\)
−0.863392 + 0.504534i \(0.831664\pi\)
\(998\) 517.261 895.922i 0.0164064 0.0284168i
\(999\) −24006.8 −0.760302
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 95.4.e.c.26.7 yes 20
19.7 even 3 1805.4.a.r.1.4 10
19.11 even 3 inner 95.4.e.c.11.7 20
19.12 odd 6 1805.4.a.p.1.7 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.4.e.c.11.7 20 19.11 even 3 inner
95.4.e.c.26.7 yes 20 1.1 even 1 trivial
1805.4.a.p.1.7 10 19.12 odd 6
1805.4.a.r.1.4 10 19.7 even 3