Properties

Label 9576.2.a.cg
Level 95769576
Weight 22
Character orbit 9576.a
Self dual yes
Analytic conductor 76.46576.465
Analytic rank 11
Dimension 44
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9576,2,Mod(1,9576)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9576, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9576.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 9576=2332719 9576 = 2^{3} \cdot 3^{2} \cdot 7 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 9576.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 76.464744975676.4647449756
Analytic rank: 11
Dimension: 44
Coefficient field: 4.4.7232.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x42x35x2+4x+4 x^{4} - 2x^{3} - 5x^{2} + 4x + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 22 2^{2}
Twist minimal: no (minimal twist has level 3192)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β11)q5q7+β2q11+(β3+β2+1)q13+(β11)q17+q19β2q23+(β32β1+2)q25+(β2β13)q29++(β2+2β1)q97+O(q100) q + (\beta_1 - 1) q^{5} - q^{7} + \beta_{2} q^{11} + (\beta_{3} + \beta_{2} + 1) q^{13} + (\beta_1 - 1) q^{17} + q^{19} - \beta_{2} q^{23} + ( - \beta_{3} - 2 \beta_1 + 2) q^{25} + ( - \beta_{2} - \beta_1 - 3) q^{29}+ \cdots + ( - \beta_{2} + 2 \beta_1) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q54q7+4q134q17+4q19+8q2512q29+4q31+4q35+8q378q414q4312q47+4q4920q53+8q55+8q59+16q61+4q95+O(q100) 4 q - 4 q^{5} - 4 q^{7} + 4 q^{13} - 4 q^{17} + 4 q^{19} + 8 q^{25} - 12 q^{29} + 4 q^{31} + 4 q^{35} + 8 q^{37} - 8 q^{41} - 4 q^{43} - 12 q^{47} + 4 q^{49} - 20 q^{53} + 8 q^{55} + 8 q^{59} + 16 q^{61}+ \cdots - 4 q^{95}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x42x35x2+4x+4 x^{4} - 2x^{3} - 5x^{2} + 4x + 4 : Copy content Toggle raw display

β1\beta_{1}== (ν34ν2ν+8)/2 ( \nu^{3} - 4\nu^{2} - \nu + 8 ) / 2 Copy content Toggle raw display
β2\beta_{2}== ν32ν23ν+2 \nu^{3} - 2\nu^{2} - 3\nu + 2 Copy content Toggle raw display
β3\beta_{3}== ν3+2ν2+5ν3 -\nu^{3} + 2\nu^{2} + 5\nu - 3 Copy content Toggle raw display
ν\nu== (β3+β2+1)/2 ( \beta_{3} + \beta_{2} + 1 ) / 2 Copy content Toggle raw display
ν2\nu^{2}== (β3+2β22β1+7)/2 ( \beta_{3} + 2\beta_{2} - 2\beta _1 + 7 ) / 2 Copy content Toggle raw display
ν3\nu^{3}== (5β3+9β24β1+13)/2 ( 5\beta_{3} + 9\beta_{2} - 4\beta _1 + 13 ) / 2 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−1.63640
3.06644
1.22219
−0.652223
0 0 0 −3.72844 0 −1.00000 0 0 0
1.2 0 0 0 −2.92238 0 −1.00000 0 0 0
1.3 0 0 0 0.314226 0 −1.00000 0 0 0
1.4 0 0 0 2.33660 0 −1.00000 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
33 1 -1
77 +1 +1
1919 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9576.2.a.cg 4
3.b odd 2 1 3192.2.a.y 4
12.b even 2 1 6384.2.a.bz 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3192.2.a.y 4 3.b odd 2 1
6384.2.a.bz 4 12.b even 2 1
9576.2.a.cg 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(9576))S_{2}^{\mathrm{new}}(\Gamma_0(9576)):

T54+4T536T5224T5+8 T_{5}^{4} + 4T_{5}^{3} - 6T_{5}^{2} - 24T_{5} + 8 Copy content Toggle raw display
T1128 T_{11}^{2} - 8 Copy content Toggle raw display
T1344T13320T132+32T13+64 T_{13}^{4} - 4T_{13}^{3} - 20T_{13}^{2} + 32T_{13} + 64 Copy content Toggle raw display
T174+4T1736T17224T17+8 T_{17}^{4} + 4T_{17}^{3} - 6T_{17}^{2} - 24T_{17} + 8 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T4+4T3++8 T^{4} + 4 T^{3} + \cdots + 8 Copy content Toggle raw display
77 (T+1)4 (T + 1)^{4} Copy content Toggle raw display
1111 (T28)2 (T^{2} - 8)^{2} Copy content Toggle raw display
1313 T44T3++64 T^{4} - 4 T^{3} + \cdots + 64 Copy content Toggle raw display
1717 T4+4T3++8 T^{4} + 4 T^{3} + \cdots + 8 Copy content Toggle raw display
1919 (T1)4 (T - 1)^{4} Copy content Toggle raw display
2323 (T28)2 (T^{2} - 8)^{2} Copy content Toggle raw display
2929 T4+12T3+136 T^{4} + 12 T^{3} + \cdots - 136 Copy content Toggle raw display
3131 T44T3+64 T^{4} - 4 T^{3} + \cdots - 64 Copy content Toggle raw display
3737 (T24T28)2 (T^{2} - 4 T - 28)^{2} Copy content Toggle raw display
4141 T4+8T3+3088 T^{4} + 8 T^{3} + \cdots - 3088 Copy content Toggle raw display
4343 T4+4T3++64 T^{4} + 4 T^{3} + \cdots + 64 Copy content Toggle raw display
4747 T4+12T3++1312 T^{4} + 12 T^{3} + \cdots + 1312 Copy content Toggle raw display
5353 T4+20T3+8648 T^{4} + 20 T^{3} + \cdots - 8648 Copy content Toggle raw display
5959 T48T3++512 T^{4} - 8 T^{3} + \cdots + 512 Copy content Toggle raw display
6161 T416T3+15728 T^{4} - 16 T^{3} + \cdots - 15728 Copy content Toggle raw display
6767 (T272)2 (T^{2} - 72)^{2} Copy content Toggle raw display
7171 T4+4T3++1088 T^{4} + 4 T^{3} + \cdots + 1088 Copy content Toggle raw display
7373 T4144T2++752 T^{4} - 144 T^{2} + \cdots + 752 Copy content Toggle raw display
7979 T4136T2+1024 T^{4} - 136 T^{2} + \cdots - 1024 Copy content Toggle raw display
8383 T4+4T3++3616 T^{4} + 4 T^{3} + \cdots + 3616 Copy content Toggle raw display
8989 T4+24T3+7312 T^{4} + 24 T^{3} + \cdots - 7312 Copy content Toggle raw display
9797 T448T2++368 T^{4} - 48 T^{2} + \cdots + 368 Copy content Toggle raw display
show more
show less