Properties

Label 9576.2.a.ci.1.2
Level $9576$
Weight $2$
Character 9576.1
Self dual yes
Analytic conductor $76.465$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9576,2,Mod(1,9576)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9576, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9576.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9576 = 2^{3} \cdot 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9576.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(76.4647449756\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.25857.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 8x^{2} + 9x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1064)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.52280\) of defining polynomial
Character \(\chi\) \(=\) 9576.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.52280 q^{5} +1.00000 q^{7} -5.50666 q^{11} +1.15829 q^{13} +2.98386 q^{17} +1.00000 q^{19} -0.841710 q^{23} -2.68109 q^{25} +7.95392 q^{29} +6.66728 q^{31} -1.52280 q^{35} +9.49052 q^{37} -9.95392 q^{41} -1.41010 q^{43} -0.635493 q^{47} +1.00000 q^{49} -0.348371 q^{53} +8.38553 q^{55} -14.0961 q^{59} -7.01565 q^{61} -1.76384 q^{65} -3.30044 q^{67} -14.5756 q^{71} -2.26562 q^{73} -5.50666 q^{77} -6.62120 q^{79} -2.33993 q^{83} -4.54382 q^{85} -1.56839 q^{89} +1.15829 q^{91} -1.52280 q^{95} +13.4977 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{5} + 4 q^{7} - 2 q^{11} + 2 q^{13} - 3 q^{17} + 4 q^{19} - 6 q^{23} - 3 q^{25} + 17 q^{31} - q^{35} + 3 q^{37} - 8 q^{41} + 7 q^{43} - 5 q^{47} + 4 q^{49} + 16 q^{53} + 17 q^{55} - 7 q^{59} - q^{61}+ \cdots + 3 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.52280 −0.681016 −0.340508 0.940242i \(-0.610599\pi\)
−0.340508 + 0.940242i \(0.610599\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −5.50666 −1.66032 −0.830160 0.557525i \(-0.811751\pi\)
−0.830160 + 0.557525i \(0.811751\pi\)
\(12\) 0 0
\(13\) 1.15829 0.321252 0.160626 0.987015i \(-0.448649\pi\)
0.160626 + 0.987015i \(0.448649\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.98386 0.723693 0.361847 0.932238i \(-0.382146\pi\)
0.361847 + 0.932238i \(0.382146\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.841710 −0.175509 −0.0877543 0.996142i \(-0.527969\pi\)
−0.0877543 + 0.996142i \(0.527969\pi\)
\(24\) 0 0
\(25\) −2.68109 −0.536218
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 7.95392 1.47701 0.738503 0.674250i \(-0.235533\pi\)
0.738503 + 0.674250i \(0.235533\pi\)
\(30\) 0 0
\(31\) 6.66728 1.19748 0.598740 0.800944i \(-0.295668\pi\)
0.598740 + 0.800944i \(0.295668\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.52280 −0.257400
\(36\) 0 0
\(37\) 9.49052 1.56023 0.780116 0.625635i \(-0.215160\pi\)
0.780116 + 0.625635i \(0.215160\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −9.95392 −1.55454 −0.777271 0.629166i \(-0.783396\pi\)
−0.777271 + 0.629166i \(0.783396\pi\)
\(42\) 0 0
\(43\) −1.41010 −0.215039 −0.107519 0.994203i \(-0.534291\pi\)
−0.107519 + 0.994203i \(0.534291\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.635493 −0.0926962 −0.0463481 0.998925i \(-0.514758\pi\)
−0.0463481 + 0.998925i \(0.514758\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −0.348371 −0.0478524 −0.0239262 0.999714i \(-0.507617\pi\)
−0.0239262 + 0.999714i \(0.507617\pi\)
\(54\) 0 0
\(55\) 8.38553 1.13070
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −14.0961 −1.83515 −0.917576 0.397560i \(-0.869857\pi\)
−0.917576 + 0.397560i \(0.869857\pi\)
\(60\) 0 0
\(61\) −7.01565 −0.898262 −0.449131 0.893466i \(-0.648266\pi\)
−0.449131 + 0.893466i \(0.648266\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.76384 −0.218778
\(66\) 0 0
\(67\) −3.30044 −0.403213 −0.201607 0.979467i \(-0.564616\pi\)
−0.201607 + 0.979467i \(0.564616\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −14.5756 −1.72981 −0.864903 0.501939i \(-0.832620\pi\)
−0.864903 + 0.501939i \(0.832620\pi\)
\(72\) 0 0
\(73\) −2.26562 −0.265170 −0.132585 0.991172i \(-0.542328\pi\)
−0.132585 + 0.991172i \(0.542328\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −5.50666 −0.627542
\(78\) 0 0
\(79\) −6.62120 −0.744944 −0.372472 0.928043i \(-0.621490\pi\)
−0.372472 + 0.928043i \(0.621490\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −2.33993 −0.256841 −0.128421 0.991720i \(-0.540991\pi\)
−0.128421 + 0.991720i \(0.540991\pi\)
\(84\) 0 0
\(85\) −4.54382 −0.492846
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1.56839 −0.166249 −0.0831246 0.996539i \(-0.526490\pi\)
−0.0831246 + 0.996539i \(0.526490\pi\)
\(90\) 0 0
\(91\) 1.15829 0.121422
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.52280 −0.156236
\(96\) 0 0
\(97\) 13.4977 1.37049 0.685244 0.728314i \(-0.259696\pi\)
0.685244 + 0.728314i \(0.259696\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0.552739 0.0549996 0.0274998 0.999622i \(-0.491245\pi\)
0.0274998 + 0.999622i \(0.491245\pi\)
\(102\) 0 0
\(103\) −3.56606 −0.351374 −0.175687 0.984446i \(-0.556215\pi\)
−0.175687 + 0.984446i \(0.556215\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 16.0205 1.54876 0.774382 0.632718i \(-0.218061\pi\)
0.774382 + 0.632718i \(0.218061\pi\)
\(108\) 0 0
\(109\) 14.2268 1.36268 0.681338 0.731969i \(-0.261398\pi\)
0.681338 + 0.731969i \(0.261398\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −14.1735 −1.33333 −0.666664 0.745359i \(-0.732278\pi\)
−0.666664 + 0.745359i \(0.732278\pi\)
\(114\) 0 0
\(115\) 1.28175 0.119524
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.98386 0.273530
\(120\) 0 0
\(121\) 19.3233 1.75666
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.6967 1.04619
\(126\) 0 0
\(127\) 13.8850 1.23209 0.616046 0.787710i \(-0.288734\pi\)
0.616046 + 0.787710i \(0.288734\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 5.30511 0.463509 0.231755 0.972774i \(-0.425553\pi\)
0.231755 + 0.972774i \(0.425553\pi\)
\(132\) 0 0
\(133\) 1.00000 0.0867110
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1.06221 0.0907511 0.0453756 0.998970i \(-0.485552\pi\)
0.0453756 + 0.998970i \(0.485552\pi\)
\(138\) 0 0
\(139\) 18.8407 1.59805 0.799025 0.601297i \(-0.205349\pi\)
0.799025 + 0.601297i \(0.205349\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −6.37831 −0.533381
\(144\) 0 0
\(145\) −12.1122 −1.00586
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 23.0661 1.88965 0.944826 0.327574i \(-0.106231\pi\)
0.944826 + 0.327574i \(0.106231\pi\)
\(150\) 0 0
\(151\) −1.01614 −0.0826920 −0.0413460 0.999145i \(-0.513165\pi\)
−0.0413460 + 0.999145i \(0.513165\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −10.1529 −0.815502
\(156\) 0 0
\(157\) 5.06662 0.404360 0.202180 0.979348i \(-0.435197\pi\)
0.202180 + 0.979348i \(0.435197\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −0.841710 −0.0663360
\(162\) 0 0
\(163\) −12.6794 −0.993126 −0.496563 0.868001i \(-0.665405\pi\)
−0.496563 + 0.868001i \(0.665405\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 15.3827 1.19035 0.595175 0.803596i \(-0.297083\pi\)
0.595175 + 0.803596i \(0.297083\pi\)
\(168\) 0 0
\(169\) −11.6584 −0.896797
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 15.3299 1.16551 0.582755 0.812648i \(-0.301975\pi\)
0.582755 + 0.812648i \(0.301975\pi\)
\(174\) 0 0
\(175\) −2.68109 −0.202671
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 15.3640 1.14836 0.574181 0.818729i \(-0.305321\pi\)
0.574181 + 0.818729i \(0.305321\pi\)
\(180\) 0 0
\(181\) −3.99719 −0.297108 −0.148554 0.988904i \(-0.547462\pi\)
−0.148554 + 0.988904i \(0.547462\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −14.4521 −1.06254
\(186\) 0 0
\(187\) −16.4311 −1.20156
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 9.79330 0.708618 0.354309 0.935128i \(-0.384716\pi\)
0.354309 + 0.935128i \(0.384716\pi\)
\(192\) 0 0
\(193\) −20.1206 −1.44832 −0.724158 0.689634i \(-0.757771\pi\)
−0.724158 + 0.689634i \(0.757771\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 16.5223 1.17717 0.588583 0.808437i \(-0.299686\pi\)
0.588583 + 0.808437i \(0.299686\pi\)
\(198\) 0 0
\(199\) 12.8574 0.911434 0.455717 0.890125i \(-0.349383\pi\)
0.455717 + 0.890125i \(0.349383\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 7.95392 0.558256
\(204\) 0 0
\(205\) 15.1578 1.05867
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −5.50666 −0.380904
\(210\) 0 0
\(211\) −15.1555 −1.04335 −0.521673 0.853146i \(-0.674692\pi\)
−0.521673 + 0.853146i \(0.674692\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 2.14730 0.146445
\(216\) 0 0
\(217\) 6.66728 0.452605
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 3.45618 0.232488
\(222\) 0 0
\(223\) 12.8094 0.857783 0.428892 0.903356i \(-0.358904\pi\)
0.428892 + 0.903356i \(0.358904\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 24.2539 1.60979 0.804893 0.593419i \(-0.202222\pi\)
0.804893 + 0.593419i \(0.202222\pi\)
\(228\) 0 0
\(229\) −17.1945 −1.13624 −0.568122 0.822945i \(-0.692330\pi\)
−0.568122 + 0.822945i \(0.692330\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 28.0056 1.83471 0.917355 0.398071i \(-0.130320\pi\)
0.917355 + 0.398071i \(0.130320\pi\)
\(234\) 0 0
\(235\) 0.967727 0.0631275
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0.460583 0.0297926 0.0148963 0.999889i \(-0.495258\pi\)
0.0148963 + 0.999889i \(0.495258\pi\)
\(240\) 0 0
\(241\) −2.16673 −0.139571 −0.0697856 0.997562i \(-0.522232\pi\)
−0.0697856 + 0.997562i \(0.522232\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1.52280 −0.0972880
\(246\) 0 0
\(247\) 1.15829 0.0737002
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −28.0705 −1.77180 −0.885898 0.463880i \(-0.846457\pi\)
−0.885898 + 0.463880i \(0.846457\pi\)
\(252\) 0 0
\(253\) 4.63501 0.291401
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.63124 0.101754 0.0508769 0.998705i \(-0.483798\pi\)
0.0508769 + 0.998705i \(0.483798\pi\)
\(258\) 0 0
\(259\) 9.49052 0.589712
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −3.56791 −0.220007 −0.110003 0.993931i \(-0.535086\pi\)
−0.110003 + 0.993931i \(0.535086\pi\)
\(264\) 0 0
\(265\) 0.530498 0.0325882
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −15.6422 −0.953723 −0.476862 0.878978i \(-0.658226\pi\)
−0.476862 + 0.878978i \(0.658226\pi\)
\(270\) 0 0
\(271\) 32.1461 1.95273 0.976367 0.216117i \(-0.0693393\pi\)
0.976367 + 0.216117i \(0.0693393\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 14.7638 0.890293
\(276\) 0 0
\(277\) 5.01332 0.301221 0.150611 0.988593i \(-0.451876\pi\)
0.150611 + 0.988593i \(0.451876\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 16.0481 0.957352 0.478676 0.877992i \(-0.341117\pi\)
0.478676 + 0.877992i \(0.341117\pi\)
\(282\) 0 0
\(283\) 1.41314 0.0840024 0.0420012 0.999118i \(-0.486627\pi\)
0.0420012 + 0.999118i \(0.486627\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −9.95392 −0.587561
\(288\) 0 0
\(289\) −8.09656 −0.476268
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −10.9006 −0.636821 −0.318411 0.947953i \(-0.603149\pi\)
−0.318411 + 0.947953i \(0.603149\pi\)
\(294\) 0 0
\(295\) 21.4655 1.24977
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −0.974944 −0.0563825
\(300\) 0 0
\(301\) −1.41010 −0.0812769
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 10.6834 0.611731
\(306\) 0 0
\(307\) −4.15170 −0.236950 −0.118475 0.992957i \(-0.537801\pi\)
−0.118475 + 0.992957i \(0.537801\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −5.00770 −0.283961 −0.141980 0.989869i \(-0.545347\pi\)
−0.141980 + 0.989869i \(0.545347\pi\)
\(312\) 0 0
\(313\) 19.2556 1.08839 0.544195 0.838959i \(-0.316835\pi\)
0.544195 + 0.838959i \(0.316835\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 8.95818 0.503141 0.251571 0.967839i \(-0.419053\pi\)
0.251571 + 0.967839i \(0.419053\pi\)
\(318\) 0 0
\(319\) −43.7996 −2.45230
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2.98386 0.166027
\(324\) 0 0
\(325\) −3.10548 −0.172261
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −0.635493 −0.0350359
\(330\) 0 0
\(331\) 17.9588 0.987105 0.493553 0.869716i \(-0.335698\pi\)
0.493553 + 0.869716i \(0.335698\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 5.02591 0.274595
\(336\) 0 0
\(337\) −6.75381 −0.367903 −0.183952 0.982935i \(-0.558889\pi\)
−0.183952 + 0.982935i \(0.558889\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −36.7145 −1.98820
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 26.0033 1.39593 0.697965 0.716132i \(-0.254089\pi\)
0.697965 + 0.716132i \(0.254089\pi\)
\(348\) 0 0
\(349\) 20.4634 1.09538 0.547690 0.836681i \(-0.315507\pi\)
0.547690 + 0.836681i \(0.315507\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 15.9696 0.849975 0.424987 0.905199i \(-0.360279\pi\)
0.424987 + 0.905199i \(0.360279\pi\)
\(354\) 0 0
\(355\) 22.1957 1.17803
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −13.6038 −0.717984 −0.358992 0.933341i \(-0.616879\pi\)
−0.358992 + 0.933341i \(0.616879\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 3.45008 0.180585
\(366\) 0 0
\(367\) −24.9655 −1.30319 −0.651595 0.758567i \(-0.725900\pi\)
−0.651595 + 0.758567i \(0.725900\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −0.348371 −0.0180865
\(372\) 0 0
\(373\) 15.3965 0.797202 0.398601 0.917125i \(-0.369496\pi\)
0.398601 + 0.917125i \(0.369496\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 9.21295 0.474491
\(378\) 0 0
\(379\) −0.932900 −0.0479198 −0.0239599 0.999713i \(-0.507627\pi\)
−0.0239599 + 0.999713i \(0.507627\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −0.841710 −0.0430094 −0.0215047 0.999769i \(-0.506846\pi\)
−0.0215047 + 0.999769i \(0.506846\pi\)
\(384\) 0 0
\(385\) 8.38553 0.427366
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 3.75492 0.190382 0.0951911 0.995459i \(-0.469654\pi\)
0.0951911 + 0.995459i \(0.469654\pi\)
\(390\) 0 0
\(391\) −2.51155 −0.127014
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 10.0828 0.507318
\(396\) 0 0
\(397\) 28.7052 1.44067 0.720336 0.693626i \(-0.243988\pi\)
0.720336 + 0.693626i \(0.243988\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −18.9660 −0.947118 −0.473559 0.880762i \(-0.657031\pi\)
−0.473559 + 0.880762i \(0.657031\pi\)
\(402\) 0 0
\(403\) 7.72265 0.384693
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −52.2611 −2.59049
\(408\) 0 0
\(409\) −3.08716 −0.152650 −0.0763250 0.997083i \(-0.524319\pi\)
−0.0763250 + 0.997083i \(0.524319\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −14.0961 −0.693623
\(414\) 0 0
\(415\) 3.56325 0.174913
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 11.2219 0.548224 0.274112 0.961698i \(-0.411616\pi\)
0.274112 + 0.961698i \(0.411616\pi\)
\(420\) 0 0
\(421\) 5.58146 0.272024 0.136012 0.990707i \(-0.456571\pi\)
0.136012 + 0.990707i \(0.456571\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −8.00000 −0.388057
\(426\) 0 0
\(427\) −7.01565 −0.339511
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −0.555071 −0.0267368 −0.0133684 0.999911i \(-0.504255\pi\)
−0.0133684 + 0.999911i \(0.504255\pi\)
\(432\) 0 0
\(433\) −11.8215 −0.568107 −0.284053 0.958808i \(-0.591679\pi\)
−0.284053 + 0.958808i \(0.591679\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −0.841710 −0.0402644
\(438\) 0 0
\(439\) −26.3432 −1.25729 −0.628647 0.777691i \(-0.716391\pi\)
−0.628647 + 0.777691i \(0.716391\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 16.0246 0.761350 0.380675 0.924709i \(-0.375692\pi\)
0.380675 + 0.924709i \(0.375692\pi\)
\(444\) 0 0
\(445\) 2.38834 0.113218
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 33.4589 1.57902 0.789511 0.613736i \(-0.210334\pi\)
0.789511 + 0.613736i \(0.210334\pi\)
\(450\) 0 0
\(451\) 54.8129 2.58104
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −1.76384 −0.0826902
\(456\) 0 0
\(457\) 40.1051 1.87604 0.938020 0.346582i \(-0.112658\pi\)
0.938020 + 0.346582i \(0.112658\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −15.9719 −0.743886 −0.371943 0.928256i \(-0.621308\pi\)
−0.371943 + 0.928256i \(0.621308\pi\)
\(462\) 0 0
\(463\) 16.8094 0.781201 0.390600 0.920560i \(-0.372267\pi\)
0.390600 + 0.920560i \(0.372267\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 35.5178 1.64357 0.821784 0.569799i \(-0.192979\pi\)
0.821784 + 0.569799i \(0.192979\pi\)
\(468\) 0 0
\(469\) −3.30044 −0.152400
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 7.76495 0.357033
\(474\) 0 0
\(475\) −2.68109 −0.123017
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −30.2336 −1.38141 −0.690703 0.723138i \(-0.742699\pi\)
−0.690703 + 0.723138i \(0.742699\pi\)
\(480\) 0 0
\(481\) 10.9928 0.501228
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −20.5543 −0.933324
\(486\) 0 0
\(487\) −4.06847 −0.184360 −0.0921799 0.995742i \(-0.529383\pi\)
−0.0921799 + 0.995742i \(0.529383\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 26.6046 1.20065 0.600324 0.799757i \(-0.295038\pi\)
0.600324 + 0.799757i \(0.295038\pi\)
\(492\) 0 0
\(493\) 23.7334 1.06890
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −14.5756 −0.653805
\(498\) 0 0
\(499\) −14.9098 −0.667453 −0.333726 0.942670i \(-0.608306\pi\)
−0.333726 + 0.942670i \(0.608306\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −17.4054 −0.776070 −0.388035 0.921645i \(-0.626846\pi\)
−0.388035 + 0.921645i \(0.626846\pi\)
\(504\) 0 0
\(505\) −0.841710 −0.0374556
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 35.7414 1.58421 0.792104 0.610386i \(-0.208986\pi\)
0.792104 + 0.610386i \(0.208986\pi\)
\(510\) 0 0
\(511\) −2.26562 −0.100225
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 5.43039 0.239292
\(516\) 0 0
\(517\) 3.49944 0.153905
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0.905290 0.0396615 0.0198307 0.999803i \(-0.493687\pi\)
0.0198307 + 0.999803i \(0.493687\pi\)
\(522\) 0 0
\(523\) −29.3182 −1.28199 −0.640997 0.767543i \(-0.721479\pi\)
−0.640997 + 0.767543i \(0.721479\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 19.8943 0.866608
\(528\) 0 0
\(529\) −22.2915 −0.969197
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −11.5295 −0.499399
\(534\) 0 0
\(535\) −24.3960 −1.05473
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −5.50666 −0.237189
\(540\) 0 0
\(541\) 13.6521 0.586950 0.293475 0.955967i \(-0.405188\pi\)
0.293475 + 0.955967i \(0.405188\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −21.6645 −0.928004
\(546\) 0 0
\(547\) 21.0489 0.899985 0.449993 0.893032i \(-0.351427\pi\)
0.449993 + 0.893032i \(0.351427\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 7.95392 0.338848
\(552\) 0 0
\(553\) −6.62120 −0.281562
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 43.6750 1.85057 0.925284 0.379275i \(-0.123827\pi\)
0.925284 + 0.379275i \(0.123827\pi\)
\(558\) 0 0
\(559\) −1.63331 −0.0690816
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 14.6201 0.616163 0.308082 0.951360i \(-0.400313\pi\)
0.308082 + 0.951360i \(0.400313\pi\)
\(564\) 0 0
\(565\) 21.5833 0.908017
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1.54311 0.0646907 0.0323453 0.999477i \(-0.489702\pi\)
0.0323453 + 0.999477i \(0.489702\pi\)
\(570\) 0 0
\(571\) 3.23031 0.135184 0.0675921 0.997713i \(-0.478468\pi\)
0.0675921 + 0.997713i \(0.478468\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2.25670 0.0941108
\(576\) 0 0
\(577\) 12.0678 0.502391 0.251195 0.967936i \(-0.419176\pi\)
0.251195 + 0.967936i \(0.419176\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −2.33993 −0.0970768
\(582\) 0 0
\(583\) 1.91836 0.0794503
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 18.9165 0.780768 0.390384 0.920652i \(-0.372342\pi\)
0.390384 + 0.920652i \(0.372342\pi\)
\(588\) 0 0
\(589\) 6.66728 0.274721
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 42.9703 1.76458 0.882289 0.470708i \(-0.156002\pi\)
0.882289 + 0.470708i \(0.156002\pi\)
\(594\) 0 0
\(595\) −4.54382 −0.186278
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −45.3930 −1.85471 −0.927354 0.374186i \(-0.877922\pi\)
−0.927354 + 0.374186i \(0.877922\pi\)
\(600\) 0 0
\(601\) −24.9712 −1.01859 −0.509297 0.860591i \(-0.670095\pi\)
−0.509297 + 0.860591i \(0.670095\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −29.4255 −1.19632
\(606\) 0 0
\(607\) −16.8131 −0.682424 −0.341212 0.939986i \(-0.610837\pi\)
−0.341212 + 0.939986i \(0.610837\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −0.736085 −0.0297788
\(612\) 0 0
\(613\) 0.894115 0.0361130 0.0180565 0.999837i \(-0.494252\pi\)
0.0180565 + 0.999837i \(0.494252\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −13.4396 −0.541056 −0.270528 0.962712i \(-0.587198\pi\)
−0.270528 + 0.962712i \(0.587198\pi\)
\(618\) 0 0
\(619\) 2.96332 0.119106 0.0595530 0.998225i \(-0.481032\pi\)
0.0595530 + 0.998225i \(0.481032\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −1.56839 −0.0628363
\(624\) 0 0
\(625\) −4.40633 −0.176253
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 28.3184 1.12913
\(630\) 0 0
\(631\) −17.6849 −0.704023 −0.352012 0.935996i \(-0.614502\pi\)
−0.352012 + 0.935996i \(0.614502\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −21.1440 −0.839074
\(636\) 0 0
\(637\) 1.15829 0.0458931
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −13.6002 −0.537174 −0.268587 0.963255i \(-0.586557\pi\)
−0.268587 + 0.963255i \(0.586557\pi\)
\(642\) 0 0
\(643\) −13.5492 −0.534328 −0.267164 0.963651i \(-0.586087\pi\)
−0.267164 + 0.963651i \(0.586087\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −10.0396 −0.394697 −0.197349 0.980333i \(-0.563233\pi\)
−0.197349 + 0.980333i \(0.563233\pi\)
\(648\) 0 0
\(649\) 77.6223 3.04694
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −32.3408 −1.26559 −0.632797 0.774318i \(-0.718093\pi\)
−0.632797 + 0.774318i \(0.718093\pi\)
\(654\) 0 0
\(655\) −8.07860 −0.315657
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −30.5883 −1.19155 −0.595776 0.803151i \(-0.703155\pi\)
−0.595776 + 0.803151i \(0.703155\pi\)
\(660\) 0 0
\(661\) 4.03597 0.156981 0.0784905 0.996915i \(-0.474990\pi\)
0.0784905 + 0.996915i \(0.474990\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.52280 −0.0590516
\(666\) 0 0
\(667\) −6.69489 −0.259227
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 38.6328 1.49140
\(672\) 0 0
\(673\) −9.29434 −0.358270 −0.179135 0.983824i \(-0.557330\pi\)
−0.179135 + 0.983824i \(0.557330\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 32.4111 1.24566 0.622829 0.782358i \(-0.285983\pi\)
0.622829 + 0.782358i \(0.285983\pi\)
\(678\) 0 0
\(679\) 13.4977 0.517996
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −29.1840 −1.11669 −0.558347 0.829608i \(-0.688564\pi\)
−0.558347 + 0.829608i \(0.688564\pi\)
\(684\) 0 0
\(685\) −1.61754 −0.0618029
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −0.403514 −0.0153727
\(690\) 0 0
\(691\) −43.9489 −1.67190 −0.835948 0.548809i \(-0.815081\pi\)
−0.835948 + 0.548809i \(0.815081\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −28.6906 −1.08830
\(696\) 0 0
\(697\) −29.7011 −1.12501
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 13.5446 0.511571 0.255785 0.966734i \(-0.417666\pi\)
0.255785 + 0.966734i \(0.417666\pi\)
\(702\) 0 0
\(703\) 9.49052 0.357942
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0.552739 0.0207879
\(708\) 0 0
\(709\) 26.2496 0.985825 0.492913 0.870079i \(-0.335932\pi\)
0.492913 + 0.870079i \(0.335932\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −5.61192 −0.210168
\(714\) 0 0
\(715\) 9.71288 0.363241
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −21.9069 −0.816989 −0.408494 0.912761i \(-0.633946\pi\)
−0.408494 + 0.912761i \(0.633946\pi\)
\(720\) 0 0
\(721\) −3.56606 −0.132807
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −21.3252 −0.791997
\(726\) 0 0
\(727\) 29.5100 1.09446 0.547232 0.836981i \(-0.315682\pi\)
0.547232 + 0.836981i \(0.315682\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −4.20755 −0.155622
\(732\) 0 0
\(733\) 35.1131 1.29693 0.648465 0.761244i \(-0.275411\pi\)
0.648465 + 0.761244i \(0.275411\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 18.1744 0.669464
\(738\) 0 0
\(739\) 40.2785 1.48167 0.740833 0.671689i \(-0.234431\pi\)
0.740833 + 0.671689i \(0.234431\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 7.19082 0.263805 0.131903 0.991263i \(-0.457891\pi\)
0.131903 + 0.991263i \(0.457891\pi\)
\(744\) 0 0
\(745\) −35.1251 −1.28688
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 16.0205 0.585378
\(750\) 0 0
\(751\) 0.902222 0.0329226 0.0164613 0.999865i \(-0.494760\pi\)
0.0164613 + 0.999865i \(0.494760\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1.54737 0.0563146
\(756\) 0 0
\(757\) −49.3719 −1.79445 −0.897227 0.441570i \(-0.854422\pi\)
−0.897227 + 0.441570i \(0.854422\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 25.7582 0.933734 0.466867 0.884327i \(-0.345383\pi\)
0.466867 + 0.884327i \(0.345383\pi\)
\(762\) 0 0
\(763\) 14.2268 0.515043
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −16.3273 −0.589546
\(768\) 0 0
\(769\) 47.7844 1.72315 0.861574 0.507631i \(-0.169479\pi\)
0.861574 + 0.507631i \(0.169479\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 26.5911 0.956416 0.478208 0.878247i \(-0.341287\pi\)
0.478208 + 0.878247i \(0.341287\pi\)
\(774\) 0 0
\(775\) −17.8756 −0.642109
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −9.95392 −0.356636
\(780\) 0 0
\(781\) 80.2629 2.87203
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −7.71543 −0.275376
\(786\) 0 0
\(787\) 51.9142 1.85054 0.925270 0.379309i \(-0.123838\pi\)
0.925270 + 0.379309i \(0.123838\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −14.1735 −0.503950
\(792\) 0 0
\(793\) −8.12616 −0.288569
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 20.2226 0.716320 0.358160 0.933660i \(-0.383404\pi\)
0.358160 + 0.933660i \(0.383404\pi\)
\(798\) 0 0
\(799\) −1.89622 −0.0670836
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 12.4760 0.440268
\(804\) 0 0
\(805\) 1.28175 0.0451759
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −16.2186 −0.570215 −0.285107 0.958496i \(-0.592029\pi\)
−0.285107 + 0.958496i \(0.592029\pi\)
\(810\) 0 0
\(811\) −15.3107 −0.537632 −0.268816 0.963191i \(-0.586632\pi\)
−0.268816 + 0.963191i \(0.586632\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 19.3081 0.676335
\(816\) 0 0
\(817\) −1.41010 −0.0493332
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 28.8945 1.00843 0.504213 0.863579i \(-0.331783\pi\)
0.504213 + 0.863579i \(0.331783\pi\)
\(822\) 0 0
\(823\) −55.3879 −1.93070 −0.965350 0.260960i \(-0.915961\pi\)
−0.965350 + 0.260960i \(0.915961\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −14.8094 −0.514975 −0.257487 0.966282i \(-0.582895\pi\)
−0.257487 + 0.966282i \(0.582895\pi\)
\(828\) 0 0
\(829\) 8.75100 0.303935 0.151967 0.988386i \(-0.451439\pi\)
0.151967 + 0.988386i \(0.451439\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 2.98386 0.103385
\(834\) 0 0
\(835\) −23.4248 −0.810647
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 37.9859 1.31142 0.655709 0.755014i \(-0.272370\pi\)
0.655709 + 0.755014i \(0.272370\pi\)
\(840\) 0 0
\(841\) 34.2649 1.18155
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 17.7533 0.610733
\(846\) 0 0
\(847\) 19.3233 0.663957
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −7.98827 −0.273834
\(852\) 0 0
\(853\) −6.37246 −0.218189 −0.109094 0.994031i \(-0.534795\pi\)
−0.109094 + 0.994031i \(0.534795\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 58.3717 1.99394 0.996970 0.0777879i \(-0.0247857\pi\)
0.996970 + 0.0777879i \(0.0247857\pi\)
\(858\) 0 0
\(859\) −14.4372 −0.492592 −0.246296 0.969195i \(-0.579214\pi\)
−0.246296 + 0.969195i \(0.579214\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −35.4975 −1.20835 −0.604174 0.796852i \(-0.706497\pi\)
−0.604174 + 0.796852i \(0.706497\pi\)
\(864\) 0 0
\(865\) −23.3443 −0.793731
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 36.4607 1.23685
\(870\) 0 0
\(871\) −3.82287 −0.129533
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 11.6967 0.395422
\(876\) 0 0
\(877\) 12.3429 0.416789 0.208394 0.978045i \(-0.433176\pi\)
0.208394 + 0.978045i \(0.433176\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 28.5321 0.961270 0.480635 0.876921i \(-0.340406\pi\)
0.480635 + 0.876921i \(0.340406\pi\)
\(882\) 0 0
\(883\) −35.2677 −1.18685 −0.593426 0.804888i \(-0.702225\pi\)
−0.593426 + 0.804888i \(0.702225\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −14.2146 −0.477280 −0.238640 0.971108i \(-0.576702\pi\)
−0.238640 + 0.971108i \(0.576702\pi\)
\(888\) 0 0
\(889\) 13.8850 0.465687
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −0.635493 −0.0212660
\(894\) 0 0
\(895\) −23.3963 −0.782052
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 53.0310 1.76868
\(900\) 0 0
\(901\) −1.03949 −0.0346304
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 6.08690 0.202336
\(906\) 0 0
\(907\) 0.342749 0.0113808 0.00569040 0.999984i \(-0.498189\pi\)
0.00569040 + 0.999984i \(0.498189\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −38.8036 −1.28562 −0.642810 0.766026i \(-0.722232\pi\)
−0.642810 + 0.766026i \(0.722232\pi\)
\(912\) 0 0
\(913\) 12.8852 0.426439
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 5.30511 0.175190
\(918\) 0 0
\(919\) 5.52158 0.182140 0.0910700 0.995844i \(-0.470971\pi\)
0.0910700 + 0.995844i \(0.470971\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −16.8828 −0.555704
\(924\) 0 0
\(925\) −25.4449 −0.836624
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 15.7718 0.517455 0.258727 0.965950i \(-0.416697\pi\)
0.258727 + 0.965950i \(0.416697\pi\)
\(930\) 0 0
\(931\) 1.00000 0.0327737
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 25.0213 0.818283
\(936\) 0 0
\(937\) 29.4650 0.962579 0.481290 0.876562i \(-0.340169\pi\)
0.481290 + 0.876562i \(0.340169\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −1.12235 −0.0365876 −0.0182938 0.999833i \(-0.505823\pi\)
−0.0182938 + 0.999833i \(0.505823\pi\)
\(942\) 0 0
\(943\) 8.37831 0.272835
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 21.8952 0.711497 0.355748 0.934582i \(-0.384226\pi\)
0.355748 + 0.934582i \(0.384226\pi\)
\(948\) 0 0
\(949\) −2.62424 −0.0851865
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1.88912 0.0611947 0.0305974 0.999532i \(-0.490259\pi\)
0.0305974 + 0.999532i \(0.490259\pi\)
\(954\) 0 0
\(955\) −14.9132 −0.482580
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1.06221 0.0343007
\(960\) 0 0
\(961\) 13.4527 0.433957
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 30.6397 0.986326
\(966\) 0 0
\(967\) −19.9874 −0.642752 −0.321376 0.946952i \(-0.604145\pi\)
−0.321376 + 0.946952i \(0.604145\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 48.0256 1.54121 0.770607 0.637311i \(-0.219953\pi\)
0.770607 + 0.637311i \(0.219953\pi\)
\(972\) 0 0
\(973\) 18.8407 0.604007
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 14.9221 0.477401 0.238701 0.971093i \(-0.423279\pi\)
0.238701 + 0.971093i \(0.423279\pi\)
\(978\) 0 0
\(979\) 8.63661 0.276027
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 15.0194 0.479045 0.239523 0.970891i \(-0.423009\pi\)
0.239523 + 0.970891i \(0.423009\pi\)
\(984\) 0 0
\(985\) −25.1601 −0.801669
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.18690 0.0377411
\(990\) 0 0
\(991\) 40.2089 1.27728 0.638640 0.769506i \(-0.279497\pi\)
0.638640 + 0.769506i \(0.279497\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −19.5792 −0.620701
\(996\) 0 0
\(997\) −25.0968 −0.794824 −0.397412 0.917640i \(-0.630092\pi\)
−0.397412 + 0.917640i \(0.630092\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9576.2.a.ci.1.2 4
3.2 odd 2 1064.2.a.h.1.2 4
12.11 even 2 2128.2.a.t.1.4 4
21.20 even 2 7448.2.a.bj.1.3 4
24.5 odd 2 8512.2.a.bq.1.3 4
24.11 even 2 8512.2.a.bu.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1064.2.a.h.1.2 4 3.2 odd 2
2128.2.a.t.1.4 4 12.11 even 2
7448.2.a.bj.1.3 4 21.20 even 2
8512.2.a.bq.1.3 4 24.5 odd 2
8512.2.a.bu.1.1 4 24.11 even 2
9576.2.a.ci.1.2 4 1.1 even 1 trivial