Properties

Label 959.1.r.a.552.1
Level $959$
Weight $1$
Character 959.552
Analytic conductor $0.479$
Analytic rank $0$
Dimension $16$
Projective image $D_{34}$
CM discriminant -7
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [959,1,Mod(202,959)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(959, base_ring=CyclotomicField(34))
 
chi = DirichletCharacter(H, H._module([17, 25]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("959.202");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 959 = 7 \cdot 137 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 959.r (of order \(34\), degree \(16\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.478603347115\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\Q(\zeta_{34})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{15} + x^{14} - x^{13} + x^{12} - x^{11} + x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{34}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{34} - \cdots)\)

Embedding invariants

Embedding label 552.1
Root \(-0.932472 - 0.361242i\) of defining polynomial
Character \(\chi\) \(=\) 959.552
Dual form 959.1.r.a.377.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.111208 - 1.20013i) q^{2} +(-0.444966 + 0.0831786i) q^{4} +(0.850217 + 0.526432i) q^{7} +(-0.180529 - 0.634493i) q^{8} +(0.602635 + 0.798017i) q^{9} +(0.181395 - 0.0339085i) q^{11} +(0.537235 - 1.07891i) q^{14} +(-1.16350 + 0.450743i) q^{16} +(0.890705 - 0.811985i) q^{18} +(-0.0608671 - 0.213926i) q^{22} +(0.260991 + 0.673696i) q^{23} +(0.982973 + 0.183750i) q^{25} +(-0.422106 - 0.163525i) q^{28} +(-0.719401 - 1.85699i) q^{29} +(0.376298 + 0.755708i) q^{32} +(-0.334530 - 0.304965i) q^{36} -1.96595 q^{37} +(-0.486734 - 0.533922i) q^{43} +(-0.0778940 + 0.0301763i) q^{44} +(0.779497 - 0.388143i) q^{46} +(0.445738 + 0.895163i) q^{49} +(0.111208 - 1.20013i) q^{50} +(-1.20614 - 1.32307i) q^{53} +(0.180529 - 0.634493i) q^{56} +(-2.14862 + 1.06989i) q^{58} +(0.0922684 + 0.995734i) q^{63} +(-0.195769 + 0.121215i) q^{64} +(-0.840204 + 1.35698i) q^{67} +(-0.0675278 + 0.361242i) q^{71} +(0.397543 - 0.526432i) q^{72} +(0.218629 + 2.35939i) q^{74} +(0.172075 + 0.0666624i) q^{77} +(1.20614 - 0.600584i) q^{79} +(-0.273663 + 0.961826i) q^{81} +(-0.586645 + 0.643519i) q^{86} +(-0.0542616 - 0.108972i) q^{88} +(-0.172169 - 0.278063i) q^{92} +(1.02474 - 0.634493i) q^{98} +(0.136374 + 0.124322i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{2} - 3 q^{4} + q^{7} - 4 q^{8} + q^{9} + 2 q^{11} + 2 q^{14} - 5 q^{16} + 2 q^{18} + 4 q^{22} + 17 q^{23} + q^{25} + 3 q^{28} - 6 q^{32} + 3 q^{36} - 2 q^{37} - 11 q^{44} - q^{49} + 2 q^{50}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/959\mathbb{Z}\right)^\times\).

\(n\) \(414\) \(549\)
\(\chi(n)\) \(e\left(\frac{5}{34}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.111208 1.20013i −0.111208 1.20013i −0.850217 0.526432i \(-0.823529\pi\)
0.739009 0.673696i \(-0.235294\pi\)
\(3\) 0 0 −0.895163 0.445738i \(-0.852941\pi\)
0.895163 + 0.445738i \(0.147059\pi\)
\(4\) −0.444966 + 0.0831786i −0.444966 + 0.0831786i
\(5\) 0 0 −0.995734 0.0922684i \(-0.970588\pi\)
0.995734 + 0.0922684i \(0.0294118\pi\)
\(6\) 0 0
\(7\) 0.850217 + 0.526432i 0.850217 + 0.526432i
\(8\) −0.180529 0.634493i −0.180529 0.634493i
\(9\) 0.602635 + 0.798017i 0.602635 + 0.798017i
\(10\) 0 0
\(11\) 0.181395 0.0339085i 0.181395 0.0339085i −0.0922684 0.995734i \(-0.529412\pi\)
0.273663 + 0.961826i \(0.411765\pi\)
\(12\) 0 0
\(13\) 0 0 0.526432 0.850217i \(-0.323529\pi\)
−0.526432 + 0.850217i \(0.676471\pi\)
\(14\) 0.537235 1.07891i 0.537235 1.07891i
\(15\) 0 0
\(16\) −1.16350 + 0.450743i −1.16350 + 0.450743i
\(17\) 0 0 0.273663 0.961826i \(-0.411765\pi\)
−0.273663 + 0.961826i \(0.588235\pi\)
\(18\) 0.890705 0.811985i 0.890705 0.811985i
\(19\) 0 0 0.739009 0.673696i \(-0.235294\pi\)
−0.739009 + 0.673696i \(0.764706\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −0.0608671 0.213926i −0.0608671 0.213926i
\(23\) 0.260991 + 0.673696i 0.260991 + 0.673696i 1.00000 \(0\)
−0.739009 + 0.673696i \(0.764706\pi\)
\(24\) 0 0
\(25\) 0.982973 + 0.183750i 0.982973 + 0.183750i
\(26\) 0 0
\(27\) 0 0
\(28\) −0.422106 0.163525i −0.422106 0.163525i
\(29\) −0.719401 1.85699i −0.719401 1.85699i −0.445738 0.895163i \(-0.647059\pi\)
−0.273663 0.961826i \(-0.588235\pi\)
\(30\) 0 0
\(31\) 0 0 0.673696 0.739009i \(-0.264706\pi\)
−0.673696 + 0.739009i \(0.735294\pi\)
\(32\) 0.376298 + 0.755708i 0.376298 + 0.755708i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) −0.334530 0.304965i −0.334530 0.304965i
\(37\) −1.96595 −1.96595 −0.982973 0.183750i \(-0.941176\pi\)
−0.982973 + 0.183750i \(0.941176\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) −0.486734 0.533922i −0.486734 0.533922i 0.445738 0.895163i \(-0.352941\pi\)
−0.932472 + 0.361242i \(0.882353\pi\)
\(44\) −0.0778940 + 0.0301763i −0.0778940 + 0.0301763i
\(45\) 0 0
\(46\) 0.779497 0.388143i 0.779497 0.388143i
\(47\) 0 0 0.798017 0.602635i \(-0.205882\pi\)
−0.798017 + 0.602635i \(0.794118\pi\)
\(48\) 0 0
\(49\) 0.445738 + 0.895163i 0.445738 + 0.895163i
\(50\) 0.111208 1.20013i 0.111208 1.20013i
\(51\) 0 0
\(52\) 0 0
\(53\) −1.20614 1.32307i −1.20614 1.32307i −0.932472 0.361242i \(-0.882353\pi\)
−0.273663 0.961826i \(-0.588235\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0.180529 0.634493i 0.180529 0.634493i
\(57\) 0 0
\(58\) −2.14862 + 1.06989i −2.14862 + 1.06989i
\(59\) 0 0 −0.602635 0.798017i \(-0.705882\pi\)
0.602635 + 0.798017i \(0.294118\pi\)
\(60\) 0 0
\(61\) 0 0 0.602635 0.798017i \(-0.294118\pi\)
−0.602635 + 0.798017i \(0.705882\pi\)
\(62\) 0 0
\(63\) 0.0922684 + 0.995734i 0.0922684 + 0.995734i
\(64\) −0.195769 + 0.121215i −0.195769 + 0.121215i
\(65\) 0 0
\(66\) 0 0
\(67\) −0.840204 + 1.35698i −0.840204 + 1.35698i 0.0922684 + 0.995734i \(0.470588\pi\)
−0.932472 + 0.361242i \(0.882353\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −0.0675278 + 0.361242i −0.0675278 + 0.361242i 0.932472 + 0.361242i \(0.117647\pi\)
−1.00000 \(\pi\)
\(72\) 0.397543 0.526432i 0.397543 0.526432i
\(73\) 0 0 0.850217 0.526432i \(-0.176471\pi\)
−0.850217 + 0.526432i \(0.823529\pi\)
\(74\) 0.218629 + 2.35939i 0.218629 + 2.35939i
\(75\) 0 0
\(76\) 0 0
\(77\) 0.172075 + 0.0666624i 0.172075 + 0.0666624i
\(78\) 0 0
\(79\) 1.20614 0.600584i 1.20614 0.600584i 0.273663 0.961826i \(-0.411765\pi\)
0.932472 + 0.361242i \(0.117647\pi\)
\(80\) 0 0
\(81\) −0.273663 + 0.961826i −0.273663 + 0.961826i
\(82\) 0 0
\(83\) 0 0 0.961826 0.273663i \(-0.0882353\pi\)
−0.961826 + 0.273663i \(0.911765\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −0.586645 + 0.643519i −0.586645 + 0.643519i
\(87\) 0 0
\(88\) −0.0542616 0.108972i −0.0542616 0.108972i
\(89\) 0 0 −0.995734 0.0922684i \(-0.970588\pi\)
0.995734 + 0.0922684i \(0.0294118\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −0.172169 0.278063i −0.172169 0.278063i
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 −0.183750 0.982973i \(-0.558824\pi\)
0.183750 + 0.982973i \(0.441176\pi\)
\(98\) 1.02474 0.634493i 1.02474 0.634493i
\(99\) 0.136374 + 0.124322i 0.136374 + 0.124322i
\(100\) −0.452674 −0.452674
\(101\) 0 0 −0.739009 0.673696i \(-0.764706\pi\)
0.739009 + 0.673696i \(0.235294\pi\)
\(102\) 0 0
\(103\) 0 0 −0.982973 0.183750i \(-0.941176\pi\)
0.982973 + 0.183750i \(0.0588235\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −1.45372 + 1.59465i −1.45372 + 1.59465i
\(107\) −0.831277 + 1.66943i −0.831277 + 1.66943i −0.0922684 + 0.995734i \(0.529412\pi\)
−0.739009 + 0.673696i \(0.764706\pi\)
\(108\) 0 0
\(109\) 1.12388 + 0.435393i 1.12388 + 0.435393i 0.850217 0.526432i \(-0.176471\pi\)
0.273663 + 0.961826i \(0.411765\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −1.22651 0.229275i −1.22651 0.229275i
\(113\) 0.193463 1.03494i 0.193463 1.03494i −0.739009 0.673696i \(-0.764706\pi\)
0.932472 0.361242i \(-0.117647\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0.474571 + 0.766459i 0.474571 + 0.766459i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −0.900718 + 0.348940i −0.900718 + 0.348940i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 1.18475 0.221468i 1.18475 0.221468i
\(127\) 1.59603i 1.59603i −0.602635 0.798017i \(-0.705882\pi\)
0.602635 0.798017i \(-0.294118\pi\)
\(128\) 0.675996 + 0.895163i 0.675996 + 0.895163i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 0.361242 0.932472i \(-0.382353\pi\)
−0.361242 + 0.932472i \(0.617647\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 1.72198 + 0.857445i 1.72198 + 0.857445i
\(135\) 0 0
\(136\) 0 0
\(137\) −1.00000 −1.00000
\(138\) 0 0
\(139\) 0 0 −0.0922684 0.995734i \(-0.529412\pi\)
0.0922684 + 0.995734i \(0.470588\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0.441046 + 0.0408689i 0.441046 + 0.0408689i
\(143\) 0 0
\(144\) −1.06087 0.656861i −1.06087 0.656861i
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0.874780 0.163525i 0.874780 0.163525i
\(149\) 1.72198 + 0.489946i 1.72198 + 0.489946i 0.982973 0.183750i \(-0.0588235\pi\)
0.739009 + 0.673696i \(0.235294\pi\)
\(150\) 0 0
\(151\) −0.891477 + 1.79033i −0.891477 + 1.79033i −0.445738 + 0.895163i \(0.647059\pi\)
−0.445738 + 0.895163i \(0.647059\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0.0608671 0.213926i 0.0608671 0.213926i
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 0.995734 0.0922684i \(-0.0294118\pi\)
−0.995734 + 0.0922684i \(0.970588\pi\)
\(158\) −0.854910 1.38073i −0.854910 1.38073i
\(159\) 0 0
\(160\) 0 0
\(161\) −0.132756 + 0.710182i −0.132756 + 0.710182i
\(162\) 1.18475 + 0.221468i 1.18475 + 0.221468i
\(163\) 1.72198 + 0.857445i 1.72198 + 0.857445i 0.982973 + 0.183750i \(0.0588235\pi\)
0.739009 + 0.673696i \(0.235294\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.445738 0.895163i \(-0.352941\pi\)
−0.445738 + 0.895163i \(0.647059\pi\)
\(168\) 0 0
\(169\) −0.445738 0.895163i −0.445738 0.895163i
\(170\) 0 0
\(171\) 0 0
\(172\) 0.260991 + 0.197091i 0.260991 + 0.197091i
\(173\) 0 0 −0.739009 0.673696i \(-0.764706\pi\)
0.739009 + 0.673696i \(0.235294\pi\)
\(174\) 0 0
\(175\) 0.739009 + 0.673696i 0.739009 + 0.673696i
\(176\) −0.195769 + 0.121215i −0.195769 + 0.121215i
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 −0.602635 0.798017i \(-0.705882\pi\)
0.602635 + 0.798017i \(0.294118\pi\)
\(180\) 0 0
\(181\) 0 0 0.932472 0.361242i \(-0.117647\pi\)
−0.932472 + 0.361242i \(0.882353\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0.380338 0.287218i 0.380338 0.287218i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1.53511 + 0.436776i −1.53511 + 0.436776i −0.932472 0.361242i \(-0.882353\pi\)
−0.602635 + 0.798017i \(0.705882\pi\)
\(192\) 0 0
\(193\) 0.329838 1.15926i 0.329838 1.15926i −0.602635 0.798017i \(-0.705882\pi\)
0.932472 0.361242i \(-0.117647\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −0.272797 0.361242i −0.272797 0.361242i
\(197\) 0.510366 + 0.197717i 0.510366 + 0.197717i 0.602635 0.798017i \(-0.294118\pi\)
−0.0922684 + 0.995734i \(0.529412\pi\)
\(198\) 0.134036 0.177492i 0.134036 0.177492i
\(199\) 0 0 −0.798017 0.602635i \(-0.794118\pi\)
0.798017 + 0.602635i \(0.205882\pi\)
\(200\) −0.0608671 0.656861i −0.0608671 0.656861i
\(201\) 0 0
\(202\) 0 0
\(203\) 0.365931 1.95756i 0.365931 1.95756i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −0.380338 + 0.614268i −0.380338 + 0.614268i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0.0822551 + 0.887674i 0.0822551 + 0.887674i 0.932472 + 0.361242i \(0.117647\pi\)
−0.850217 + 0.526432i \(0.823529\pi\)
\(212\) 0.646741 + 0.488396i 0.646741 + 0.488396i
\(213\) 0 0
\(214\) 2.09597 + 0.811985i 2.09597 + 0.811985i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0.397543 1.39722i 0.397543 1.39722i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.673696 0.739009i \(-0.264706\pi\)
−0.673696 + 0.739009i \(0.735294\pi\)
\(224\) −0.0778940 + 0.840611i −0.0778940 + 0.840611i
\(225\) 0.445738 + 0.895163i 0.445738 + 0.895163i
\(226\) −1.26357 0.117087i −1.26357 0.117087i
\(227\) 0 0 0.798017 0.602635i \(-0.205882\pi\)
−0.798017 + 0.602635i \(0.794118\pi\)
\(228\) 0 0
\(229\) 0 0 −0.526432 0.850217i \(-0.676471\pi\)
0.526432 + 0.850217i \(0.323529\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −1.04837 + 0.791695i −1.04837 + 0.791695i
\(233\) 1.34739i 1.34739i −0.739009 0.673696i \(-0.764706\pi\)
0.739009 0.673696i \(-0.235294\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.07524 + 0.811985i 1.07524 + 0.811985i 0.982973 0.183750i \(-0.0588235\pi\)
0.0922684 + 0.995734i \(0.470588\pi\)
\(240\) 0 0
\(241\) 0 0 −0.961826 0.273663i \(-0.911765\pi\)
0.961826 + 0.273663i \(0.0882353\pi\)
\(242\) 0.518940 + 1.04217i 0.518940 + 1.04217i
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 −0.361242 0.932472i \(-0.617647\pi\)
0.361242 + 0.932472i \(0.382353\pi\)
\(252\) −0.123880 0.435393i −0.123880 0.435393i
\(253\) 0.0701864 + 0.113355i 0.0701864 + 0.113355i
\(254\) −1.91545 + 0.177492i −1.91545 + 0.177492i
\(255\) 0 0
\(256\) 0.828972 0.755708i 0.828972 0.755708i
\(257\) 0 0 0.273663 0.961826i \(-0.411765\pi\)
−0.273663 + 0.961826i \(0.588235\pi\)
\(258\) 0 0
\(259\) −1.67148 1.03494i −1.67148 1.03494i
\(260\) 0 0
\(261\) 1.04837 1.69318i 1.04837 1.69318i
\(262\) 0 0
\(263\) −1.45285 + 0.271585i −1.45285 + 0.271585i −0.850217 0.526432i \(-0.823529\pi\)
−0.602635 + 0.798017i \(0.705882\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0.260991 0.673696i 0.260991 0.673696i
\(269\) 0 0 −0.995734 0.0922684i \(-0.970588\pi\)
0.995734 + 0.0922684i \(0.0294118\pi\)
\(270\) 0 0
\(271\) 0 0 −0.895163 0.445738i \(-0.852941\pi\)
0.895163 + 0.445738i \(0.147059\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0.111208 + 1.20013i 0.111208 + 1.20013i
\(275\) 0.184537 0.184537
\(276\) 0 0
\(277\) −1.78269 0.887674i −1.78269 0.887674i −0.932472 0.361242i \(-0.882353\pi\)
−0.850217 0.526432i \(-0.823529\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −0.757949 0.469302i −0.757949 0.469302i 0.0922684 0.995734i \(-0.470588\pi\)
−0.850217 + 0.526432i \(0.823529\pi\)
\(282\) 0 0
\(283\) 0 0 −0.602635 0.798017i \(-0.705882\pi\)
0.602635 + 0.798017i \(0.294118\pi\)
\(284\) 0.166357i 0.166357i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −0.376298 + 0.755708i −0.376298 + 0.755708i
\(289\) −0.850217 0.526432i −0.850217 0.526432i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 0.739009 0.673696i \(-0.235294\pi\)
−0.739009 + 0.673696i \(0.764706\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0.354910 + 1.24738i 0.354910 + 1.24738i
\(297\) 0 0
\(298\) 0.396499 2.12108i 0.396499 2.12108i
\(299\) 0 0
\(300\) 0 0
\(301\) −0.132756 0.710182i −0.132756 0.710182i
\(302\) 2.24776 + 0.870787i 2.24776 + 0.870787i
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 −0.961826 0.273663i \(-0.911765\pi\)
0.961826 + 0.273663i \(0.0882353\pi\)
\(308\) −0.0821126 0.0153495i −0.0821126 0.0153495i
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 0 0 0.850217 0.526432i \(-0.176471\pi\)
−0.850217 + 0.526432i \(0.823529\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −0.486734 + 0.367564i −0.486734 + 0.367564i
\(317\) 0.247582 + 0.271585i 0.247582 + 0.271585i 0.850217 0.526432i \(-0.176471\pi\)
−0.602635 + 0.798017i \(0.705882\pi\)
\(318\) 0 0
\(319\) −0.193463 0.312454i −0.193463 0.312454i
\(320\) 0 0
\(321\) 0 0
\(322\) 0.867072 + 0.0803461i 0.867072 + 0.0803461i
\(323\) 0 0
\(324\) 0.0417675 0.450743i 0.0417675 0.450743i
\(325\) 0 0
\(326\) 0.837545 2.16195i 0.837545 2.16195i
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0.353470 0.100571i 0.353470 0.100571i −0.0922684 0.995734i \(-0.529412\pi\)
0.445738 + 0.895163i \(0.352941\pi\)
\(332\) 0 0
\(333\) −1.18475 1.56886i −1.18475 1.56886i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −0.0170269 0.183750i −0.0170269 0.183750i 0.982973 0.183750i \(-0.0588235\pi\)
−1.00000 \(\pi\)
\(338\) −1.02474 + 0.634493i −1.02474 + 0.634493i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −0.0922684 + 0.995734i −0.0922684 + 0.995734i
\(344\) −0.250900 + 0.405217i −0.250900 + 0.405217i
\(345\) 0 0
\(346\) 0 0
\(347\) −1.44574 + 0.895163i −1.44574 + 0.895163i −0.445738 + 0.895163i \(0.647059\pi\)
−1.00000 \(1.00000\pi\)
\(348\) 0 0
\(349\) 0 0 −0.798017 0.602635i \(-0.794118\pi\)
0.798017 + 0.602635i \(0.205882\pi\)
\(350\) 0.726337 0.961826i 0.726337 0.961826i
\(351\) 0 0
\(352\) 0.0938833 + 0.124322i 0.0938833 + 0.124322i
\(353\) 0 0 0.895163 0.445738i \(-0.147059\pi\)
−0.895163 + 0.445738i \(0.852941\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0.719401 1.85699i 0.719401 1.85699i 0.273663 0.961826i \(-0.411765\pi\)
0.445738 0.895163i \(-0.352941\pi\)
\(360\) 0 0
\(361\) 0.0922684 0.995734i 0.0922684 0.995734i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.932472 0.361242i \(-0.117647\pi\)
−0.932472 + 0.361242i \(0.882353\pi\)
\(368\) −0.607327 0.666206i −0.607327 0.666206i
\(369\) 0 0
\(370\) 0 0
\(371\) −0.328972 1.75984i −0.328972 1.75984i
\(372\) 0 0
\(373\) −1.25664 1.14558i −1.25664 1.14558i −0.982973 0.183750i \(-0.941176\pi\)
−0.273663 0.961826i \(-0.588235\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0.397365 + 0.798017i 0.397365 + 0.798017i 1.00000 \(0\)
−0.602635 + 0.798017i \(0.705882\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0.694903 + 1.79375i 0.694903 + 1.79375i
\(383\) 0 0 −0.932472 0.361242i \(-0.882353\pi\)
0.932472 + 0.361242i \(0.117647\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −1.42794 0.266928i −1.42794 0.266928i
\(387\) 0.132756 0.710182i 0.132756 0.710182i
\(388\) 0 0
\(389\) −0.465346 1.63552i −0.465346 1.63552i −0.739009 0.673696i \(-0.764706\pi\)
0.273663 0.961826i \(-0.411765\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0.487506 0.444420i 0.487506 0.444420i
\(393\) 0 0
\(394\) 0.180529 0.634493i 0.180529 0.634493i
\(395\) 0 0
\(396\) −0.0710229 0.0439755i −0.0710229 0.0439755i
\(397\) 0 0 0.445738 0.895163i \(-0.352941\pi\)
−0.445738 + 0.895163i \(0.647059\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −1.22651 + 0.229275i −1.22651 + 0.229275i
\(401\) 1.05286i 1.05286i 0.850217 + 0.526432i \(0.176471\pi\)
−0.850217 + 0.526432i \(0.823529\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) −2.39002 0.221468i −2.39002 0.221468i
\(407\) −0.356612 + 0.0666624i −0.356612 + 0.0666624i
\(408\) 0 0
\(409\) 0 0 −0.0922684 0.995734i \(-0.529412\pi\)
0.0922684 + 0.995734i \(0.470588\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0.779497 + 0.388143i 0.779497 + 0.388143i
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 −0.273663 0.961826i \(-0.588235\pi\)
0.273663 + 0.961826i \(0.411765\pi\)
\(420\) 0 0
\(421\) 0.367499i 0.367499i 0.982973 + 0.183750i \(0.0588235\pi\)
−0.982973 + 0.183750i \(0.941176\pi\)
\(422\) 1.05617 0.197433i 1.05617 0.197433i
\(423\) 0 0
\(424\) −0.621734 + 1.00414i −0.621734 + 1.00414i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0.231030 0.811985i 0.231030 0.811985i
\(429\) 0 0
\(430\) 0 0
\(431\) 1.58923 0.147263i 1.58923 0.147263i 0.739009 0.673696i \(-0.235294\pi\)
0.850217 + 0.526432i \(0.176471\pi\)
\(432\) 0 0
\(433\) 0 0 −0.273663 0.961826i \(-0.588235\pi\)
0.273663 + 0.961826i \(0.411765\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −0.536304 0.100253i −0.536304 0.100253i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.932472 0.361242i \(-0.882353\pi\)
0.932472 + 0.361242i \(0.117647\pi\)
\(440\) 0 0
\(441\) −0.445738 + 0.895163i −0.445738 + 0.895163i
\(442\) 0 0
\(443\) 0.757949 + 1.52217i 0.757949 + 1.52217i 0.850217 + 0.526432i \(0.176471\pi\)
−0.0922684 + 0.995734i \(0.529412\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −0.230258 −0.230258
\(449\) 0.658809 + 0.600584i 0.658809 + 0.600584i 0.932472 0.361242i \(-0.117647\pi\)
−0.273663 + 0.961826i \(0.588235\pi\)
\(450\) 1.02474 0.634493i 1.02474 0.634493i
\(451\) 0 0
\(452\) 0.476604i 0.476604i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 −0.445738 0.895163i \(-0.647059\pi\)
0.445738 + 0.895163i \(0.352941\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 0.0922684 0.995734i \(-0.470588\pi\)
−0.0922684 + 0.995734i \(0.529412\pi\)
\(462\) 0 0
\(463\) 0.694903 1.79375i 0.694903 1.79375i 0.0922684 0.995734i \(-0.470588\pi\)
0.602635 0.798017i \(-0.294118\pi\)
\(464\) 1.67405 + 1.83634i 1.67405 + 1.83634i
\(465\) 0 0
\(466\) −1.61704 + 0.149841i −1.61704 + 0.149841i
\(467\) 0 0 0.273663 0.961826i \(-0.411765\pi\)
−0.273663 + 0.961826i \(0.588235\pi\)
\(468\) 0 0
\(469\) −1.42871 + 0.711414i −1.42871 + 0.711414i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −0.106395 0.0803461i −0.106395 0.0803461i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0.328972 1.75984i 0.328972 1.75984i
\(478\) 0.854910 1.38073i 0.854910 1.38073i
\(479\) 0 0 0.0922684 0.995734i \(-0.470588\pi\)
−0.0922684 + 0.995734i \(0.529412\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0.371765 0.230187i 0.371765 0.230187i
\(485\) 0 0
\(486\) 0 0
\(487\) 0.890705 1.17948i 0.890705 1.17948i −0.0922684 0.995734i \(-0.529412\pi\)
0.982973 0.183750i \(-0.0588235\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 1.91545 0.544991i 1.91545 0.544991i 0.932472 0.361242i \(-0.117647\pi\)
0.982973 0.183750i \(-0.0588235\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −0.247582 + 0.271585i −0.247582 + 0.271585i
\(498\) 0 0
\(499\) −0.397365 0.798017i −0.397365 0.798017i 0.602635 0.798017i \(-0.294118\pi\)
−1.00000 \(\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.526432 0.850217i \(-0.676471\pi\)
0.526432 + 0.850217i \(0.323529\pi\)
\(504\) 0.615129 0.238302i 0.615129 0.238302i
\(505\) 0 0
\(506\) 0.128235 0.0968387i 0.128235 0.0968387i
\(507\) 0 0
\(508\) 0.132756 + 0.710182i 0.132756 + 0.710182i
\(509\) 0 0 0.850217 0.526432i \(-0.176471\pi\)
−0.850217 + 0.526432i \(0.823529\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.170162 0.155124i −0.170162 0.155124i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) −1.05617 + 2.12108i −1.05617 + 2.12108i
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 −0.183750 0.982973i \(-0.558824\pi\)
0.183750 + 0.982973i \(0.441176\pi\)
\(522\) −2.14862 1.06989i −2.14862 1.06989i
\(523\) 0 0 −0.982973 0.183750i \(-0.941176\pi\)
0.982973 + 0.183750i \(0.0588235\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0.487506 + 1.71341i 0.487506 + 1.71341i
\(527\) 0 0
\(528\) 0 0
\(529\) 0.353259 0.322039i 0.353259 0.322039i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 1.01267 + 0.288130i 1.01267 + 0.288130i
\(537\) 0 0
\(538\) 0 0
\(539\) 0.111208 + 0.147263i 0.111208 + 0.147263i
\(540\) 0 0
\(541\) 0.465346 + 0.288130i 0.465346 + 0.288130i 0.739009 0.673696i \(-0.235294\pi\)
−0.273663 + 0.961826i \(0.588235\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 1.47802 1.47802 0.739009 0.673696i \(-0.235294\pi\)
0.739009 + 0.673696i \(0.235294\pi\)
\(548\) 0.444966 0.0831786i 0.444966 0.0831786i
\(549\) 0 0
\(550\) −0.0205220 0.221468i −0.0205220 0.221468i
\(551\) 0 0
\(552\) 0 0
\(553\) 1.34164 + 0.124322i 1.34164 + 0.124322i
\(554\) −0.867072 + 2.23817i −0.867072 + 2.23817i
\(555\) 0 0
\(556\) 0 0
\(557\) 0.890705 + 1.17948i 0.890705 + 1.17948i 0.982973 + 0.183750i \(0.0588235\pi\)
−0.0922684 + 0.995734i \(0.529412\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −0.478932 + 0.961826i −0.478932 + 0.961826i
\(563\) 0 0 −0.850217 0.526432i \(-0.823529\pi\)
0.850217 + 0.526432i \(0.176471\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −0.739009 + 0.673696i −0.739009 + 0.673696i
\(568\) 0.241396 0.0223686i 0.241396 0.0223686i
\(569\) 0.554262 + 0.895163i 0.554262 + 0.895163i 1.00000 \(0\)
−0.445738 + 0.895163i \(0.647059\pi\)
\(570\) 0 0
\(571\) 0.486734 + 1.25640i 0.486734 + 1.25640i 0.932472 + 0.361242i \(0.117647\pi\)
−0.445738 + 0.895163i \(0.647059\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.132756 + 0.710182i 0.132756 + 0.710182i
\(576\) −0.214709 0.0831786i −0.214709 0.0831786i
\(577\) 0 0 −0.361242 0.932472i \(-0.617647\pi\)
0.361242 + 0.932472i \(0.382353\pi\)
\(578\) −0.537235 + 1.07891i −0.537235 + 1.07891i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −0.263650 0.199099i −0.263650 0.199099i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 0.850217 0.526432i \(-0.176471\pi\)
−0.850217 + 0.526432i \(0.823529\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 2.28738 0.886136i 2.28738 0.886136i
\(593\) 0 0 −0.526432 0.850217i \(-0.676471\pi\)
0.526432 + 0.850217i \(0.323529\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −0.806977 0.0747774i −0.806977 0.0747774i
\(597\) 0 0
\(598\) 0 0
\(599\) −1.20614 + 1.32307i −1.20614 + 1.32307i −0.273663 + 0.961826i \(0.588235\pi\)
−0.932472 + 0.361242i \(0.882353\pi\)
\(600\) 0 0
\(601\) 0 0 −0.673696 0.739009i \(-0.735294\pi\)
0.673696 + 0.739009i \(0.264706\pi\)
\(602\) −0.837545 + 0.238302i −0.837545 + 0.238302i
\(603\) −1.58923 + 0.147263i −1.58923 + 0.147263i
\(604\) 0.247760 0.870787i 0.247760 0.870787i
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 −0.602635 0.798017i \(-0.705882\pi\)
0.602635 + 0.798017i \(0.294118\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 1.12388 1.48826i 1.12388 1.48826i 0.273663 0.961826i \(-0.411765\pi\)
0.850217 0.526432i \(-0.176471\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0.0112322 0.121215i 0.0112322 0.121215i
\(617\) −0.136374 + 1.47171i −0.136374 + 1.47171i 0.602635 + 0.798017i \(0.294118\pi\)
−0.739009 + 0.673696i \(0.764706\pi\)
\(618\) 0 0
\(619\) 0 0 0.183750 0.982973i \(-0.441176\pi\)
−0.183750 + 0.982973i \(0.558824\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0.932472 + 0.361242i 0.932472 + 0.361242i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0.353470 0.100571i 0.353470 0.100571i −0.0922684 0.995734i \(-0.529412\pi\)
0.445738 + 0.895163i \(0.352941\pi\)
\(632\) −0.598808 0.656861i −0.598808 0.656861i
\(633\) 0 0
\(634\) 0.298404 0.327333i 0.298404 0.327333i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) −0.353470 + 0.266928i −0.353470 + 0.266928i
\(639\) −0.328972 + 0.163808i −0.328972 + 0.163808i
\(640\) 0 0
\(641\) 0.831277 0.322039i 0.831277 0.322039i 0.0922684 0.995734i \(-0.470588\pi\)
0.739009 + 0.673696i \(0.235294\pi\)
\(642\) 0 0
\(643\) 0 0 0.798017 0.602635i \(-0.205882\pi\)
−0.798017 + 0.602635i \(0.794118\pi\)
\(644\) 0.327049i 0.327049i
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.739009 0.673696i \(-0.764706\pi\)
0.739009 + 0.673696i \(0.235294\pi\)
\(648\) 0.659675 0.659675
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −0.837545 0.238302i −0.837545 0.238302i
\(653\) −0.397365 0.798017i −0.397365 0.798017i 0.602635 0.798017i \(-0.294118\pi\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −1.72198 0.857445i −1.72198 0.857445i −0.982973 0.183750i \(-0.941176\pi\)
−0.739009 0.673696i \(-0.764706\pi\)
\(660\) 0 0
\(661\) 0 0 0.183750 0.982973i \(-0.441176\pi\)
−0.183750 + 0.982973i \(0.558824\pi\)
\(662\) −0.160007 0.413025i −0.160007 0.413025i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −1.75108 + 1.59632i −1.75108 + 1.59632i
\(667\) 1.06329 0.969315i 1.06329 0.969315i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 1.91545 + 0.544991i 1.91545 + 0.544991i 0.982973 + 0.183750i \(0.0588235\pi\)
0.932472 + 0.361242i \(0.117647\pi\)
\(674\) −0.218629 + 0.0408689i −0.218629 + 0.0408689i
\(675\) 0 0
\(676\) 0.272797 + 0.361242i 0.272797 + 0.361242i
\(677\) 0 0 −0.273663 0.961826i \(-0.588235\pi\)
0.273663 + 0.961826i \(0.411765\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0.172075 + 1.85699i 0.172075 + 1.85699i 0.445738 + 0.895163i \(0.352941\pi\)
−0.273663 + 0.961826i \(0.588235\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 1.20527 1.20527
\(687\) 0 0
\(688\) 0.806977 + 0.401827i 0.806977 + 0.401827i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 0.361242 0.932472i \(-0.382353\pi\)
−0.361242 + 0.932472i \(0.617647\pi\)
\(692\) 0 0
\(693\) 0.0505009 + 0.177492i 0.0505009 + 0.177492i
\(694\) 1.23509 + 1.63552i 1.23509 + 1.63552i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −0.384871 0.238302i −0.384871 0.238302i
\(701\) 1.83319 0.710182i 1.83319 0.710182i 0.850217 0.526432i \(-0.176471\pi\)
0.982973 0.183750i \(-0.0588235\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −0.0314012 + 0.0286260i −0.0314012 + 0.0286260i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −0.365931 + 1.95756i −0.365931 + 1.95756i −0.0922684 + 0.995734i \(0.529412\pi\)
−0.273663 + 0.961826i \(0.588235\pi\)
\(710\) 0 0
\(711\) 1.20614 + 0.600584i 1.20614 + 0.600584i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) −2.30863 0.656861i −2.30863 0.656861i
\(719\) 0 0 −0.982973 0.183750i \(-0.941176\pi\)
0.982973 + 0.183750i \(0.0588235\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −1.20527 −1.20527
\(723\) 0 0
\(724\) 0 0
\(725\) −0.365931 1.95756i −0.365931 1.95756i
\(726\) 0 0
\(727\) 0 0 0.798017 0.602635i \(-0.205882\pi\)
−0.798017 + 0.602635i \(0.794118\pi\)
\(728\) 0 0
\(729\) −0.932472 + 0.361242i −0.932472 + 0.361242i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 −0.995734 0.0922684i \(-0.970588\pi\)
0.995734 + 0.0922684i \(0.0294118\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) −0.410907 + 0.450743i −0.410907 + 0.450743i
\(737\) −0.106395 + 0.274638i −0.106395 + 0.274638i
\(738\) 0 0
\(739\) 1.29596 0.368731i 1.29596 0.368731i 0.445738 0.895163i \(-0.352941\pi\)
0.850217 + 0.526432i \(0.176471\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −2.07545 + 0.590517i −2.07545 + 0.590517i
\(743\) −1.72198 + 0.857445i −1.72198 + 0.857445i −0.739009 + 0.673696i \(0.764706\pi\)
−0.982973 + 0.183750i \(0.941176\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −1.23509 + 1.63552i −1.23509 + 1.63552i
\(747\) 0 0
\(748\) 0 0
\(749\) −1.58561 + 0.981767i −1.58561 + 0.981767i
\(750\) 0 0
\(751\) 0.193463 1.03494i 0.193463 1.03494i −0.739009 0.673696i \(-0.764706\pi\)
0.932472 0.361242i \(-0.117647\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1.18475 1.56886i 1.18475 1.56886i 0.445738 0.895163i \(-0.352941\pi\)
0.739009 0.673696i \(-0.235294\pi\)
\(758\) 0.913532 0.565635i 0.913532 0.565635i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.602635 0.798017i \(-0.294118\pi\)
−0.602635 + 0.798017i \(0.705882\pi\)
\(762\) 0 0
\(763\) 0.726337 + 0.961826i 0.726337 + 0.961826i
\(764\) 0.646741 0.322039i 0.646741 0.322039i
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 −0.673696 0.739009i \(-0.735294\pi\)
0.673696 + 0.739009i \(0.264706\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −0.0503411 + 0.543267i −0.0503411 + 0.543267i
\(773\) 0 0 −0.445738 0.895163i \(-0.647059\pi\)
0.445738 + 0.895163i \(0.352941\pi\)
\(774\) −0.867072 0.0803461i −0.867072 0.0803461i
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) −1.91108 + 0.740358i −1.91108 + 0.740358i
\(779\) 0 0
\(780\) 0 0
\(781\) 0.0678171i 0.0678171i
\(782\) 0 0
\(783\) 0 0
\(784\) −0.922106 0.840611i −0.922106 0.840611i
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 −0.798017 0.602635i \(-0.794118\pi\)
0.798017 + 0.602635i \(0.205882\pi\)
\(788\) −0.243542 0.0455258i −0.243542 0.0455258i
\(789\) 0 0
\(790\) 0 0
\(791\) 0.709310 0.778076i 0.709310 0.778076i
\(792\) 0.0542616 0.108972i 0.0542616 0.108972i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.982973 0.183750i \(-0.941176\pi\)
0.982973 + 0.183750i \(0.0588235\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0.231030 + 0.811985i 0.231030 + 0.811985i
\(801\) 0 0
\(802\) 1.26357 0.117087i 1.26357 0.117087i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −1.01267 + 1.63552i −1.01267 + 1.63552i −0.273663 + 0.961826i \(0.588235\pi\)
−0.739009 + 0.673696i \(0.764706\pi\)
\(810\) 0 0
\(811\) 0 0 0.982973 0.183750i \(-0.0588235\pi\)
−0.982973 + 0.183750i \(0.941176\pi\)
\(812\) 0.901486i 0.901486i
\(813\) 0 0
\(814\) 0.119662 + 0.420567i 0.119662 + 0.420567i
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −0.891477 −0.891477 −0.445738 0.895163i \(-0.647059\pi\)
−0.445738 + 0.895163i \(0.647059\pi\)
\(822\) 0 0
\(823\) 0.891477 0.891477 0.445738 0.895163i \(-0.352941\pi\)
0.445738 + 0.895163i \(0.352941\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −0.719401 0.0666624i −0.719401 0.0666624i −0.273663 0.961826i \(-0.588235\pi\)
−0.445738 + 0.895163i \(0.647059\pi\)
\(828\) 0.118144 0.304965i 0.118144 0.304965i
\(829\) 0 0 −0.850217 0.526432i \(-0.823529\pi\)
0.850217 + 0.526432i \(0.176471\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 0.273663 0.961826i \(-0.411765\pi\)
−0.273663 + 0.961826i \(0.588235\pi\)
\(840\) 0 0
\(841\) −2.19186 + 1.99815i −2.19186 + 1.99815i
\(842\) 0.441046 0.0408689i 0.441046 0.0408689i
\(843\) 0 0
\(844\) −0.110436 0.388143i −0.110436 0.388143i
\(845\) 0 0
\(846\) 0 0
\(847\) −0.949499 0.177492i −0.949499 0.177492i
\(848\) 1.99970 + 0.995734i 1.99970 + 0.995734i
\(849\) 0 0
\(850\) 0 0
\(851\) −0.513094 1.32445i −0.513094 1.32445i
\(852\) 0 0
\(853\) 0 0 0.673696 0.739009i \(-0.264706\pi\)
−0.673696 + 0.739009i \(0.735294\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 1.20931 + 0.226059i 1.20931 + 0.226059i
\(857\) 0 0 −0.798017 0.602635i \(-0.794118\pi\)
0.798017 + 0.602635i \(0.205882\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −0.353470 1.89090i −0.353470 1.89090i
\(863\) 1.34739i 1.34739i −0.739009 0.673696i \(-0.764706\pi\)
0.739009 0.673696i \(-0.235294\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0.198422 0.149841i 0.198422 0.149841i
\(870\) 0 0
\(871\) 0 0
\(872\) 0.0733613 0.791695i 0.0733613 0.791695i
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 −0.0922684 0.995734i \(-0.529412\pi\)
0.0922684 + 0.995734i \(0.470588\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 −0.602635 0.798017i \(-0.705882\pi\)
0.602635 + 0.798017i \(0.294118\pi\)
\(882\) 1.12388 + 0.435393i 1.12388 + 0.435393i
\(883\) 1.12388 1.48826i 1.12388 1.48826i 0.273663 0.961826i \(-0.411765\pi\)
0.850217 0.526432i \(-0.176471\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 1.74250 1.07891i 1.74250 1.07891i
\(887\) 0 0 0.602635 0.798017i \(-0.294118\pi\)
−0.602635 + 0.798017i \(0.705882\pi\)
\(888\) 0 0
\(889\) 0.840204 1.35698i 0.840204 1.35698i
\(890\) 0 0
\(891\) −0.0170269 + 0.183750i −0.0170269 + 0.183750i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0.103501 + 1.11695i 0.103501 + 1.11695i
\(897\) 0 0
\(898\) 0.647513 0.857445i 0.647513 0.857445i
\(899\) 0 0
\(900\) −0.272797 0.361242i −0.272797 0.361242i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) −0.691586 + 0.0640848i −0.691586 + 0.0640848i
\(905\) 0 0
\(906\) 0 0
\(907\) −0.380338 + 0.981767i −0.380338 + 0.981767i 0.602635 + 0.798017i \(0.294118\pi\)
−0.982973 + 0.183750i \(0.941176\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −1.78269 0.165190i −1.78269 0.165190i −0.850217 0.526432i \(-0.823529\pi\)
−0.932472 + 0.361242i \(0.882353\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −0.353470 1.89090i −0.353470 1.89090i −0.445738 0.895163i \(-0.647059\pi\)
0.0922684 0.995734i \(-0.470588\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −1.93247 0.361242i −1.93247 0.361242i
\(926\) −2.23001 0.634493i −2.23001 0.634493i
\(927\) 0 0
\(928\) 1.13263 1.24244i 1.13263 1.24244i
\(929\) 0 0 0.445738 0.895163i \(-0.352941\pi\)
−0.445738 + 0.895163i \(0.647059\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0.112074 + 0.599544i 0.112074 + 0.599544i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 −0.273663 0.961826i \(-0.588235\pi\)
0.273663 + 0.961826i \(0.411765\pi\)
\(938\) 1.01267 + 1.63552i 1.01267 + 1.63552i
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 0.739009 0.673696i \(-0.235294\pi\)
−0.739009 + 0.673696i \(0.764706\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) −0.0845935 + 0.136623i −0.0845935 + 0.136623i
\(947\) 0.694903 + 0.197717i 0.694903 + 0.197717i 0.602635 0.798017i \(-0.294118\pi\)
0.0922684 + 0.995734i \(0.470588\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 −0.932472 0.361242i \(-0.882353\pi\)
0.932472 + 0.361242i \(0.117647\pi\)
\(954\) −2.14862 0.199099i −2.14862 0.199099i
\(955\) 0 0
\(956\) −0.545986 0.271869i −0.545986 0.271869i
\(957\) 0 0
\(958\) 0 0
\(959\) −0.850217 0.526432i −0.850217 0.526432i
\(960\) 0 0
\(961\) −0.0922684 0.995734i −0.0922684 0.995734i
\(962\) 0 0
\(963\) −1.83319 + 0.342683i −1.83319 + 0.342683i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0.510366 + 1.79375i 0.510366 + 1.79375i 0.602635 + 0.798017i \(0.294118\pi\)
−0.0922684 + 0.995734i \(0.529412\pi\)
\(968\) 0.384005 + 0.508505i 0.384005 + 0.508505i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.961826 0.273663i \(-0.911765\pi\)
0.961826 + 0.273663i \(0.0882353\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −1.51458 0.937791i −1.51458 0.937791i
\(975\) 0 0
\(976\) 0 0
\(977\) 0.404479 0.368731i 0.404479 0.368731i −0.445738 0.895163i \(-0.647059\pi\)
0.850217 + 0.526432i \(0.176471\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0.329838 + 1.15926i 0.329838 + 1.15926i
\(982\) −0.867072 2.23817i −0.867072 2.23817i
\(983\) 0 0 0.183750 0.982973i \(-0.441176\pi\)
−0.183750 + 0.982973i \(0.558824\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0.232667 0.467259i 0.232667 0.467259i
\(990\) 0 0
\(991\) 0.831277 + 1.66943i 0.831277 + 1.66943i 0.739009 + 0.673696i \(0.235294\pi\)
0.0922684 + 0.995734i \(0.470588\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0.353470 + 0.266928i 0.353470 + 0.266928i
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 −0.739009 0.673696i \(-0.764706\pi\)
0.739009 + 0.673696i \(0.235294\pi\)
\(998\) −0.913532 + 0.565635i −0.913532 + 0.565635i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 959.1.r.a.552.1 yes 16
7.6 odd 2 CM 959.1.r.a.552.1 yes 16
137.103 even 34 inner 959.1.r.a.377.1 16
959.377 odd 34 inner 959.1.r.a.377.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
959.1.r.a.377.1 16 137.103 even 34 inner
959.1.r.a.377.1 16 959.377 odd 34 inner
959.1.r.a.552.1 yes 16 1.1 even 1 trivial
959.1.r.a.552.1 yes 16 7.6 odd 2 CM