Defining parameters
Level: | \( N \) | \(=\) | \( 96 = 2^{5} \cdot 3 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 96.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 12 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(96, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 88 | 20 | 68 |
Cusp forms | 72 | 20 | 52 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(96, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
96.6.c.a | $20$ | $15.397$ | \(\mathbb{Q}[x]/(x^{20} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{3}q^{3}+\beta _{6}q^{5}+\beta _{2}q^{7}+(-2-\beta _{7}+\cdots)q^{9}+\cdots\) |
Decomposition of \(S_{6}^{\mathrm{old}}(96, [\chi])\) into lower level spaces
\( S_{6}^{\mathrm{old}}(96, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(12, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 2}\)