Properties

Label 96.6.c
Level $96$
Weight $6$
Character orbit 96.c
Rep. character $\chi_{96}(95,\cdot)$
Character field $\Q$
Dimension $20$
Newform subspaces $1$
Sturm bound $96$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 96 = 2^{5} \cdot 3 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 96.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 12 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(96\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(96, [\chi])\).

Total New Old
Modular forms 88 20 68
Cusp forms 72 20 52
Eisenstein series 16 0 16

Trace form

\( 20 q - 44 q^{9} - 232 q^{13} - 1640 q^{21} - 15228 q^{25} - 13264 q^{33} + 17208 q^{37} + 24224 q^{45} - 51780 q^{49} - 37512 q^{57} + 123416 q^{61} + 100192 q^{69} - 48120 q^{73} - 42508 q^{81} + 168960 q^{85}+ \cdots + 39368 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(96, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
96.6.c.a 96.c 12.b $20$ $15.397$ \(\mathbb{Q}[x]/(x^{20} + \cdots)\) None 96.6.c.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{3}q^{3}+\beta _{6}q^{5}+\beta _{2}q^{7}+(-2-\beta _{7}+\cdots)q^{9}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(96, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(96, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(12, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 2}\)