Properties

Label 960.2.bb.a.593.21
Level $960$
Weight $2$
Character 960.593
Analytic conductor $7.666$
Analytic rank $0$
Dimension $88$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [960,2,Mod(497,960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(960, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1, 2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("960.497");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 960 = 2^{6} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 960.bb (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.66563859404\)
Analytic rank: \(0\)
Dimension: \(88\)
Relative dimension: \(44\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 240)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 593.21
Character \(\chi\) \(=\) 960.593
Dual form 960.2.bb.a.497.21

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.117548 - 1.72806i) q^{3} +(-1.15738 + 1.91324i) q^{5} +(-0.912923 - 0.912923i) q^{7} +(-2.97237 + 0.406258i) q^{9} +(1.03554 + 1.03554i) q^{11} +2.08132i q^{13} +(3.44223 + 1.77512i) q^{15} +(1.49126 + 1.49126i) q^{17} +(2.35078 - 2.35078i) q^{19} +(-1.47027 + 1.68489i) q^{21} +(4.27105 + 4.27105i) q^{23} +(-2.32095 - 4.42868i) q^{25} +(1.05143 + 5.08866i) q^{27} +(2.58251 + 2.58251i) q^{29} +5.18620 q^{31} +(1.66774 - 1.91119i) q^{33} +(2.80323 - 0.690039i) q^{35} +10.8954i q^{37} +(3.59664 - 0.244654i) q^{39} +9.82802 q^{41} -0.814988 q^{43} +(2.66289 - 6.15703i) q^{45} +(-6.63331 - 6.63331i) q^{47} -5.33314i q^{49} +(2.40169 - 2.75228i) q^{51} +7.26025i q^{53} +(-3.17974 + 0.782718i) q^{55} +(-4.33861 - 3.78596i) q^{57} +(-6.09835 + 6.09835i) q^{59} +(9.87198 + 9.87198i) q^{61} +(3.08442 + 2.34266i) q^{63} +(-3.98205 - 2.40887i) q^{65} -10.8038 q^{67} +(6.87857 - 7.88268i) q^{69} +2.57569 q^{71} +(7.40366 - 7.40366i) q^{73} +(-7.38019 + 4.53131i) q^{75} -1.89073i q^{77} -8.54920i q^{79} +(8.66991 - 2.41509i) q^{81} +11.5636 q^{83} +(-4.57909 + 1.12718i) q^{85} +(4.15916 - 4.76629i) q^{87} +9.67152i q^{89} +(1.90008 - 1.90008i) q^{91} +(-0.609625 - 8.96205i) q^{93} +(1.77685 + 7.21834i) q^{95} +(-6.58488 + 6.58488i) q^{97} +(-3.49869 - 2.65730i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q + 4 q^{15} + 8 q^{19} - 4 q^{21} + 16 q^{31} - 4 q^{33} - 24 q^{39} + 40 q^{43} + 8 q^{45} + 4 q^{51} + 12 q^{57} - 24 q^{61} + 32 q^{63} + 8 q^{67} - 12 q^{69} + 24 q^{75} - 8 q^{81} - 24 q^{85} + 12 q^{87}+ \cdots + 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/960\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(577\) \(641\) \(901\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.117548 1.72806i −0.0678662 0.997694i
\(4\) 0 0
\(5\) −1.15738 + 1.91324i −0.517596 + 0.855625i
\(6\) 0 0
\(7\) −0.912923 0.912923i −0.345052 0.345052i 0.513210 0.858263i \(-0.328456\pi\)
−0.858263 + 0.513210i \(0.828456\pi\)
\(8\) 0 0
\(9\) −2.97237 + 0.406258i −0.990788 + 0.135419i
\(10\) 0 0
\(11\) 1.03554 + 1.03554i 0.312226 + 0.312226i 0.845771 0.533545i \(-0.179141\pi\)
−0.533545 + 0.845771i \(0.679141\pi\)
\(12\) 0 0
\(13\) 2.08132i 0.577254i 0.957442 + 0.288627i \(0.0931987\pi\)
−0.957442 + 0.288627i \(0.906801\pi\)
\(14\) 0 0
\(15\) 3.44223 + 1.77512i 0.888780 + 0.458334i
\(16\) 0 0
\(17\) 1.49126 + 1.49126i 0.361684 + 0.361684i 0.864433 0.502749i \(-0.167678\pi\)
−0.502749 + 0.864433i \(0.667678\pi\)
\(18\) 0 0
\(19\) 2.35078 2.35078i 0.539306 0.539306i −0.384019 0.923325i \(-0.625460\pi\)
0.923325 + 0.384019i \(0.125460\pi\)
\(20\) 0 0
\(21\) −1.47027 + 1.68489i −0.320839 + 0.367674i
\(22\) 0 0
\(23\) 4.27105 + 4.27105i 0.890576 + 0.890576i 0.994577 0.104001i \(-0.0331645\pi\)
−0.104001 + 0.994577i \(0.533165\pi\)
\(24\) 0 0
\(25\) −2.32095 4.42868i −0.464189 0.885736i
\(26\) 0 0
\(27\) 1.05143 + 5.08866i 0.202348 + 0.979314i
\(28\) 0 0
\(29\) 2.58251 + 2.58251i 0.479560 + 0.479560i 0.904991 0.425431i \(-0.139878\pi\)
−0.425431 + 0.904991i \(0.639878\pi\)
\(30\) 0 0
\(31\) 5.18620 0.931469 0.465734 0.884925i \(-0.345790\pi\)
0.465734 + 0.884925i \(0.345790\pi\)
\(32\) 0 0
\(33\) 1.66774 1.91119i 0.290317 0.332696i
\(34\) 0 0
\(35\) 2.80323 0.690039i 0.473833 0.116638i
\(36\) 0 0
\(37\) 10.8954i 1.79120i 0.444863 + 0.895599i \(0.353253\pi\)
−0.444863 + 0.895599i \(0.646747\pi\)
\(38\) 0 0
\(39\) 3.59664 0.244654i 0.575923 0.0391760i
\(40\) 0 0
\(41\) 9.82802 1.53488 0.767439 0.641122i \(-0.221531\pi\)
0.767439 + 0.641122i \(0.221531\pi\)
\(42\) 0 0
\(43\) −0.814988 −0.124284 −0.0621422 0.998067i \(-0.519793\pi\)
−0.0621422 + 0.998067i \(0.519793\pi\)
\(44\) 0 0
\(45\) 2.66289 6.15703i 0.396960 0.917836i
\(46\) 0 0
\(47\) −6.63331 6.63331i −0.967568 0.967568i 0.0319224 0.999490i \(-0.489837\pi\)
−0.999490 + 0.0319224i \(0.989837\pi\)
\(48\) 0 0
\(49\) 5.33314i 0.761878i
\(50\) 0 0
\(51\) 2.40169 2.75228i 0.336304 0.385396i
\(52\) 0 0
\(53\) 7.26025i 0.997273i 0.866811 + 0.498636i \(0.166166\pi\)
−0.866811 + 0.498636i \(0.833834\pi\)
\(54\) 0 0
\(55\) −3.17974 + 0.782718i −0.428756 + 0.105542i
\(56\) 0 0
\(57\) −4.33861 3.78596i −0.574663 0.501462i
\(58\) 0 0
\(59\) −6.09835 + 6.09835i −0.793938 + 0.793938i −0.982132 0.188194i \(-0.939737\pi\)
0.188194 + 0.982132i \(0.439737\pi\)
\(60\) 0 0
\(61\) 9.87198 + 9.87198i 1.26398 + 1.26398i 0.949148 + 0.314829i \(0.101947\pi\)
0.314829 + 0.949148i \(0.398053\pi\)
\(62\) 0 0
\(63\) 3.08442 + 2.34266i 0.388601 + 0.295147i
\(64\) 0 0
\(65\) −3.98205 2.40887i −0.493913 0.298784i
\(66\) 0 0
\(67\) −10.8038 −1.31990 −0.659949 0.751310i \(-0.729422\pi\)
−0.659949 + 0.751310i \(0.729422\pi\)
\(68\) 0 0
\(69\) 6.87857 7.88268i 0.828083 0.948963i
\(70\) 0 0
\(71\) 2.57569 0.305678 0.152839 0.988251i \(-0.451158\pi\)
0.152839 + 0.988251i \(0.451158\pi\)
\(72\) 0 0
\(73\) 7.40366 7.40366i 0.866533 0.866533i −0.125554 0.992087i \(-0.540071\pi\)
0.992087 + 0.125554i \(0.0400708\pi\)
\(74\) 0 0
\(75\) −7.38019 + 4.53131i −0.852191 + 0.523231i
\(76\) 0 0
\(77\) 1.89073i 0.215469i
\(78\) 0 0
\(79\) 8.54920i 0.961861i −0.876759 0.480930i \(-0.840299\pi\)
0.876759 0.480930i \(-0.159701\pi\)
\(80\) 0 0
\(81\) 8.66991 2.41509i 0.963323 0.268344i
\(82\) 0 0
\(83\) 11.5636 1.26927 0.634635 0.772812i \(-0.281151\pi\)
0.634635 + 0.772812i \(0.281151\pi\)
\(84\) 0 0
\(85\) −4.57909 + 1.12718i −0.496672 + 0.122260i
\(86\) 0 0
\(87\) 4.15916 4.76629i 0.445908 0.511000i
\(88\) 0 0
\(89\) 9.67152i 1.02518i 0.858634 + 0.512590i \(0.171314\pi\)
−0.858634 + 0.512590i \(0.828686\pi\)
\(90\) 0 0
\(91\) 1.90008 1.90008i 0.199183 0.199183i
\(92\) 0 0
\(93\) −0.609625 8.96205i −0.0632152 0.929321i
\(94\) 0 0
\(95\) 1.77685 + 7.21834i 0.182301 + 0.740586i
\(96\) 0 0
\(97\) −6.58488 + 6.58488i −0.668593 + 0.668593i −0.957390 0.288797i \(-0.906745\pi\)
0.288797 + 0.957390i \(0.406745\pi\)
\(98\) 0 0
\(99\) −3.49869 2.65730i −0.351632 0.267069i
\(100\) 0 0
\(101\) −4.86989 4.86989i −0.484572 0.484572i 0.422016 0.906588i \(-0.361322\pi\)
−0.906588 + 0.422016i \(0.861322\pi\)
\(102\) 0 0
\(103\) −4.41364 + 4.41364i −0.434888 + 0.434888i −0.890287 0.455399i \(-0.849497\pi\)
0.455399 + 0.890287i \(0.349497\pi\)
\(104\) 0 0
\(105\) −1.52194 4.76304i −0.148526 0.464825i
\(106\) 0 0
\(107\) 8.76918 0.847748 0.423874 0.905721i \(-0.360670\pi\)
0.423874 + 0.905721i \(0.360670\pi\)
\(108\) 0 0
\(109\) 5.82689 5.82689i 0.558115 0.558115i −0.370656 0.928770i \(-0.620867\pi\)
0.928770 + 0.370656i \(0.120867\pi\)
\(110\) 0 0
\(111\) 18.8279 1.28073i 1.78707 0.121562i
\(112\) 0 0
\(113\) −6.67807 + 6.67807i −0.628220 + 0.628220i −0.947620 0.319400i \(-0.896519\pi\)
0.319400 + 0.947620i \(0.396519\pi\)
\(114\) 0 0
\(115\) −13.1148 + 3.22831i −1.22296 + 0.301041i
\(116\) 0 0
\(117\) −0.845552 6.18644i −0.0781713 0.571936i
\(118\) 0 0
\(119\) 2.72281i 0.249600i
\(120\) 0 0
\(121\) 8.85533i 0.805030i
\(122\) 0 0
\(123\) −1.15526 16.9834i −0.104166 1.53134i
\(124\) 0 0
\(125\) 11.1593 + 0.685142i 0.998121 + 0.0612810i
\(126\) 0 0
\(127\) 4.03563 4.03563i 0.358105 0.358105i −0.505009 0.863114i \(-0.668511\pi\)
0.863114 + 0.505009i \(0.168511\pi\)
\(128\) 0 0
\(129\) 0.0957999 + 1.40835i 0.00843471 + 0.123998i
\(130\) 0 0
\(131\) −12.4730 + 12.4730i −1.08977 + 1.08977i −0.0942236 + 0.995551i \(0.530037\pi\)
−0.995551 + 0.0942236i \(0.969963\pi\)
\(132\) 0 0
\(133\) −4.29216 −0.372178
\(134\) 0 0
\(135\) −10.9527 3.87787i −0.942660 0.333754i
\(136\) 0 0
\(137\) −2.68828 + 2.68828i −0.229675 + 0.229675i −0.812557 0.582882i \(-0.801925\pi\)
0.582882 + 0.812557i \(0.301925\pi\)
\(138\) 0 0
\(139\) 4.14179 + 4.14179i 0.351302 + 0.351302i 0.860594 0.509292i \(-0.170093\pi\)
−0.509292 + 0.860594i \(0.670093\pi\)
\(140\) 0 0
\(141\) −10.6830 + 12.2425i −0.899672 + 1.03100i
\(142\) 0 0
\(143\) −2.15528 + 2.15528i −0.180234 + 0.180234i
\(144\) 0 0
\(145\) −7.92989 + 1.95201i −0.658542 + 0.162105i
\(146\) 0 0
\(147\) −9.21598 + 0.626898i −0.760121 + 0.0517057i
\(148\) 0 0
\(149\) −3.27529 + 3.27529i −0.268322 + 0.268322i −0.828424 0.560102i \(-0.810762\pi\)
0.560102 + 0.828424i \(0.310762\pi\)
\(150\) 0 0
\(151\) 11.4102i 0.928548i 0.885692 + 0.464274i \(0.153685\pi\)
−0.885692 + 0.464274i \(0.846315\pi\)
\(152\) 0 0
\(153\) −5.03841 3.82674i −0.407332 0.309373i
\(154\) 0 0
\(155\) −6.00240 + 9.92242i −0.482124 + 0.796988i
\(156\) 0 0
\(157\) 3.40961 0.272116 0.136058 0.990701i \(-0.456557\pi\)
0.136058 + 0.990701i \(0.456557\pi\)
\(158\) 0 0
\(159\) 12.5461 0.853426i 0.994973 0.0676811i
\(160\) 0 0
\(161\) 7.79828i 0.614591i
\(162\) 0 0
\(163\) 4.71686i 0.369453i −0.982790 0.184727i \(-0.940860\pi\)
0.982790 0.184727i \(-0.0591400\pi\)
\(164\) 0 0
\(165\) 1.72635 + 5.40276i 0.134396 + 0.420604i
\(166\) 0 0
\(167\) −14.7875 + 14.7875i −1.14429 + 1.14429i −0.156635 + 0.987657i \(0.550065\pi\)
−0.987657 + 0.156635i \(0.949935\pi\)
\(168\) 0 0
\(169\) 8.66811 0.666778
\(170\) 0 0
\(171\) −6.03236 + 7.94240i −0.461306 + 0.607371i
\(172\) 0 0
\(173\) −20.6855 −1.57269 −0.786343 0.617790i \(-0.788028\pi\)
−0.786343 + 0.617790i \(0.788028\pi\)
\(174\) 0 0
\(175\) −1.92420 + 6.16189i −0.145456 + 0.465795i
\(176\) 0 0
\(177\) 11.2552 + 9.82146i 0.845989 + 0.738226i
\(178\) 0 0
\(179\) −15.0062 15.0062i −1.12162 1.12162i −0.991499 0.130118i \(-0.958464\pi\)
−0.130118 0.991499i \(-0.541536\pi\)
\(180\) 0 0
\(181\) 2.48233 2.48233i 0.184510 0.184510i −0.608808 0.793318i \(-0.708352\pi\)
0.793318 + 0.608808i \(0.208352\pi\)
\(182\) 0 0
\(183\) 15.8989 18.2198i 1.17528 1.34684i
\(184\) 0 0
\(185\) −20.8455 12.6101i −1.53259 0.927116i
\(186\) 0 0
\(187\) 3.08851i 0.225855i
\(188\) 0 0
\(189\) 3.68568 5.60543i 0.268094 0.407735i
\(190\) 0 0
\(191\) 14.6164i 1.05761i 0.848744 + 0.528804i \(0.177359\pi\)
−0.848744 + 0.528804i \(0.822641\pi\)
\(192\) 0 0
\(193\) −5.06820 5.06820i −0.364817 0.364817i 0.500766 0.865583i \(-0.333052\pi\)
−0.865583 + 0.500766i \(0.833052\pi\)
\(194\) 0 0
\(195\) −3.69459 + 7.16437i −0.264575 + 0.513052i
\(196\) 0 0
\(197\) −4.73103 −0.337072 −0.168536 0.985696i \(-0.553904\pi\)
−0.168536 + 0.985696i \(0.553904\pi\)
\(198\) 0 0
\(199\) 7.61133 0.539553 0.269776 0.962923i \(-0.413050\pi\)
0.269776 + 0.962923i \(0.413050\pi\)
\(200\) 0 0
\(201\) 1.26997 + 18.6696i 0.0895764 + 1.31686i
\(202\) 0 0
\(203\) 4.71526i 0.330946i
\(204\) 0 0
\(205\) −11.3747 + 18.8033i −0.794447 + 1.31328i
\(206\) 0 0
\(207\) −14.4303 10.9600i −1.00297 0.761771i
\(208\) 0 0
\(209\) 4.86864 0.336771
\(210\) 0 0
\(211\) 7.48648 + 7.48648i 0.515391 + 0.515391i 0.916173 0.400783i \(-0.131262\pi\)
−0.400783 + 0.916173i \(0.631262\pi\)
\(212\) 0 0
\(213\) −0.302766 4.45094i −0.0207452 0.304973i
\(214\) 0 0
\(215\) 0.943250 1.55926i 0.0643291 0.106341i
\(216\) 0 0
\(217\) −4.73460 4.73460i −0.321405 0.321405i
\(218\) 0 0
\(219\) −13.6642 11.9237i −0.923343 0.805727i
\(220\) 0 0
\(221\) −3.10379 + 3.10379i −0.208784 + 0.208784i
\(222\) 0 0
\(223\) −14.9484 14.9484i −1.00102 1.00102i −0.999999 0.00101699i \(-0.999676\pi\)
−0.00101699 0.999999i \(-0.500324\pi\)
\(224\) 0 0
\(225\) 8.69789 + 12.2208i 0.579859 + 0.814717i
\(226\) 0 0
\(227\) 5.12514i 0.340167i 0.985430 + 0.170084i \(0.0544038\pi\)
−0.985430 + 0.170084i \(0.945596\pi\)
\(228\) 0 0
\(229\) −1.86356 1.86356i −0.123148 0.123148i 0.642847 0.765995i \(-0.277753\pi\)
−0.765995 + 0.642847i \(0.777753\pi\)
\(230\) 0 0
\(231\) −3.26729 + 0.222251i −0.214972 + 0.0146230i
\(232\) 0 0
\(233\) 5.48648 + 5.48648i 0.359431 + 0.359431i 0.863603 0.504172i \(-0.168202\pi\)
−0.504172 + 0.863603i \(0.668202\pi\)
\(234\) 0 0
\(235\) 20.3684 5.01384i 1.32868 0.327067i
\(236\) 0 0
\(237\) −14.7735 + 1.00494i −0.959643 + 0.0652778i
\(238\) 0 0
\(239\) 9.45252 0.611433 0.305716 0.952123i \(-0.401104\pi\)
0.305716 + 0.952123i \(0.401104\pi\)
\(240\) 0 0
\(241\) 10.3530 0.666894 0.333447 0.942769i \(-0.391788\pi\)
0.333447 + 0.942769i \(0.391788\pi\)
\(242\) 0 0
\(243\) −5.19255 14.6982i −0.333102 0.942891i
\(244\) 0 0
\(245\) 10.2036 + 6.17247i 0.651882 + 0.394345i
\(246\) 0 0
\(247\) 4.89272 + 4.89272i 0.311316 + 0.311316i
\(248\) 0 0
\(249\) −1.35927 19.9826i −0.0861404 1.26634i
\(250\) 0 0
\(251\) −18.5502 18.5502i −1.17088 1.17088i −0.982001 0.188874i \(-0.939516\pi\)
−0.188874 0.982001i \(-0.560484\pi\)
\(252\) 0 0
\(253\) 8.84567i 0.556122i
\(254\) 0 0
\(255\) 2.48610 + 7.78044i 0.155685 + 0.487230i
\(256\) 0 0
\(257\) 5.32881 + 5.32881i 0.332402 + 0.332402i 0.853498 0.521096i \(-0.174477\pi\)
−0.521096 + 0.853498i \(0.674477\pi\)
\(258\) 0 0
\(259\) 9.94669 9.94669i 0.618057 0.618057i
\(260\) 0 0
\(261\) −8.72532 6.62699i −0.540084 0.410201i
\(262\) 0 0
\(263\) −6.84521 6.84521i −0.422094 0.422094i 0.463830 0.885924i \(-0.346475\pi\)
−0.885924 + 0.463830i \(0.846475\pi\)
\(264\) 0 0
\(265\) −13.8906 8.40287i −0.853292 0.516184i
\(266\) 0 0
\(267\) 16.7129 1.13686i 1.02282 0.0695750i
\(268\) 0 0
\(269\) −0.0586414 0.0586414i −0.00357543 0.00357543i 0.705317 0.708892i \(-0.250805\pi\)
−0.708892 + 0.705317i \(0.750805\pi\)
\(270\) 0 0
\(271\) −14.7531 −0.896185 −0.448093 0.893987i \(-0.647897\pi\)
−0.448093 + 0.893987i \(0.647897\pi\)
\(272\) 0 0
\(273\) −3.50680 3.06010i −0.212241 0.185206i
\(274\) 0 0
\(275\) 2.18264 6.98949i 0.131618 0.421482i
\(276\) 0 0
\(277\) 12.2040i 0.733266i −0.930366 0.366633i \(-0.880510\pi\)
0.930366 0.366633i \(-0.119490\pi\)
\(278\) 0 0
\(279\) −15.4153 + 2.10693i −0.922888 + 0.126139i
\(280\) 0 0
\(281\) 2.18598 0.130404 0.0652022 0.997872i \(-0.479231\pi\)
0.0652022 + 0.997872i \(0.479231\pi\)
\(282\) 0 0
\(283\) 10.8232 0.643373 0.321686 0.946846i \(-0.395750\pi\)
0.321686 + 0.946846i \(0.395750\pi\)
\(284\) 0 0
\(285\) 12.2648 3.91901i 0.726507 0.232142i
\(286\) 0 0
\(287\) −8.97222 8.97222i −0.529614 0.529614i
\(288\) 0 0
\(289\) 12.5523i 0.738369i
\(290\) 0 0
\(291\) 12.1531 + 10.6050i 0.712427 + 0.621677i
\(292\) 0 0
\(293\) 13.0105i 0.760084i −0.924969 0.380042i \(-0.875910\pi\)
0.924969 0.380042i \(-0.124090\pi\)
\(294\) 0 0
\(295\) −4.60948 18.7257i −0.268375 1.09025i
\(296\) 0 0
\(297\) −4.18070 + 6.35830i −0.242589 + 0.368946i
\(298\) 0 0
\(299\) −8.88942 + 8.88942i −0.514088 + 0.514088i
\(300\) 0 0
\(301\) 0.744021 + 0.744021i 0.0428846 + 0.0428846i
\(302\) 0 0
\(303\) −7.84300 + 8.98789i −0.450568 + 0.516341i
\(304\) 0 0
\(305\) −30.3131 + 7.46181i −1.73572 + 0.427262i
\(306\) 0 0
\(307\) 34.3297 1.95930 0.979649 0.200718i \(-0.0643275\pi\)
0.979649 + 0.200718i \(0.0643275\pi\)
\(308\) 0 0
\(309\) 8.14583 + 7.10820i 0.463400 + 0.404372i
\(310\) 0 0
\(311\) 19.7120 1.11777 0.558883 0.829247i \(-0.311230\pi\)
0.558883 + 0.829247i \(0.311230\pi\)
\(312\) 0 0
\(313\) −8.82647 + 8.82647i −0.498902 + 0.498902i −0.911096 0.412194i \(-0.864763\pi\)
0.412194 + 0.911096i \(0.364763\pi\)
\(314\) 0 0
\(315\) −8.05190 + 3.18989i −0.453673 + 0.179730i
\(316\) 0 0
\(317\) 27.9576i 1.57026i −0.619334 0.785128i \(-0.712597\pi\)
0.619334 0.785128i \(-0.287403\pi\)
\(318\) 0 0
\(319\) 5.34857i 0.299462i
\(320\) 0 0
\(321\) −1.03080 15.1536i −0.0575334 0.845794i
\(322\) 0 0
\(323\) 7.01126 0.390117
\(324\) 0 0
\(325\) 9.21749 4.83063i 0.511294 0.267955i
\(326\) 0 0
\(327\) −10.7541 9.38426i −0.594705 0.518951i
\(328\) 0 0
\(329\) 12.1114i 0.667723i
\(330\) 0 0
\(331\) 11.7945 11.7945i 0.648285 0.648285i −0.304293 0.952578i \(-0.598420\pi\)
0.952578 + 0.304293i \(0.0984203\pi\)
\(332\) 0 0
\(333\) −4.42636 32.3852i −0.242563 1.77470i
\(334\) 0 0
\(335\) 12.5041 20.6703i 0.683174 1.12934i
\(336\) 0 0
\(337\) 1.70964 1.70964i 0.0931298 0.0931298i −0.659007 0.752137i \(-0.729023\pi\)
0.752137 + 0.659007i \(0.229023\pi\)
\(338\) 0 0
\(339\) 12.3251 + 10.7551i 0.669407 + 0.584137i
\(340\) 0 0
\(341\) 5.37050 + 5.37050i 0.290829 + 0.290829i
\(342\) 0 0
\(343\) −11.2592 + 11.2592i −0.607940 + 0.607940i
\(344\) 0 0
\(345\) 7.12031 + 22.2836i 0.383344 + 1.19971i
\(346\) 0 0
\(347\) 19.6676 1.05581 0.527905 0.849304i \(-0.322978\pi\)
0.527905 + 0.849304i \(0.322978\pi\)
\(348\) 0 0
\(349\) −5.38375 + 5.38375i −0.288186 + 0.288186i −0.836362 0.548177i \(-0.815322\pi\)
0.548177 + 0.836362i \(0.315322\pi\)
\(350\) 0 0
\(351\) −10.5911 + 2.18836i −0.565313 + 0.116806i
\(352\) 0 0
\(353\) 25.3482 25.3482i 1.34915 1.34915i 0.462556 0.886590i \(-0.346933\pi\)
0.886590 0.462556i \(-0.153067\pi\)
\(354\) 0 0
\(355\) −2.98105 + 4.92790i −0.158218 + 0.261546i
\(356\) 0 0
\(357\) −4.70518 + 0.320060i −0.249025 + 0.0169394i
\(358\) 0 0
\(359\) 22.5488i 1.19008i −0.803696 0.595040i \(-0.797136\pi\)
0.803696 0.595040i \(-0.202864\pi\)
\(360\) 0 0
\(361\) 7.94766i 0.418298i
\(362\) 0 0
\(363\) −15.3025 + 1.04092i −0.803174 + 0.0546343i
\(364\) 0 0
\(365\) 5.59611 + 22.7338i 0.292914 + 1.18994i
\(366\) 0 0
\(367\) −16.5406 + 16.5406i −0.863411 + 0.863411i −0.991733 0.128322i \(-0.959041\pi\)
0.128322 + 0.991733i \(0.459041\pi\)
\(368\) 0 0
\(369\) −29.2125 + 3.99271i −1.52074 + 0.207852i
\(370\) 0 0
\(371\) 6.62805 6.62805i 0.344111 0.344111i
\(372\) 0 0
\(373\) −7.24873 −0.375325 −0.187663 0.982234i \(-0.560091\pi\)
−0.187663 + 0.982234i \(0.560091\pi\)
\(374\) 0 0
\(375\) −0.127788 19.3645i −0.00659892 0.999978i
\(376\) 0 0
\(377\) −5.37502 + 5.37502i −0.276828 + 0.276828i
\(378\) 0 0
\(379\) 6.48173 + 6.48173i 0.332944 + 0.332944i 0.853703 0.520759i \(-0.174351\pi\)
−0.520759 + 0.853703i \(0.674351\pi\)
\(380\) 0 0
\(381\) −7.44819 6.49943i −0.381582 0.332976i
\(382\) 0 0
\(383\) −13.1911 + 13.1911i −0.674035 + 0.674035i −0.958644 0.284609i \(-0.908136\pi\)
0.284609 + 0.958644i \(0.408136\pi\)
\(384\) 0 0
\(385\) 3.61741 + 2.18829i 0.184361 + 0.111526i
\(386\) 0 0
\(387\) 2.42244 0.331095i 0.123140 0.0168305i
\(388\) 0 0
\(389\) −1.04217 + 1.04217i −0.0528401 + 0.0528401i −0.733033 0.680193i \(-0.761896\pi\)
0.680193 + 0.733033i \(0.261896\pi\)
\(390\) 0 0
\(391\) 12.7385i 0.644215i
\(392\) 0 0
\(393\) 23.0203 + 20.0880i 1.16122 + 1.01330i
\(394\) 0 0
\(395\) 16.3566 + 9.89467i 0.822992 + 0.497855i
\(396\) 0 0
\(397\) 0.837780 0.0420470 0.0210235 0.999779i \(-0.493308\pi\)
0.0210235 + 0.999779i \(0.493308\pi\)
\(398\) 0 0
\(399\) 0.504534 + 7.41710i 0.0252583 + 0.371320i
\(400\) 0 0
\(401\) 23.6742i 1.18223i 0.806587 + 0.591116i \(0.201312\pi\)
−0.806587 + 0.591116i \(0.798688\pi\)
\(402\) 0 0
\(403\) 10.7941i 0.537694i
\(404\) 0 0
\(405\) −5.41372 + 19.3828i −0.269010 + 0.963137i
\(406\) 0 0
\(407\) −11.2826 + 11.2826i −0.559259 + 0.559259i
\(408\) 0 0
\(409\) 25.7330 1.27242 0.636208 0.771517i \(-0.280502\pi\)
0.636208 + 0.771517i \(0.280502\pi\)
\(410\) 0 0
\(411\) 4.96151 + 4.32950i 0.244733 + 0.213559i
\(412\) 0 0
\(413\) 11.1347 0.547900
\(414\) 0 0
\(415\) −13.3835 + 22.1239i −0.656968 + 1.08602i
\(416\) 0 0
\(417\) 6.67040 7.64411i 0.326651 0.374334i
\(418\) 0 0
\(419\) 13.8036 + 13.8036i 0.674351 + 0.674351i 0.958716 0.284365i \(-0.0917829\pi\)
−0.284365 + 0.958716i \(0.591783\pi\)
\(420\) 0 0
\(421\) 13.7845 13.7845i 0.671817 0.671817i −0.286318 0.958135i \(-0.592431\pi\)
0.958135 + 0.286318i \(0.0924314\pi\)
\(422\) 0 0
\(423\) 22.4115 + 17.0218i 1.08968 + 0.827628i
\(424\) 0 0
\(425\) 3.14318 10.0655i 0.152467 0.488247i
\(426\) 0 0
\(427\) 18.0247i 0.872277i
\(428\) 0 0
\(429\) 3.97780 + 3.47110i 0.192050 + 0.167586i
\(430\) 0 0
\(431\) 2.16037i 0.104061i −0.998645 0.0520307i \(-0.983431\pi\)
0.998645 0.0520307i \(-0.0165694\pi\)
\(432\) 0 0
\(433\) −17.6860 17.6860i −0.849935 0.849935i 0.140189 0.990125i \(-0.455229\pi\)
−0.990125 + 0.140189i \(0.955229\pi\)
\(434\) 0 0
\(435\) 4.30532 + 13.4739i 0.206424 + 0.646022i
\(436\) 0 0
\(437\) 20.0806 0.960586
\(438\) 0 0
\(439\) 11.2105 0.535049 0.267525 0.963551i \(-0.413794\pi\)
0.267525 + 0.963551i \(0.413794\pi\)
\(440\) 0 0
\(441\) 2.16663 + 15.8521i 0.103173 + 0.754860i
\(442\) 0 0
\(443\) 5.63824i 0.267881i 0.990989 + 0.133940i \(0.0427631\pi\)
−0.990989 + 0.133940i \(0.957237\pi\)
\(444\) 0 0
\(445\) −18.5039 11.1936i −0.877170 0.530629i
\(446\) 0 0
\(447\) 6.04489 + 5.27488i 0.285913 + 0.249493i
\(448\) 0 0
\(449\) 9.38457 0.442885 0.221443 0.975173i \(-0.428923\pi\)
0.221443 + 0.975173i \(0.428923\pi\)
\(450\) 0 0
\(451\) 10.1773 + 10.1773i 0.479229 + 0.479229i
\(452\) 0 0
\(453\) 19.7175 1.34124i 0.926407 0.0630170i
\(454\) 0 0
\(455\) 1.43619 + 5.83442i 0.0673297 + 0.273522i
\(456\) 0 0
\(457\) 16.2317 + 16.2317i 0.759289 + 0.759289i 0.976193 0.216904i \(-0.0695959\pi\)
−0.216904 + 0.976193i \(0.569596\pi\)
\(458\) 0 0
\(459\) −6.02057 + 9.15649i −0.281016 + 0.427388i
\(460\) 0 0
\(461\) −7.62591 + 7.62591i −0.355174 + 0.355174i −0.862030 0.506857i \(-0.830807\pi\)
0.506857 + 0.862030i \(0.330807\pi\)
\(462\) 0 0
\(463\) −10.9986 10.9986i −0.511149 0.511149i 0.403730 0.914878i \(-0.367714\pi\)
−0.914878 + 0.403730i \(0.867714\pi\)
\(464\) 0 0
\(465\) 17.8521 + 9.20613i 0.827870 + 0.426924i
\(466\) 0 0
\(467\) 9.64270i 0.446211i 0.974794 + 0.223105i \(0.0716194\pi\)
−0.974794 + 0.223105i \(0.928381\pi\)
\(468\) 0 0
\(469\) 9.86307 + 9.86307i 0.455434 + 0.455434i
\(470\) 0 0
\(471\) −0.400791 5.89200i −0.0184675 0.271489i
\(472\) 0 0
\(473\) −0.843950 0.843950i −0.0388049 0.0388049i
\(474\) 0 0
\(475\) −15.8669 4.95482i −0.728023 0.227343i
\(476\) 0 0
\(477\) −2.94954 21.5801i −0.135050 0.988086i
\(478\) 0 0
\(479\) −0.350518 −0.0160156 −0.00800779 0.999968i \(-0.502549\pi\)
−0.00800779 + 0.999968i \(0.502549\pi\)
\(480\) 0 0
\(481\) −22.6769 −1.03398
\(482\) 0 0
\(483\) −13.4759 + 0.916670i −0.613174 + 0.0417099i
\(484\) 0 0
\(485\) −4.97723 20.2196i −0.226004 0.918126i
\(486\) 0 0
\(487\) −3.32822 3.32822i −0.150816 0.150816i 0.627666 0.778482i \(-0.284010\pi\)
−0.778482 + 0.627666i \(0.784010\pi\)
\(488\) 0 0
\(489\) −8.15101 + 0.554456i −0.368601 + 0.0250734i
\(490\) 0 0
\(491\) −20.7903 20.7903i −0.938255 0.938255i 0.0599467 0.998202i \(-0.480907\pi\)
−0.998202 + 0.0599467i \(0.980907\pi\)
\(492\) 0 0
\(493\) 7.70239i 0.346898i
\(494\) 0 0
\(495\) 9.13335 3.61832i 0.410514 0.162631i
\(496\) 0 0
\(497\) −2.35140 2.35140i −0.105475 0.105475i
\(498\) 0 0
\(499\) −2.98889 + 2.98889i −0.133801 + 0.133801i −0.770835 0.637034i \(-0.780161\pi\)
0.637034 + 0.770835i \(0.280161\pi\)
\(500\) 0 0
\(501\) 27.2919 + 23.8154i 1.21931 + 1.06399i
\(502\) 0 0
\(503\) 11.0899 + 11.0899i 0.494475 + 0.494475i 0.909713 0.415238i \(-0.136302\pi\)
−0.415238 + 0.909713i \(0.636302\pi\)
\(504\) 0 0
\(505\) 14.9535 3.68094i 0.665424 0.163800i
\(506\) 0 0
\(507\) −1.01892 14.9790i −0.0452517 0.665241i
\(508\) 0 0
\(509\) 16.8263 + 16.8263i 0.745811 + 0.745811i 0.973690 0.227879i \(-0.0731789\pi\)
−0.227879 + 0.973690i \(0.573179\pi\)
\(510\) 0 0
\(511\) −13.5179 −0.597998
\(512\) 0 0
\(513\) 14.4340 + 9.49065i 0.637277 + 0.419022i
\(514\) 0 0
\(515\) −3.33608 13.5526i −0.147005 0.597198i
\(516\) 0 0
\(517\) 13.7381i 0.604200i
\(518\) 0 0
\(519\) 2.43153 + 35.7457i 0.106732 + 1.56906i
\(520\) 0 0
\(521\) 30.3997 1.33184 0.665918 0.746025i \(-0.268040\pi\)
0.665918 + 0.746025i \(0.268040\pi\)
\(522\) 0 0
\(523\) −8.45346 −0.369644 −0.184822 0.982772i \(-0.559171\pi\)
−0.184822 + 0.982772i \(0.559171\pi\)
\(524\) 0 0
\(525\) 10.8743 + 2.60081i 0.474593 + 0.113509i
\(526\) 0 0
\(527\) 7.73398 + 7.73398i 0.336897 + 0.336897i
\(528\) 0 0
\(529\) 13.4838i 0.586252i
\(530\) 0 0
\(531\) 15.6490 20.6040i 0.679110 0.894139i
\(532\) 0 0
\(533\) 20.4552i 0.886015i
\(534\) 0 0
\(535\) −10.1493 + 16.7775i −0.438791 + 0.725355i
\(536\) 0 0
\(537\) −24.1676 + 27.6955i −1.04291 + 1.19515i
\(538\) 0 0
\(539\) 5.52267 5.52267i 0.237878 0.237878i
\(540\) 0 0
\(541\) −7.99141 7.99141i −0.343578 0.343578i 0.514133 0.857710i \(-0.328114\pi\)
−0.857710 + 0.514133i \(0.828114\pi\)
\(542\) 0 0
\(543\) −4.58140 3.99781i −0.196607 0.171563i
\(544\) 0 0
\(545\) 4.40430 + 17.8921i 0.188659 + 0.766415i
\(546\) 0 0
\(547\) −19.6579 −0.840511 −0.420255 0.907406i \(-0.638060\pi\)
−0.420255 + 0.907406i \(0.638060\pi\)
\(548\) 0 0
\(549\) −33.3537 25.3326i −1.42350 1.08117i
\(550\) 0 0
\(551\) 12.1418 0.517259
\(552\) 0 0
\(553\) −7.80476 + 7.80476i −0.331892 + 0.331892i
\(554\) 0 0
\(555\) −19.3407 + 37.5046i −0.820967 + 1.59198i
\(556\) 0 0
\(557\) 32.6270i 1.38245i −0.722640 0.691225i \(-0.757072\pi\)
0.722640 0.691225i \(-0.242928\pi\)
\(558\) 0 0
\(559\) 1.69625i 0.0717437i
\(560\) 0 0
\(561\) 5.33713 0.363048i 0.225334 0.0153279i
\(562\) 0 0
\(563\) −22.9635 −0.967798 −0.483899 0.875124i \(-0.660780\pi\)
−0.483899 + 0.875124i \(0.660780\pi\)
\(564\) 0 0
\(565\) −5.04767 20.5058i −0.212357 0.862685i
\(566\) 0 0
\(567\) −10.1198 5.71016i −0.424990 0.239804i
\(568\) 0 0
\(569\) 42.0779i 1.76400i −0.471254 0.881998i \(-0.656198\pi\)
0.471254 0.881998i \(-0.343802\pi\)
\(570\) 0 0
\(571\) 12.9520 12.9520i 0.542026 0.542026i −0.382096 0.924122i \(-0.624798\pi\)
0.924122 + 0.382096i \(0.124798\pi\)
\(572\) 0 0
\(573\) 25.2580 1.71813i 1.05517 0.0717758i
\(574\) 0 0
\(575\) 9.00224 28.8280i 0.375419 1.20221i
\(576\) 0 0
\(577\) 6.79698 6.79698i 0.282962 0.282962i −0.551327 0.834289i \(-0.685878\pi\)
0.834289 + 0.551327i \(0.185878\pi\)
\(578\) 0 0
\(579\) −8.16238 + 9.35389i −0.339217 + 0.388734i
\(580\) 0 0
\(581\) −10.5567 10.5567i −0.437964 0.437964i
\(582\) 0 0
\(583\) −7.51826 + 7.51826i −0.311375 + 0.311375i
\(584\) 0 0
\(585\) 12.8147 + 5.54231i 0.529824 + 0.229146i
\(586\) 0 0
\(587\) 37.8077 1.56049 0.780245 0.625474i \(-0.215094\pi\)
0.780245 + 0.625474i \(0.215094\pi\)
\(588\) 0 0
\(589\) 12.1916 12.1916i 0.502347 0.502347i
\(590\) 0 0
\(591\) 0.556121 + 8.17549i 0.0228758 + 0.336295i
\(592\) 0 0
\(593\) 21.2191 21.2191i 0.871365 0.871365i −0.121256 0.992621i \(-0.538692\pi\)
0.992621 + 0.121256i \(0.0386923\pi\)
\(594\) 0 0
\(595\) 5.20939 + 3.15133i 0.213564 + 0.129192i
\(596\) 0 0
\(597\) −0.894694 13.1528i −0.0366174 0.538309i
\(598\) 0 0
\(599\) 17.6257i 0.720165i −0.932920 0.360083i \(-0.882749\pi\)
0.932920 0.360083i \(-0.117251\pi\)
\(600\) 0 0
\(601\) 1.46847i 0.0599003i 0.999551 + 0.0299501i \(0.00953485\pi\)
−0.999551 + 0.0299501i \(0.990465\pi\)
\(602\) 0 0
\(603\) 32.1129 4.38915i 1.30774 0.178740i
\(604\) 0 0
\(605\) 16.9423 + 10.2490i 0.688804 + 0.416680i
\(606\) 0 0
\(607\) 12.7986 12.7986i 0.519479 0.519479i −0.397935 0.917414i \(-0.630273\pi\)
0.917414 + 0.397935i \(0.130273\pi\)
\(608\) 0 0
\(609\) −8.14824 + 0.554268i −0.330183 + 0.0224601i
\(610\) 0 0
\(611\) 13.8060 13.8060i 0.558532 0.558532i
\(612\) 0 0
\(613\) −8.91389 −0.360029 −0.180014 0.983664i \(-0.557614\pi\)
−0.180014 + 0.983664i \(0.557614\pi\)
\(614\) 0 0
\(615\) 33.8303 + 17.4459i 1.36417 + 0.703488i
\(616\) 0 0
\(617\) −1.81921 + 1.81921i −0.0732388 + 0.0732388i −0.742777 0.669539i \(-0.766492\pi\)
0.669539 + 0.742777i \(0.266492\pi\)
\(618\) 0 0
\(619\) 0.786785 + 0.786785i 0.0316236 + 0.0316236i 0.722742 0.691118i \(-0.242882\pi\)
−0.691118 + 0.722742i \(0.742882\pi\)
\(620\) 0 0
\(621\) −17.2432 + 26.2247i −0.691947 + 1.05236i
\(622\) 0 0
\(623\) 8.82935 8.82935i 0.353741 0.353741i
\(624\) 0 0
\(625\) −14.2264 + 20.5575i −0.569056 + 0.822298i
\(626\) 0 0
\(627\) −0.572297 8.41329i −0.0228554 0.335995i
\(628\) 0 0
\(629\) −16.2479 + 16.2479i −0.647848 + 0.647848i
\(630\) 0 0
\(631\) 39.2718i 1.56339i −0.623663 0.781693i \(-0.714356\pi\)
0.623663 0.781693i \(-0.285644\pi\)
\(632\) 0 0
\(633\) 12.0571 13.8171i 0.479225 0.549180i
\(634\) 0 0
\(635\) 3.05036 + 12.3919i 0.121050 + 0.491757i
\(636\) 0 0
\(637\) 11.1000 0.439797
\(638\) 0 0
\(639\) −7.65589 + 1.04639i −0.302862 + 0.0413947i
\(640\) 0 0
\(641\) 26.9846i 1.06583i −0.846170 0.532914i \(-0.821097\pi\)
0.846170 0.532914i \(-0.178903\pi\)
\(642\) 0 0
\(643\) 18.7886i 0.740949i 0.928843 + 0.370474i \(0.120805\pi\)
−0.928843 + 0.370474i \(0.879195\pi\)
\(644\) 0 0
\(645\) −2.80537 1.44670i −0.110462 0.0569638i
\(646\) 0 0
\(647\) 4.74385 4.74385i 0.186500 0.186500i −0.607681 0.794181i \(-0.707900\pi\)
0.794181 + 0.607681i \(0.207900\pi\)
\(648\) 0 0
\(649\) −12.6301 −0.495776
\(650\) 0 0
\(651\) −7.62512 + 8.73820i −0.298852 + 0.342477i
\(652\) 0 0
\(653\) −37.7676 −1.47796 −0.738981 0.673726i \(-0.764693\pi\)
−0.738981 + 0.673726i \(0.764693\pi\)
\(654\) 0 0
\(655\) −9.42784 38.2999i −0.368376 1.49650i
\(656\) 0 0
\(657\) −18.9986 + 25.0142i −0.741205 + 0.975896i
\(658\) 0 0
\(659\) 13.5538 + 13.5538i 0.527980 + 0.527980i 0.919970 0.391990i \(-0.128213\pi\)
−0.391990 + 0.919970i \(0.628213\pi\)
\(660\) 0 0
\(661\) −16.9462 + 16.9462i −0.659132 + 0.659132i −0.955175 0.296043i \(-0.904333\pi\)
0.296043 + 0.955175i \(0.404333\pi\)
\(662\) 0 0
\(663\) 5.72837 + 4.99869i 0.222472 + 0.194133i
\(664\) 0 0
\(665\) 4.96766 8.21192i 0.192638 0.318445i
\(666\) 0 0
\(667\) 22.0601i 0.854169i
\(668\) 0 0
\(669\) −24.0745 + 27.5888i −0.930773 + 1.06664i
\(670\) 0 0
\(671\) 20.4456i 0.789294i
\(672\) 0 0
\(673\) 26.0839 + 26.0839i 1.00546 + 1.00546i 0.999985 + 0.00547515i \(0.00174280\pi\)
0.00547515 + 0.999985i \(0.498257\pi\)
\(674\) 0 0
\(675\) 20.0957 16.4670i 0.773485 0.633814i
\(676\) 0 0
\(677\) 6.41910 0.246706 0.123353 0.992363i \(-0.460635\pi\)
0.123353 + 0.992363i \(0.460635\pi\)
\(678\) 0 0
\(679\) 12.0230 0.461399
\(680\) 0 0
\(681\) 8.85653 0.602448i 0.339383 0.0230858i
\(682\) 0 0
\(683\) 14.6529i 0.560679i −0.959901 0.280340i \(-0.909553\pi\)
0.959901 0.280340i \(-0.0904471\pi\)
\(684\) 0 0
\(685\) −2.03196 8.25468i −0.0776371 0.315395i
\(686\) 0 0
\(687\) −3.00129 + 3.43940i −0.114506 + 0.131221i
\(688\) 0 0
\(689\) −15.1109 −0.575679
\(690\) 0 0
\(691\) −28.3072 28.3072i −1.07686 1.07686i −0.996789 0.0800692i \(-0.974486\pi\)
−0.0800692 0.996789i \(-0.525514\pi\)
\(692\) 0 0
\(693\) 0.768125 + 5.61994i 0.0291786 + 0.213484i
\(694\) 0 0
\(695\) −12.7179 + 3.13060i −0.482416 + 0.118751i
\(696\) 0 0
\(697\) 14.6562 + 14.6562i 0.555141 + 0.555141i
\(698\) 0 0
\(699\) 8.83603 10.1259i 0.334209 0.382996i
\(700\) 0 0
\(701\) 23.7655 23.7655i 0.897612 0.897612i −0.0976124 0.995225i \(-0.531121\pi\)
0.995225 + 0.0976124i \(0.0311205\pi\)
\(702\) 0 0
\(703\) 25.6128 + 25.6128i 0.966004 + 0.966004i
\(704\) 0 0
\(705\) −11.0584 34.6083i −0.416485 1.30342i
\(706\) 0 0
\(707\) 8.89166i 0.334405i
\(708\) 0 0
\(709\) −5.81334 5.81334i −0.218325 0.218325i 0.589468 0.807792i \(-0.299338\pi\)
−0.807792 + 0.589468i \(0.799338\pi\)
\(710\) 0 0
\(711\) 3.47318 + 25.4114i 0.130255 + 0.953000i
\(712\) 0 0
\(713\) 22.1505 + 22.1505i 0.829544 + 0.829544i
\(714\) 0 0
\(715\) −1.62909 6.61804i −0.0609243 0.247501i
\(716\) 0 0
\(717\) −1.11112 16.3345i −0.0414956 0.610023i
\(718\) 0 0
\(719\) −2.88200 −0.107480 −0.0537402 0.998555i \(-0.517114\pi\)
−0.0537402 + 0.998555i \(0.517114\pi\)
\(720\) 0 0
\(721\) 8.05862 0.300119
\(722\) 0 0
\(723\) −1.21697 17.8905i −0.0452595 0.665356i
\(724\) 0 0
\(725\) 5.44324 17.4310i 0.202157 0.647370i
\(726\) 0 0
\(727\) 24.4474 + 24.4474i 0.906704 + 0.906704i 0.996005 0.0893004i \(-0.0284631\pi\)
−0.0893004 + 0.996005i \(0.528463\pi\)
\(728\) 0 0
\(729\) −24.7890 + 10.7008i −0.918110 + 0.396325i
\(730\) 0 0
\(731\) −1.21536 1.21536i −0.0449517 0.0449517i
\(732\) 0 0
\(733\) 17.2734i 0.638007i 0.947754 + 0.319003i \(0.103348\pi\)
−0.947754 + 0.319003i \(0.896652\pi\)
\(734\) 0 0
\(735\) 9.46698 18.3579i 0.349195 0.677142i
\(736\) 0 0
\(737\) −11.1878 11.1878i −0.412107 0.412107i
\(738\) 0 0
\(739\) 7.62856 7.62856i 0.280621 0.280621i −0.552736 0.833357i \(-0.686416\pi\)
0.833357 + 0.552736i \(0.186416\pi\)
\(740\) 0 0
\(741\) 7.87978 9.03003i 0.289471 0.331727i
\(742\) 0 0
\(743\) −21.3182 21.3182i −0.782090 0.782090i 0.198093 0.980183i \(-0.436525\pi\)
−0.980183 + 0.198093i \(0.936525\pi\)
\(744\) 0 0
\(745\) −2.47565 10.0571i −0.0907008 0.368465i
\(746\) 0 0
\(747\) −34.3712 + 4.69780i −1.25758 + 0.171884i
\(748\) 0 0
\(749\) −8.00558 8.00558i −0.292518 0.292518i
\(750\) 0 0
\(751\) 26.1007 0.952430 0.476215 0.879329i \(-0.342008\pi\)
0.476215 + 0.879329i \(0.342008\pi\)
\(752\) 0 0
\(753\) −29.8752 + 34.2363i −1.08871 + 1.24764i
\(754\) 0 0
\(755\) −21.8304 13.2059i −0.794489 0.480612i
\(756\) 0 0
\(757\) 42.5694i 1.54721i 0.633668 + 0.773605i \(0.281548\pi\)
−0.633668 + 0.773605i \(0.718452\pi\)
\(758\) 0 0
\(759\) 15.2858 1.03979i 0.554840 0.0377419i
\(760\) 0 0
\(761\) −51.8643 −1.88008 −0.940040 0.341065i \(-0.889212\pi\)
−0.940040 + 0.341065i \(0.889212\pi\)
\(762\) 0 0
\(763\) −10.6390 −0.385158
\(764\) 0 0
\(765\) 13.1528 5.21069i 0.475541 0.188393i
\(766\) 0 0
\(767\) −12.6926 12.6926i −0.458304 0.458304i
\(768\) 0 0
\(769\) 4.33991i 0.156501i 0.996934 + 0.0782506i \(0.0249334\pi\)
−0.996934 + 0.0782506i \(0.975067\pi\)
\(770\) 0 0
\(771\) 8.58210 9.83487i 0.309077 0.354194i
\(772\) 0 0
\(773\) 39.7001i 1.42791i −0.700190 0.713957i \(-0.746901\pi\)
0.700190 0.713957i \(-0.253099\pi\)
\(774\) 0 0
\(775\) −12.0369 22.9680i −0.432378 0.825035i
\(776\) 0 0
\(777\) −18.3577 16.0192i −0.658577 0.574687i
\(778\) 0 0
\(779\) 23.1035 23.1035i 0.827769 0.827769i
\(780\) 0 0
\(781\) 2.66722 + 2.66722i 0.0954407 + 0.0954407i
\(782\) 0 0
\(783\) −10.4262 + 15.8568i −0.372601 + 0.566677i
\(784\) 0 0
\(785\) −3.94621 + 6.52339i −0.140846 + 0.232830i
\(786\) 0 0
\(787\) 5.30056 0.188945 0.0944723 0.995527i \(-0.469884\pi\)
0.0944723 + 0.995527i \(0.469884\pi\)
\(788\) 0 0
\(789\) −11.0243 + 12.6336i −0.392475 + 0.449767i
\(790\) 0 0
\(791\) 12.1931 0.433538
\(792\) 0 0
\(793\) −20.5467 + 20.5467i −0.729636 + 0.729636i
\(794\) 0 0
\(795\) −12.8878 + 24.9915i −0.457084 + 0.886356i
\(796\) 0 0
\(797\) 17.4862i 0.619394i 0.950835 + 0.309697i \(0.100228\pi\)
−0.950835 + 0.309697i \(0.899772\pi\)
\(798\) 0 0
\(799\) 19.7840i 0.699908i
\(800\) 0 0
\(801\) −3.92914 28.7473i −0.138829 1.01574i
\(802\) 0 0
\(803\) 15.3335 0.541108
\(804\) 0 0
\(805\) 14.9200 + 9.02557i 0.525859 + 0.318110i
\(806\) 0 0
\(807\) −0.0944426 + 0.108229i −0.00332454 + 0.00380984i
\(808\) 0 0
\(809\) 37.4327i 1.31606i −0.752991 0.658031i \(-0.771389\pi\)
0.752991 0.658031i \(-0.228611\pi\)
\(810\) 0 0
\(811\) −7.78970 + 7.78970i −0.273533 + 0.273533i −0.830521 0.556987i \(-0.811957\pi\)
0.556987 + 0.830521i \(0.311957\pi\)
\(812\) 0 0
\(813\) 1.73419 + 25.4942i 0.0608206 + 0.894119i
\(814\) 0 0
\(815\) 9.02447 + 5.45920i 0.316113 + 0.191227i
\(816\) 0 0
\(817\) −1.91586 + 1.91586i −0.0670274 + 0.0670274i
\(818\) 0 0
\(819\) −4.87582 + 6.41966i −0.170375 + 0.224321i
\(820\) 0 0
\(821\) −12.3460 12.3460i −0.430879 0.430879i 0.458049 0.888927i \(-0.348549\pi\)
−0.888927 + 0.458049i \(0.848549\pi\)
\(822\) 0 0
\(823\) 10.6014 10.6014i 0.369542 0.369542i −0.497768 0.867310i \(-0.665847\pi\)
0.867310 + 0.497768i \(0.165847\pi\)
\(824\) 0 0
\(825\) −12.3348 2.95012i −0.429443 0.102710i
\(826\) 0 0
\(827\) −18.5764 −0.645966 −0.322983 0.946405i \(-0.604686\pi\)
−0.322983 + 0.946405i \(0.604686\pi\)
\(828\) 0 0
\(829\) −14.7854 + 14.7854i −0.513517 + 0.513517i −0.915602 0.402085i \(-0.868286\pi\)
0.402085 + 0.915602i \(0.368286\pi\)
\(830\) 0 0
\(831\) −21.0892 + 1.43455i −0.731575 + 0.0497640i
\(832\) 0 0
\(833\) 7.95312 7.95312i 0.275559 0.275559i
\(834\) 0 0
\(835\) −11.1772 45.4067i −0.386804 1.57137i
\(836\) 0 0
\(837\) 5.45293 + 26.3908i 0.188481 + 0.912200i
\(838\) 0 0
\(839\) 33.8653i 1.16916i −0.811336 0.584580i \(-0.801259\pi\)
0.811336 0.584580i \(-0.198741\pi\)
\(840\) 0 0
\(841\) 15.6613i 0.540045i
\(842\) 0 0
\(843\) −0.256956 3.77749i −0.00885004 0.130104i
\(844\) 0 0
\(845\) −10.0323 + 16.5842i −0.345121 + 0.570512i
\(846\) 0 0
\(847\) −8.08423 + 8.08423i −0.277777 + 0.277777i
\(848\) 0 0
\(849\) −1.27224 18.7031i −0.0436632 0.641889i
\(850\) 0 0
\(851\) −46.5350 + 46.5350i −1.59520 + 1.59520i
\(852\) 0 0
\(853\) 27.4595 0.940194 0.470097 0.882615i \(-0.344219\pi\)
0.470097 + 0.882615i \(0.344219\pi\)
\(854\) 0 0
\(855\) −8.21397 20.7337i −0.280912 0.709077i
\(856\) 0 0
\(857\) −17.7906 + 17.7906i −0.607715 + 0.607715i −0.942348 0.334634i \(-0.891387\pi\)
0.334634 + 0.942348i \(0.391387\pi\)
\(858\) 0 0
\(859\) −4.90738 4.90738i −0.167438 0.167438i 0.618414 0.785852i \(-0.287775\pi\)
−0.785852 + 0.618414i \(0.787775\pi\)
\(860\) 0 0
\(861\) −14.4499 + 16.5592i −0.492450 + 0.564335i
\(862\) 0 0
\(863\) −4.91101 + 4.91101i −0.167173 + 0.167173i −0.785735 0.618563i \(-0.787715\pi\)
0.618563 + 0.785735i \(0.287715\pi\)
\(864\) 0 0
\(865\) 23.9409 39.5762i 0.814016 1.34563i
\(866\) 0 0
\(867\) −21.6911 + 1.47549i −0.736667 + 0.0501103i
\(868\) 0 0
\(869\) 8.85302 8.85302i 0.300318 0.300318i
\(870\) 0 0
\(871\) 22.4862i 0.761916i
\(872\) 0 0
\(873\) 16.8975 22.2478i 0.571894 0.752975i
\(874\) 0 0
\(875\) −9.56212 10.8131i −0.323259 0.365549i
\(876\) 0 0
\(877\) 20.1399 0.680076 0.340038 0.940412i \(-0.389560\pi\)
0.340038 + 0.940412i \(0.389560\pi\)
\(878\) 0 0
\(879\) −22.4830 + 1.52936i −0.758331 + 0.0515840i
\(880\) 0 0
\(881\) 36.5232i 1.23050i 0.788333 + 0.615249i \(0.210944\pi\)
−0.788333 + 0.615249i \(0.789056\pi\)
\(882\) 0 0
\(883\) 28.7937i 0.968985i 0.874795 + 0.484493i \(0.160996\pi\)
−0.874795 + 0.484493i \(0.839004\pi\)
\(884\) 0 0
\(885\) −31.8173 + 10.1666i −1.06953 + 0.341747i
\(886\) 0 0
\(887\) −28.4788 + 28.4788i −0.956224 + 0.956224i −0.999081 0.0428570i \(-0.986354\pi\)
0.0428570 + 0.999081i \(0.486354\pi\)
\(888\) 0 0
\(889\) −7.36844 −0.247130
\(890\) 0 0
\(891\) 11.4789 + 6.47709i 0.384559 + 0.216991i
\(892\) 0 0
\(893\) −31.1869 −1.04363
\(894\) 0 0
\(895\) 46.0783 11.3425i 1.54023 0.379139i
\(896\) 0 0
\(897\) 16.4064 + 14.3165i 0.547792 + 0.478014i
\(898\) 0 0
\(899\) 13.3934 + 13.3934i 0.446695 + 0.446695i
\(900\) 0 0
\(901\) −10.8269 + 10.8269i −0.360698 + 0.360698i
\(902\) 0 0
\(903\) 1.19825 1.37317i 0.0398754 0.0456962i
\(904\) 0 0
\(905\) 1.87629 + 7.62227i 0.0623698 + 0.253373i
\(906\) 0 0
\(907\) 21.8599i 0.725846i 0.931819 + 0.362923i \(0.118221\pi\)
−0.931819 + 0.362923i \(0.881779\pi\)
\(908\) 0 0
\(909\) 16.4535 + 12.4966i 0.545728 + 0.414488i
\(910\) 0 0
\(911\) 26.5894i 0.880945i 0.897766 + 0.440473i \(0.145189\pi\)
−0.897766 + 0.440473i \(0.854811\pi\)
\(912\) 0 0
\(913\) 11.9745 + 11.9745i 0.396299 + 0.396299i
\(914\) 0 0
\(915\) 16.4577 + 51.5056i 0.544073 + 1.70272i
\(916\) 0 0
\(917\) 22.7738 0.752059
\(918\) 0 0
\(919\) −46.8512 −1.54548 −0.772739 0.634723i \(-0.781114\pi\)
−0.772739 + 0.634723i \(0.781114\pi\)
\(920\) 0 0
\(921\) −4.03537 59.3237i −0.132970 1.95478i
\(922\) 0 0
\(923\) 5.36083i 0.176454i
\(924\) 0 0
\(925\) 48.2524 25.2877i 1.58653 0.831455i
\(926\) 0 0
\(927\) 11.3259 14.9120i 0.371990 0.489775i
\(928\) 0 0
\(929\) 20.5659 0.674747 0.337373 0.941371i \(-0.390462\pi\)
0.337373 + 0.941371i \(0.390462\pi\)
\(930\) 0 0
\(931\) −12.5371 12.5371i −0.410885 0.410885i
\(932\) 0 0
\(933\) −2.31710 34.0635i −0.0758585 1.11519i
\(934\) 0 0
\(935\) −5.90906 3.57458i −0.193247 0.116901i
\(936\) 0 0
\(937\) −34.0136 34.0136i −1.11118 1.11118i −0.992992 0.118184i \(-0.962293\pi\)
−0.118184 0.992992i \(-0.537707\pi\)
\(938\) 0 0
\(939\) 16.2902 + 14.2151i 0.531610 + 0.463893i
\(940\) 0 0
\(941\) −12.2462 + 12.2462i −0.399216 + 0.399216i −0.877956 0.478741i \(-0.841093\pi\)
0.478741 + 0.877956i \(0.341093\pi\)
\(942\) 0 0
\(943\) 41.9760 + 41.9760i 1.36693 + 1.36693i
\(944\) 0 0
\(945\) 6.45879 + 13.5392i 0.210104 + 0.440430i
\(946\) 0 0
\(947\) 47.5663i 1.54570i −0.634592 0.772848i \(-0.718832\pi\)
0.634592 0.772848i \(-0.281168\pi\)
\(948\) 0 0
\(949\) 15.4094 + 15.4094i 0.500209 + 0.500209i
\(950\) 0 0
\(951\) −48.3124 + 3.28635i −1.56664 + 0.106567i
\(952\) 0 0
\(953\) −22.3066 22.3066i −0.722582 0.722582i 0.246548 0.969131i \(-0.420704\pi\)
−0.969131 + 0.246548i \(0.920704\pi\)
\(954\) 0 0
\(955\) −27.9647 16.9167i −0.904916 0.547413i
\(956\) 0 0
\(957\) 9.24263 0.628711i 0.298772 0.0203233i
\(958\) 0 0
\(959\) 4.90839 0.158500
\(960\) 0 0
\(961\) −4.10336 −0.132366
\(962\) 0 0
\(963\) −26.0652 + 3.56255i −0.839939 + 0.114802i
\(964\) 0 0
\(965\) 15.5625 3.83083i 0.500974 0.123319i
\(966\) 0 0
\(967\) −9.83196 9.83196i −0.316175 0.316175i 0.531121 0.847296i \(-0.321771\pi\)
−0.847296 + 0.531121i \(0.821771\pi\)
\(968\) 0 0
\(969\) −0.824157 12.1159i −0.0264757 0.389218i
\(970\) 0 0
\(971\) −27.1430 27.1430i −0.871059 0.871059i 0.121529 0.992588i \(-0.461220\pi\)
−0.992588 + 0.121529i \(0.961220\pi\)
\(972\) 0 0
\(973\) 7.56227i 0.242435i
\(974\) 0 0
\(975\) −9.43110 15.3605i −0.302037 0.491931i
\(976\) 0 0
\(977\) 27.0368 + 27.0368i 0.864984 + 0.864984i 0.991912 0.126928i \(-0.0405116\pi\)
−0.126928 + 0.991912i \(0.540512\pi\)
\(978\) 0 0
\(979\) −10.0152 + 10.0152i −0.320088 + 0.320088i
\(980\) 0 0
\(981\) −14.9524 + 19.6869i −0.477394 + 0.628553i
\(982\) 0 0
\(983\) −15.4408 15.4408i −0.492484 0.492484i 0.416604 0.909088i \(-0.363220\pi\)
−0.909088 + 0.416604i \(0.863220\pi\)
\(984\) 0 0
\(985\) 5.47559 9.05158i 0.174467 0.288407i
\(986\) 0 0
\(987\) 20.9292 1.42367i 0.666184 0.0453158i
\(988\) 0 0
\(989\) −3.48086 3.48086i −0.110685 0.110685i
\(990\) 0 0
\(991\) 9.30144 0.295470 0.147735 0.989027i \(-0.452802\pi\)
0.147735 + 0.989027i \(0.452802\pi\)
\(992\) 0 0
\(993\) −21.7680 18.9952i −0.690787 0.602794i
\(994\) 0 0
\(995\) −8.80919 + 14.5623i −0.279270 + 0.461655i
\(996\) 0 0
\(997\) 14.4349i 0.457158i 0.973525 + 0.228579i \(0.0734080\pi\)
−0.973525 + 0.228579i \(0.926592\pi\)
\(998\) 0 0
\(999\) −55.4432 + 11.4558i −1.75414 + 0.362446i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 960.2.bb.a.593.21 88
3.2 odd 2 inner 960.2.bb.a.593.24 88
4.3 odd 2 240.2.bb.a.173.8 88
5.2 odd 4 960.2.bf.a.17.4 88
12.11 even 2 240.2.bb.a.173.37 yes 88
15.2 even 4 960.2.bf.a.17.3 88
16.5 even 4 960.2.bf.a.113.4 88
16.11 odd 4 240.2.bf.a.53.30 yes 88
20.7 even 4 240.2.bf.a.77.15 yes 88
48.5 odd 4 960.2.bf.a.113.3 88
48.11 even 4 240.2.bf.a.53.15 yes 88
60.47 odd 4 240.2.bf.a.77.30 yes 88
80.27 even 4 240.2.bb.a.197.37 yes 88
80.37 odd 4 inner 960.2.bb.a.497.24 88
240.107 odd 4 240.2.bb.a.197.8 yes 88
240.197 even 4 inner 960.2.bb.a.497.21 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
240.2.bb.a.173.8 88 4.3 odd 2
240.2.bb.a.173.37 yes 88 12.11 even 2
240.2.bb.a.197.8 yes 88 240.107 odd 4
240.2.bb.a.197.37 yes 88 80.27 even 4
240.2.bf.a.53.15 yes 88 48.11 even 4
240.2.bf.a.53.30 yes 88 16.11 odd 4
240.2.bf.a.77.15 yes 88 20.7 even 4
240.2.bf.a.77.30 yes 88 60.47 odd 4
960.2.bb.a.497.21 88 240.197 even 4 inner
960.2.bb.a.497.24 88 80.37 odd 4 inner
960.2.bb.a.593.21 88 1.1 even 1 trivial
960.2.bb.a.593.24 88 3.2 odd 2 inner
960.2.bf.a.17.3 88 15.2 even 4
960.2.bf.a.17.4 88 5.2 odd 4
960.2.bf.a.113.3 88 48.5 odd 4
960.2.bf.a.113.4 88 16.5 even 4