Properties

Label 960.2.k.e.481.1
Level $960$
Weight $2$
Character 960.481
Analytic conductor $7.666$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [960,2,Mod(481,960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(960, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("960.481");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 960 = 2^{6} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 960.k (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.66563859404\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 481.1
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 960.481
Dual form 960.2.k.e.481.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{3} +1.00000i q^{5} -2.00000 q^{7} -1.00000 q^{9} +O(q^{10})\) \(q-1.00000i q^{3} +1.00000i q^{5} -2.00000 q^{7} -1.00000 q^{9} -1.46410i q^{11} +1.46410i q^{13} +1.00000 q^{15} -3.46410 q^{17} -6.92820i q^{19} +2.00000i q^{21} -4.00000 q^{23} -1.00000 q^{25} +1.00000i q^{27} -4.92820i q^{29} -7.46410 q^{31} -1.46410 q^{33} -2.00000i q^{35} +2.53590i q^{37} +1.46410 q^{39} -8.92820 q^{41} -6.92820i q^{43} -1.00000i q^{45} +4.00000 q^{47} -3.00000 q^{49} +3.46410i q^{51} +12.9282i q^{53} +1.46410 q^{55} -6.92820 q^{57} -2.53590i q^{59} -4.00000i q^{61} +2.00000 q^{63} -1.46410 q^{65} -6.92820i q^{67} +4.00000i q^{69} -6.92820 q^{71} +10.0000 q^{73} +1.00000i q^{75} +2.92820i q^{77} +6.39230 q^{79} +1.00000 q^{81} +8.00000i q^{83} -3.46410i q^{85} -4.92820 q^{87} -12.9282 q^{89} -2.92820i q^{91} +7.46410i q^{93} +6.92820 q^{95} +0.928203 q^{97} +1.46410i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{7} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 8 q^{7} - 4 q^{9} + 4 q^{15} - 16 q^{23} - 4 q^{25} - 16 q^{31} + 8 q^{33} - 8 q^{39} - 8 q^{41} + 16 q^{47} - 12 q^{49} - 8 q^{55} + 8 q^{63} + 8 q^{65} + 40 q^{73} - 16 q^{79} + 4 q^{81} + 8 q^{87} - 24 q^{89} - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/960\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(577\) \(641\) \(901\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.00000i − 0.577350i
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) − 1.46410i − 0.441443i −0.975337 0.220722i \(-0.929159\pi\)
0.975337 0.220722i \(-0.0708412\pi\)
\(12\) 0 0
\(13\) 1.46410i 0.406069i 0.979172 + 0.203034i \(0.0650803\pi\)
−0.979172 + 0.203034i \(0.934920\pi\)
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) 0 0
\(17\) −3.46410 −0.840168 −0.420084 0.907485i \(-0.637999\pi\)
−0.420084 + 0.907485i \(0.637999\pi\)
\(18\) 0 0
\(19\) − 6.92820i − 1.58944i −0.606977 0.794719i \(-0.707618\pi\)
0.606977 0.794719i \(-0.292382\pi\)
\(20\) 0 0
\(21\) 2.00000i 0.436436i
\(22\) 0 0
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) − 4.92820i − 0.915144i −0.889172 0.457572i \(-0.848719\pi\)
0.889172 0.457572i \(-0.151281\pi\)
\(30\) 0 0
\(31\) −7.46410 −1.34059 −0.670296 0.742094i \(-0.733833\pi\)
−0.670296 + 0.742094i \(0.733833\pi\)
\(32\) 0 0
\(33\) −1.46410 −0.254867
\(34\) 0 0
\(35\) − 2.00000i − 0.338062i
\(36\) 0 0
\(37\) 2.53590i 0.416899i 0.978033 + 0.208450i \(0.0668417\pi\)
−0.978033 + 0.208450i \(0.933158\pi\)
\(38\) 0 0
\(39\) 1.46410 0.234444
\(40\) 0 0
\(41\) −8.92820 −1.39435 −0.697176 0.716900i \(-0.745560\pi\)
−0.697176 + 0.716900i \(0.745560\pi\)
\(42\) 0 0
\(43\) − 6.92820i − 1.05654i −0.849076 0.528271i \(-0.822841\pi\)
0.849076 0.528271i \(-0.177159\pi\)
\(44\) 0 0
\(45\) − 1.00000i − 0.149071i
\(46\) 0 0
\(47\) 4.00000 0.583460 0.291730 0.956501i \(-0.405769\pi\)
0.291730 + 0.956501i \(0.405769\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) 3.46410i 0.485071i
\(52\) 0 0
\(53\) 12.9282i 1.77583i 0.460012 + 0.887913i \(0.347845\pi\)
−0.460012 + 0.887913i \(0.652155\pi\)
\(54\) 0 0
\(55\) 1.46410 0.197419
\(56\) 0 0
\(57\) −6.92820 −0.917663
\(58\) 0 0
\(59\) − 2.53590i − 0.330146i −0.986281 0.165073i \(-0.947214\pi\)
0.986281 0.165073i \(-0.0527859\pi\)
\(60\) 0 0
\(61\) − 4.00000i − 0.512148i −0.966657 0.256074i \(-0.917571\pi\)
0.966657 0.256074i \(-0.0824290\pi\)
\(62\) 0 0
\(63\) 2.00000 0.251976
\(64\) 0 0
\(65\) −1.46410 −0.181599
\(66\) 0 0
\(67\) − 6.92820i − 0.846415i −0.906033 0.423207i \(-0.860904\pi\)
0.906033 0.423207i \(-0.139096\pi\)
\(68\) 0 0
\(69\) 4.00000i 0.481543i
\(70\) 0 0
\(71\) −6.92820 −0.822226 −0.411113 0.911584i \(-0.634860\pi\)
−0.411113 + 0.911584i \(0.634860\pi\)
\(72\) 0 0
\(73\) 10.0000 1.17041 0.585206 0.810885i \(-0.301014\pi\)
0.585206 + 0.810885i \(0.301014\pi\)
\(74\) 0 0
\(75\) 1.00000i 0.115470i
\(76\) 0 0
\(77\) 2.92820i 0.333700i
\(78\) 0 0
\(79\) 6.39230 0.719190 0.359595 0.933108i \(-0.382915\pi\)
0.359595 + 0.933108i \(0.382915\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 8.00000i 0.878114i 0.898459 + 0.439057i \(0.144687\pi\)
−0.898459 + 0.439057i \(0.855313\pi\)
\(84\) 0 0
\(85\) − 3.46410i − 0.375735i
\(86\) 0 0
\(87\) −4.92820 −0.528359
\(88\) 0 0
\(89\) −12.9282 −1.37039 −0.685193 0.728361i \(-0.740282\pi\)
−0.685193 + 0.728361i \(0.740282\pi\)
\(90\) 0 0
\(91\) − 2.92820i − 0.306959i
\(92\) 0 0
\(93\) 7.46410i 0.773991i
\(94\) 0 0
\(95\) 6.92820 0.710819
\(96\) 0 0
\(97\) 0.928203 0.0942448 0.0471224 0.998889i \(-0.484995\pi\)
0.0471224 + 0.998889i \(0.484995\pi\)
\(98\) 0 0
\(99\) 1.46410i 0.147148i
\(100\) 0 0
\(101\) 10.0000i 0.995037i 0.867453 + 0.497519i \(0.165755\pi\)
−0.867453 + 0.497519i \(0.834245\pi\)
\(102\) 0 0
\(103\) −8.92820 −0.879722 −0.439861 0.898066i \(-0.644972\pi\)
−0.439861 + 0.898066i \(0.644972\pi\)
\(104\) 0 0
\(105\) −2.00000 −0.195180
\(106\) 0 0
\(107\) 6.92820i 0.669775i 0.942258 + 0.334887i \(0.108698\pi\)
−0.942258 + 0.334887i \(0.891302\pi\)
\(108\) 0 0
\(109\) − 18.9282i − 1.81299i −0.422213 0.906497i \(-0.638747\pi\)
0.422213 0.906497i \(-0.361253\pi\)
\(110\) 0 0
\(111\) 2.53590 0.240697
\(112\) 0 0
\(113\) 0.535898 0.0504131 0.0252065 0.999682i \(-0.491976\pi\)
0.0252065 + 0.999682i \(0.491976\pi\)
\(114\) 0 0
\(115\) − 4.00000i − 0.373002i
\(116\) 0 0
\(117\) − 1.46410i − 0.135356i
\(118\) 0 0
\(119\) 6.92820 0.635107
\(120\) 0 0
\(121\) 8.85641 0.805128
\(122\) 0 0
\(123\) 8.92820i 0.805029i
\(124\) 0 0
\(125\) − 1.00000i − 0.0894427i
\(126\) 0 0
\(127\) −20.9282 −1.85708 −0.928539 0.371235i \(-0.878934\pi\)
−0.928539 + 0.371235i \(0.878934\pi\)
\(128\) 0 0
\(129\) −6.92820 −0.609994
\(130\) 0 0
\(131\) 5.46410i 0.477401i 0.971093 + 0.238700i \(0.0767214\pi\)
−0.971093 + 0.238700i \(0.923279\pi\)
\(132\) 0 0
\(133\) 13.8564i 1.20150i
\(134\) 0 0
\(135\) −1.00000 −0.0860663
\(136\) 0 0
\(137\) 22.3923 1.91310 0.956552 0.291562i \(-0.0941750\pi\)
0.956552 + 0.291562i \(0.0941750\pi\)
\(138\) 0 0
\(139\) − 12.0000i − 1.01783i −0.860818 0.508913i \(-0.830047\pi\)
0.860818 0.508913i \(-0.169953\pi\)
\(140\) 0 0
\(141\) − 4.00000i − 0.336861i
\(142\) 0 0
\(143\) 2.14359 0.179256
\(144\) 0 0
\(145\) 4.92820 0.409265
\(146\) 0 0
\(147\) 3.00000i 0.247436i
\(148\) 0 0
\(149\) − 18.7846i − 1.53890i −0.638710 0.769448i \(-0.720532\pi\)
0.638710 0.769448i \(-0.279468\pi\)
\(150\) 0 0
\(151\) 4.53590 0.369126 0.184563 0.982821i \(-0.440913\pi\)
0.184563 + 0.982821i \(0.440913\pi\)
\(152\) 0 0
\(153\) 3.46410 0.280056
\(154\) 0 0
\(155\) − 7.46410i − 0.599531i
\(156\) 0 0
\(157\) − 21.4641i − 1.71302i −0.516129 0.856511i \(-0.672627\pi\)
0.516129 0.856511i \(-0.327373\pi\)
\(158\) 0 0
\(159\) 12.9282 1.02527
\(160\) 0 0
\(161\) 8.00000 0.630488
\(162\) 0 0
\(163\) 4.00000i 0.313304i 0.987654 + 0.156652i \(0.0500701\pi\)
−0.987654 + 0.156652i \(0.949930\pi\)
\(164\) 0 0
\(165\) − 1.46410i − 0.113980i
\(166\) 0 0
\(167\) 13.8564 1.07224 0.536120 0.844141i \(-0.319889\pi\)
0.536120 + 0.844141i \(0.319889\pi\)
\(168\) 0 0
\(169\) 10.8564 0.835108
\(170\) 0 0
\(171\) 6.92820i 0.529813i
\(172\) 0 0
\(173\) − 11.0718i − 0.841773i −0.907113 0.420887i \(-0.861719\pi\)
0.907113 0.420887i \(-0.138281\pi\)
\(174\) 0 0
\(175\) 2.00000 0.151186
\(176\) 0 0
\(177\) −2.53590 −0.190610
\(178\) 0 0
\(179\) 16.3923i 1.22522i 0.790386 + 0.612609i \(0.209880\pi\)
−0.790386 + 0.612609i \(0.790120\pi\)
\(180\) 0 0
\(181\) 2.92820i 0.217652i 0.994061 + 0.108826i \(0.0347091\pi\)
−0.994061 + 0.108826i \(0.965291\pi\)
\(182\) 0 0
\(183\) −4.00000 −0.295689
\(184\) 0 0
\(185\) −2.53590 −0.186443
\(186\) 0 0
\(187\) 5.07180i 0.370887i
\(188\) 0 0
\(189\) − 2.00000i − 0.145479i
\(190\) 0 0
\(191\) −8.00000 −0.578860 −0.289430 0.957199i \(-0.593466\pi\)
−0.289430 + 0.957199i \(0.593466\pi\)
\(192\) 0 0
\(193\) 18.7846 1.35215 0.676073 0.736835i \(-0.263680\pi\)
0.676073 + 0.736835i \(0.263680\pi\)
\(194\) 0 0
\(195\) 1.46410i 0.104846i
\(196\) 0 0
\(197\) 23.8564i 1.69970i 0.527026 + 0.849849i \(0.323307\pi\)
−0.527026 + 0.849849i \(0.676693\pi\)
\(198\) 0 0
\(199\) 25.3205 1.79492 0.897462 0.441093i \(-0.145409\pi\)
0.897462 + 0.441093i \(0.145409\pi\)
\(200\) 0 0
\(201\) −6.92820 −0.488678
\(202\) 0 0
\(203\) 9.85641i 0.691784i
\(204\) 0 0
\(205\) − 8.92820i − 0.623573i
\(206\) 0 0
\(207\) 4.00000 0.278019
\(208\) 0 0
\(209\) −10.1436 −0.701647
\(210\) 0 0
\(211\) 4.00000i 0.275371i 0.990476 + 0.137686i \(0.0439664\pi\)
−0.990476 + 0.137686i \(0.956034\pi\)
\(212\) 0 0
\(213\) 6.92820i 0.474713i
\(214\) 0 0
\(215\) 6.92820 0.472500
\(216\) 0 0
\(217\) 14.9282 1.01339
\(218\) 0 0
\(219\) − 10.0000i − 0.675737i
\(220\) 0 0
\(221\) − 5.07180i − 0.341166i
\(222\) 0 0
\(223\) −20.9282 −1.40146 −0.700728 0.713428i \(-0.747141\pi\)
−0.700728 + 0.713428i \(0.747141\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) − 13.0718i − 0.867606i −0.901008 0.433803i \(-0.857171\pi\)
0.901008 0.433803i \(-0.142829\pi\)
\(228\) 0 0
\(229\) 2.14359i 0.141653i 0.997489 + 0.0708263i \(0.0225636\pi\)
−0.997489 + 0.0708263i \(0.977436\pi\)
\(230\) 0 0
\(231\) 2.92820 0.192662
\(232\) 0 0
\(233\) 4.53590 0.297157 0.148578 0.988901i \(-0.452530\pi\)
0.148578 + 0.988901i \(0.452530\pi\)
\(234\) 0 0
\(235\) 4.00000i 0.260931i
\(236\) 0 0
\(237\) − 6.39230i − 0.415225i
\(238\) 0 0
\(239\) 16.0000 1.03495 0.517477 0.855697i \(-0.326871\pi\)
0.517477 + 0.855697i \(0.326871\pi\)
\(240\) 0 0
\(241\) 26.0000 1.67481 0.837404 0.546585i \(-0.184072\pi\)
0.837404 + 0.546585i \(0.184072\pi\)
\(242\) 0 0
\(243\) − 1.00000i − 0.0641500i
\(244\) 0 0
\(245\) − 3.00000i − 0.191663i
\(246\) 0 0
\(247\) 10.1436 0.645421
\(248\) 0 0
\(249\) 8.00000 0.506979
\(250\) 0 0
\(251\) 23.3205i 1.47198i 0.676994 + 0.735989i \(0.263282\pi\)
−0.676994 + 0.735989i \(0.736718\pi\)
\(252\) 0 0
\(253\) 5.85641i 0.368189i
\(254\) 0 0
\(255\) −3.46410 −0.216930
\(256\) 0 0
\(257\) −7.46410 −0.465598 −0.232799 0.972525i \(-0.574788\pi\)
−0.232799 + 0.972525i \(0.574788\pi\)
\(258\) 0 0
\(259\) − 5.07180i − 0.315146i
\(260\) 0 0
\(261\) 4.92820i 0.305048i
\(262\) 0 0
\(263\) −27.7128 −1.70885 −0.854423 0.519579i \(-0.826089\pi\)
−0.854423 + 0.519579i \(0.826089\pi\)
\(264\) 0 0
\(265\) −12.9282 −0.794173
\(266\) 0 0
\(267\) 12.9282i 0.791193i
\(268\) 0 0
\(269\) − 26.7846i − 1.63309i −0.577284 0.816543i \(-0.695888\pi\)
0.577284 0.816543i \(-0.304112\pi\)
\(270\) 0 0
\(271\) −11.4641 −0.696395 −0.348197 0.937421i \(-0.613206\pi\)
−0.348197 + 0.937421i \(0.613206\pi\)
\(272\) 0 0
\(273\) −2.92820 −0.177223
\(274\) 0 0
\(275\) 1.46410i 0.0882886i
\(276\) 0 0
\(277\) − 6.53590i − 0.392704i −0.980533 0.196352i \(-0.937090\pi\)
0.980533 0.196352i \(-0.0629095\pi\)
\(278\) 0 0
\(279\) 7.46410 0.446864
\(280\) 0 0
\(281\) 0.928203 0.0553720 0.0276860 0.999617i \(-0.491186\pi\)
0.0276860 + 0.999617i \(0.491186\pi\)
\(282\) 0 0
\(283\) 22.9282i 1.36294i 0.731846 + 0.681470i \(0.238659\pi\)
−0.731846 + 0.681470i \(0.761341\pi\)
\(284\) 0 0
\(285\) − 6.92820i − 0.410391i
\(286\) 0 0
\(287\) 17.8564 1.05403
\(288\) 0 0
\(289\) −5.00000 −0.294118
\(290\) 0 0
\(291\) − 0.928203i − 0.0544122i
\(292\) 0 0
\(293\) 4.14359i 0.242071i 0.992648 + 0.121036i \(0.0386215\pi\)
−0.992648 + 0.121036i \(0.961378\pi\)
\(294\) 0 0
\(295\) 2.53590 0.147646
\(296\) 0 0
\(297\) 1.46410 0.0849558
\(298\) 0 0
\(299\) − 5.85641i − 0.338685i
\(300\) 0 0
\(301\) 13.8564i 0.798670i
\(302\) 0 0
\(303\) 10.0000 0.574485
\(304\) 0 0
\(305\) 4.00000 0.229039
\(306\) 0 0
\(307\) 9.85641i 0.562535i 0.959629 + 0.281267i \(0.0907548\pi\)
−0.959629 + 0.281267i \(0.909245\pi\)
\(308\) 0 0
\(309\) 8.92820i 0.507908i
\(310\) 0 0
\(311\) 2.14359 0.121552 0.0607760 0.998151i \(-0.480642\pi\)
0.0607760 + 0.998151i \(0.480642\pi\)
\(312\) 0 0
\(313\) −4.92820 −0.278559 −0.139279 0.990253i \(-0.544479\pi\)
−0.139279 + 0.990253i \(0.544479\pi\)
\(314\) 0 0
\(315\) 2.00000i 0.112687i
\(316\) 0 0
\(317\) 11.8564i 0.665922i 0.942941 + 0.332961i \(0.108048\pi\)
−0.942941 + 0.332961i \(0.891952\pi\)
\(318\) 0 0
\(319\) −7.21539 −0.403984
\(320\) 0 0
\(321\) 6.92820 0.386695
\(322\) 0 0
\(323\) 24.0000i 1.33540i
\(324\) 0 0
\(325\) − 1.46410i − 0.0812137i
\(326\) 0 0
\(327\) −18.9282 −1.04673
\(328\) 0 0
\(329\) −8.00000 −0.441054
\(330\) 0 0
\(331\) − 9.07180i − 0.498631i −0.968422 0.249316i \(-0.919794\pi\)
0.968422 0.249316i \(-0.0802056\pi\)
\(332\) 0 0
\(333\) − 2.53590i − 0.138966i
\(334\) 0 0
\(335\) 6.92820 0.378528
\(336\) 0 0
\(337\) −23.8564 −1.29954 −0.649771 0.760130i \(-0.725135\pi\)
−0.649771 + 0.760130i \(0.725135\pi\)
\(338\) 0 0
\(339\) − 0.535898i − 0.0291060i
\(340\) 0 0
\(341\) 10.9282i 0.591795i
\(342\) 0 0
\(343\) 20.0000 1.07990
\(344\) 0 0
\(345\) −4.00000 −0.215353
\(346\) 0 0
\(347\) − 2.92820i − 0.157194i −0.996906 0.0785971i \(-0.974956\pi\)
0.996906 0.0785971i \(-0.0250441\pi\)
\(348\) 0 0
\(349\) − 4.00000i − 0.214115i −0.994253 0.107058i \(-0.965857\pi\)
0.994253 0.107058i \(-0.0341429\pi\)
\(350\) 0 0
\(351\) −1.46410 −0.0781480
\(352\) 0 0
\(353\) 3.46410 0.184376 0.0921878 0.995742i \(-0.470614\pi\)
0.0921878 + 0.995742i \(0.470614\pi\)
\(354\) 0 0
\(355\) − 6.92820i − 0.367711i
\(356\) 0 0
\(357\) − 6.92820i − 0.366679i
\(358\) 0 0
\(359\) −22.9282 −1.21010 −0.605052 0.796186i \(-0.706848\pi\)
−0.605052 + 0.796186i \(0.706848\pi\)
\(360\) 0 0
\(361\) −29.0000 −1.52632
\(362\) 0 0
\(363\) − 8.85641i − 0.464841i
\(364\) 0 0
\(365\) 10.0000i 0.523424i
\(366\) 0 0
\(367\) 2.00000 0.104399 0.0521996 0.998637i \(-0.483377\pi\)
0.0521996 + 0.998637i \(0.483377\pi\)
\(368\) 0 0
\(369\) 8.92820 0.464784
\(370\) 0 0
\(371\) − 25.8564i − 1.34240i
\(372\) 0 0
\(373\) − 8.39230i − 0.434537i −0.976112 0.217269i \(-0.930285\pi\)
0.976112 0.217269i \(-0.0697147\pi\)
\(374\) 0 0
\(375\) −1.00000 −0.0516398
\(376\) 0 0
\(377\) 7.21539 0.371612
\(378\) 0 0
\(379\) − 20.0000i − 1.02733i −0.857991 0.513665i \(-0.828287\pi\)
0.857991 0.513665i \(-0.171713\pi\)
\(380\) 0 0
\(381\) 20.9282i 1.07218i
\(382\) 0 0
\(383\) −37.8564 −1.93437 −0.967186 0.254069i \(-0.918231\pi\)
−0.967186 + 0.254069i \(0.918231\pi\)
\(384\) 0 0
\(385\) −2.92820 −0.149235
\(386\) 0 0
\(387\) 6.92820i 0.352180i
\(388\) 0 0
\(389\) − 31.8564i − 1.61518i −0.589742 0.807592i \(-0.700770\pi\)
0.589742 0.807592i \(-0.299230\pi\)
\(390\) 0 0
\(391\) 13.8564 0.700749
\(392\) 0 0
\(393\) 5.46410 0.275627
\(394\) 0 0
\(395\) 6.39230i 0.321632i
\(396\) 0 0
\(397\) 15.6077i 0.783328i 0.920108 + 0.391664i \(0.128100\pi\)
−0.920108 + 0.391664i \(0.871900\pi\)
\(398\) 0 0
\(399\) 13.8564 0.693688
\(400\) 0 0
\(401\) 22.0000 1.09863 0.549314 0.835616i \(-0.314889\pi\)
0.549314 + 0.835616i \(0.314889\pi\)
\(402\) 0 0
\(403\) − 10.9282i − 0.544373i
\(404\) 0 0
\(405\) 1.00000i 0.0496904i
\(406\) 0 0
\(407\) 3.71281 0.184037
\(408\) 0 0
\(409\) −3.85641 −0.190687 −0.0953435 0.995444i \(-0.530395\pi\)
−0.0953435 + 0.995444i \(0.530395\pi\)
\(410\) 0 0
\(411\) − 22.3923i − 1.10453i
\(412\) 0 0
\(413\) 5.07180i 0.249567i
\(414\) 0 0
\(415\) −8.00000 −0.392705
\(416\) 0 0
\(417\) −12.0000 −0.587643
\(418\) 0 0
\(419\) − 15.3205i − 0.748456i −0.927337 0.374228i \(-0.877908\pi\)
0.927337 0.374228i \(-0.122092\pi\)
\(420\) 0 0
\(421\) 16.0000i 0.779792i 0.920859 + 0.389896i \(0.127489\pi\)
−0.920859 + 0.389896i \(0.872511\pi\)
\(422\) 0 0
\(423\) −4.00000 −0.194487
\(424\) 0 0
\(425\) 3.46410 0.168034
\(426\) 0 0
\(427\) 8.00000i 0.387147i
\(428\) 0 0
\(429\) − 2.14359i − 0.103494i
\(430\) 0 0
\(431\) 30.9282 1.48976 0.744880 0.667199i \(-0.232507\pi\)
0.744880 + 0.667199i \(0.232507\pi\)
\(432\) 0 0
\(433\) −7.85641 −0.377555 −0.188777 0.982020i \(-0.560452\pi\)
−0.188777 + 0.982020i \(0.560452\pi\)
\(434\) 0 0
\(435\) − 4.92820i − 0.236289i
\(436\) 0 0
\(437\) 27.7128i 1.32568i
\(438\) 0 0
\(439\) 33.3205 1.59030 0.795151 0.606412i \(-0.207392\pi\)
0.795151 + 0.606412i \(0.207392\pi\)
\(440\) 0 0
\(441\) 3.00000 0.142857
\(442\) 0 0
\(443\) − 30.6410i − 1.45580i −0.685684 0.727899i \(-0.740497\pi\)
0.685684 0.727899i \(-0.259503\pi\)
\(444\) 0 0
\(445\) − 12.9282i − 0.612856i
\(446\) 0 0
\(447\) −18.7846 −0.888482
\(448\) 0 0
\(449\) −37.7128 −1.77978 −0.889889 0.456177i \(-0.849218\pi\)
−0.889889 + 0.456177i \(0.849218\pi\)
\(450\) 0 0
\(451\) 13.0718i 0.615527i
\(452\) 0 0
\(453\) − 4.53590i − 0.213115i
\(454\) 0 0
\(455\) 2.92820 0.137276
\(456\) 0 0
\(457\) −8.92820 −0.417644 −0.208822 0.977954i \(-0.566963\pi\)
−0.208822 + 0.977954i \(0.566963\pi\)
\(458\) 0 0
\(459\) − 3.46410i − 0.161690i
\(460\) 0 0
\(461\) − 16.9282i − 0.788425i −0.919019 0.394213i \(-0.871017\pi\)
0.919019 0.394213i \(-0.128983\pi\)
\(462\) 0 0
\(463\) −15.8564 −0.736910 −0.368455 0.929646i \(-0.620113\pi\)
−0.368455 + 0.929646i \(0.620113\pi\)
\(464\) 0 0
\(465\) −7.46410 −0.346139
\(466\) 0 0
\(467\) − 37.8564i − 1.75179i −0.482506 0.875893i \(-0.660273\pi\)
0.482506 0.875893i \(-0.339727\pi\)
\(468\) 0 0
\(469\) 13.8564i 0.639829i
\(470\) 0 0
\(471\) −21.4641 −0.989014
\(472\) 0 0
\(473\) −10.1436 −0.466403
\(474\) 0 0
\(475\) 6.92820i 0.317888i
\(476\) 0 0
\(477\) − 12.9282i − 0.591942i
\(478\) 0 0
\(479\) −36.7846 −1.68073 −0.840366 0.542020i \(-0.817660\pi\)
−0.840366 + 0.542020i \(0.817660\pi\)
\(480\) 0 0
\(481\) −3.71281 −0.169290
\(482\) 0 0
\(483\) − 8.00000i − 0.364013i
\(484\) 0 0
\(485\) 0.928203i 0.0421475i
\(486\) 0 0
\(487\) −18.7846 −0.851212 −0.425606 0.904909i \(-0.639939\pi\)
−0.425606 + 0.904909i \(0.639939\pi\)
\(488\) 0 0
\(489\) 4.00000 0.180886
\(490\) 0 0
\(491\) − 3.32051i − 0.149852i −0.997189 0.0749262i \(-0.976128\pi\)
0.997189 0.0749262i \(-0.0238721\pi\)
\(492\) 0 0
\(493\) 17.0718i 0.768875i
\(494\) 0 0
\(495\) −1.46410 −0.0658065
\(496\) 0 0
\(497\) 13.8564 0.621545
\(498\) 0 0
\(499\) 9.07180i 0.406109i 0.979167 + 0.203055i \(0.0650869\pi\)
−0.979167 + 0.203055i \(0.934913\pi\)
\(500\) 0 0
\(501\) − 13.8564i − 0.619059i
\(502\) 0 0
\(503\) −4.00000 −0.178351 −0.0891756 0.996016i \(-0.528423\pi\)
−0.0891756 + 0.996016i \(0.528423\pi\)
\(504\) 0 0
\(505\) −10.0000 −0.444994
\(506\) 0 0
\(507\) − 10.8564i − 0.482150i
\(508\) 0 0
\(509\) 16.1436i 0.715552i 0.933807 + 0.357776i \(0.116465\pi\)
−0.933807 + 0.357776i \(0.883535\pi\)
\(510\) 0 0
\(511\) −20.0000 −0.884748
\(512\) 0 0
\(513\) 6.92820 0.305888
\(514\) 0 0
\(515\) − 8.92820i − 0.393424i
\(516\) 0 0
\(517\) − 5.85641i − 0.257564i
\(518\) 0 0
\(519\) −11.0718 −0.485998
\(520\) 0 0
\(521\) −30.0000 −1.31432 −0.657162 0.753749i \(-0.728243\pi\)
−0.657162 + 0.753749i \(0.728243\pi\)
\(522\) 0 0
\(523\) − 20.0000i − 0.874539i −0.899331 0.437269i \(-0.855946\pi\)
0.899331 0.437269i \(-0.144054\pi\)
\(524\) 0 0
\(525\) − 2.00000i − 0.0872872i
\(526\) 0 0
\(527\) 25.8564 1.12632
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 2.53590i 0.110049i
\(532\) 0 0
\(533\) − 13.0718i − 0.566202i
\(534\) 0 0
\(535\) −6.92820 −0.299532
\(536\) 0 0
\(537\) 16.3923 0.707380
\(538\) 0 0
\(539\) 4.39230i 0.189190i
\(540\) 0 0
\(541\) − 2.92820i − 0.125893i −0.998017 0.0629466i \(-0.979950\pi\)
0.998017 0.0629466i \(-0.0200498\pi\)
\(542\) 0 0
\(543\) 2.92820 0.125661
\(544\) 0 0
\(545\) 18.9282 0.810795
\(546\) 0 0
\(547\) 9.07180i 0.387882i 0.981013 + 0.193941i \(0.0621270\pi\)
−0.981013 + 0.193941i \(0.937873\pi\)
\(548\) 0 0
\(549\) 4.00000i 0.170716i
\(550\) 0 0
\(551\) −34.1436 −1.45457
\(552\) 0 0
\(553\) −12.7846 −0.543657
\(554\) 0 0
\(555\) 2.53590i 0.107643i
\(556\) 0 0
\(557\) 26.7846i 1.13490i 0.823408 + 0.567450i \(0.192070\pi\)
−0.823408 + 0.567450i \(0.807930\pi\)
\(558\) 0 0
\(559\) 10.1436 0.429028
\(560\) 0 0
\(561\) 5.07180 0.214131
\(562\) 0 0
\(563\) 18.9282i 0.797729i 0.917010 + 0.398864i \(0.130596\pi\)
−0.917010 + 0.398864i \(0.869404\pi\)
\(564\) 0 0
\(565\) 0.535898i 0.0225454i
\(566\) 0 0
\(567\) −2.00000 −0.0839921
\(568\) 0 0
\(569\) 31.8564 1.33549 0.667745 0.744390i \(-0.267260\pi\)
0.667745 + 0.744390i \(0.267260\pi\)
\(570\) 0 0
\(571\) − 1.07180i − 0.0448533i −0.999748 0.0224266i \(-0.992861\pi\)
0.999748 0.0224266i \(-0.00713922\pi\)
\(572\) 0 0
\(573\) 8.00000i 0.334205i
\(574\) 0 0
\(575\) 4.00000 0.166812
\(576\) 0 0
\(577\) −28.9282 −1.20430 −0.602148 0.798384i \(-0.705688\pi\)
−0.602148 + 0.798384i \(0.705688\pi\)
\(578\) 0 0
\(579\) − 18.7846i − 0.780662i
\(580\) 0 0
\(581\) − 16.0000i − 0.663792i
\(582\) 0 0
\(583\) 18.9282 0.783926
\(584\) 0 0
\(585\) 1.46410 0.0605332
\(586\) 0 0
\(587\) − 34.6410i − 1.42979i −0.699233 0.714894i \(-0.746475\pi\)
0.699233 0.714894i \(-0.253525\pi\)
\(588\) 0 0
\(589\) 51.7128i 2.13079i
\(590\) 0 0
\(591\) 23.8564 0.981321
\(592\) 0 0
\(593\) −37.3205 −1.53257 −0.766285 0.642501i \(-0.777897\pi\)
−0.766285 + 0.642501i \(0.777897\pi\)
\(594\) 0 0
\(595\) 6.92820i 0.284029i
\(596\) 0 0
\(597\) − 25.3205i − 1.03630i
\(598\) 0 0
\(599\) −34.6410 −1.41539 −0.707697 0.706516i \(-0.750266\pi\)
−0.707697 + 0.706516i \(0.750266\pi\)
\(600\) 0 0
\(601\) −47.5692 −1.94039 −0.970194 0.242328i \(-0.922089\pi\)
−0.970194 + 0.242328i \(0.922089\pi\)
\(602\) 0 0
\(603\) 6.92820i 0.282138i
\(604\) 0 0
\(605\) 8.85641i 0.360064i
\(606\) 0 0
\(607\) −18.0000 −0.730597 −0.365299 0.930890i \(-0.619033\pi\)
−0.365299 + 0.930890i \(0.619033\pi\)
\(608\) 0 0
\(609\) 9.85641 0.399402
\(610\) 0 0
\(611\) 5.85641i 0.236925i
\(612\) 0 0
\(613\) 22.2487i 0.898617i 0.893377 + 0.449308i \(0.148330\pi\)
−0.893377 + 0.449308i \(0.851670\pi\)
\(614\) 0 0
\(615\) −8.92820 −0.360020
\(616\) 0 0
\(617\) 14.6795 0.590974 0.295487 0.955347i \(-0.404518\pi\)
0.295487 + 0.955347i \(0.404518\pi\)
\(618\) 0 0
\(619\) 33.8564i 1.36080i 0.732839 + 0.680402i \(0.238195\pi\)
−0.732839 + 0.680402i \(0.761805\pi\)
\(620\) 0 0
\(621\) − 4.00000i − 0.160514i
\(622\) 0 0
\(623\) 25.8564 1.03592
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 10.1436i 0.405096i
\(628\) 0 0
\(629\) − 8.78461i − 0.350265i
\(630\) 0 0
\(631\) 9.60770 0.382476 0.191238 0.981544i \(-0.438750\pi\)
0.191238 + 0.981544i \(0.438750\pi\)
\(632\) 0 0
\(633\) 4.00000 0.158986
\(634\) 0 0
\(635\) − 20.9282i − 0.830510i
\(636\) 0 0
\(637\) − 4.39230i − 0.174029i
\(638\) 0 0
\(639\) 6.92820 0.274075
\(640\) 0 0
\(641\) 44.6410 1.76321 0.881607 0.471984i \(-0.156462\pi\)
0.881607 + 0.471984i \(0.156462\pi\)
\(642\) 0 0
\(643\) 15.7128i 0.619653i 0.950793 + 0.309826i \(0.100271\pi\)
−0.950793 + 0.309826i \(0.899729\pi\)
\(644\) 0 0
\(645\) − 6.92820i − 0.272798i
\(646\) 0 0
\(647\) 9.85641 0.387495 0.193748 0.981051i \(-0.437936\pi\)
0.193748 + 0.981051i \(0.437936\pi\)
\(648\) 0 0
\(649\) −3.71281 −0.145741
\(650\) 0 0
\(651\) − 14.9282i − 0.585082i
\(652\) 0 0
\(653\) − 19.8564i − 0.777041i −0.921440 0.388521i \(-0.872986\pi\)
0.921440 0.388521i \(-0.127014\pi\)
\(654\) 0 0
\(655\) −5.46410 −0.213500
\(656\) 0 0
\(657\) −10.0000 −0.390137
\(658\) 0 0
\(659\) − 0.392305i − 0.0152820i −0.999971 0.00764101i \(-0.997568\pi\)
0.999971 0.00764101i \(-0.00243223\pi\)
\(660\) 0 0
\(661\) − 4.00000i − 0.155582i −0.996970 0.0777910i \(-0.975213\pi\)
0.996970 0.0777910i \(-0.0247867\pi\)
\(662\) 0 0
\(663\) −5.07180 −0.196972
\(664\) 0 0
\(665\) −13.8564 −0.537328
\(666\) 0 0
\(667\) 19.7128i 0.763283i
\(668\) 0 0
\(669\) 20.9282i 0.809131i
\(670\) 0 0
\(671\) −5.85641 −0.226084
\(672\) 0 0
\(673\) −29.7128 −1.14534 −0.572672 0.819784i \(-0.694093\pi\)
−0.572672 + 0.819784i \(0.694093\pi\)
\(674\) 0 0
\(675\) − 1.00000i − 0.0384900i
\(676\) 0 0
\(677\) − 4.14359i − 0.159251i −0.996825 0.0796256i \(-0.974628\pi\)
0.996825 0.0796256i \(-0.0253725\pi\)
\(678\) 0 0
\(679\) −1.85641 −0.0712423
\(680\) 0 0
\(681\) −13.0718 −0.500912
\(682\) 0 0
\(683\) − 18.1436i − 0.694245i −0.937820 0.347123i \(-0.887159\pi\)
0.937820 0.347123i \(-0.112841\pi\)
\(684\) 0 0
\(685\) 22.3923i 0.855566i
\(686\) 0 0
\(687\) 2.14359 0.0817832
\(688\) 0 0
\(689\) −18.9282 −0.721107
\(690\) 0 0
\(691\) − 9.07180i − 0.345107i −0.985000 0.172554i \(-0.944798\pi\)
0.985000 0.172554i \(-0.0552018\pi\)
\(692\) 0 0
\(693\) − 2.92820i − 0.111233i
\(694\) 0 0
\(695\) 12.0000 0.455186
\(696\) 0 0
\(697\) 30.9282 1.17149
\(698\) 0 0
\(699\) − 4.53590i − 0.171563i
\(700\) 0 0
\(701\) 24.1436i 0.911891i 0.890008 + 0.455945i \(0.150699\pi\)
−0.890008 + 0.455945i \(0.849301\pi\)
\(702\) 0 0
\(703\) 17.5692 0.662636
\(704\) 0 0
\(705\) 4.00000 0.150649
\(706\) 0 0
\(707\) − 20.0000i − 0.752177i
\(708\) 0 0
\(709\) 3.71281i 0.139438i 0.997567 + 0.0697188i \(0.0222102\pi\)
−0.997567 + 0.0697188i \(0.977790\pi\)
\(710\) 0 0
\(711\) −6.39230 −0.239730
\(712\) 0 0
\(713\) 29.8564 1.11813
\(714\) 0 0
\(715\) 2.14359i 0.0801659i
\(716\) 0 0
\(717\) − 16.0000i − 0.597531i
\(718\) 0 0
\(719\) 3.21539 0.119914 0.0599569 0.998201i \(-0.480904\pi\)
0.0599569 + 0.998201i \(0.480904\pi\)
\(720\) 0 0
\(721\) 17.8564 0.665007
\(722\) 0 0
\(723\) − 26.0000i − 0.966950i
\(724\) 0 0
\(725\) 4.92820i 0.183029i
\(726\) 0 0
\(727\) 8.92820 0.331129 0.165564 0.986199i \(-0.447055\pi\)
0.165564 + 0.986199i \(0.447055\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 24.0000i 0.887672i
\(732\) 0 0
\(733\) − 1.46410i − 0.0540778i −0.999634 0.0270389i \(-0.991392\pi\)
0.999634 0.0270389i \(-0.00860780\pi\)
\(734\) 0 0
\(735\) −3.00000 −0.110657
\(736\) 0 0
\(737\) −10.1436 −0.373644
\(738\) 0 0
\(739\) 26.6410i 0.980006i 0.871721 + 0.490003i \(0.163004\pi\)
−0.871721 + 0.490003i \(0.836996\pi\)
\(740\) 0 0
\(741\) − 10.1436i − 0.372634i
\(742\) 0 0
\(743\) 19.7128 0.723193 0.361596 0.932335i \(-0.382232\pi\)
0.361596 + 0.932335i \(0.382232\pi\)
\(744\) 0 0
\(745\) 18.7846 0.688215
\(746\) 0 0
\(747\) − 8.00000i − 0.292705i
\(748\) 0 0
\(749\) − 13.8564i − 0.506302i
\(750\) 0 0
\(751\) 46.3923 1.69288 0.846440 0.532485i \(-0.178742\pi\)
0.846440 + 0.532485i \(0.178742\pi\)
\(752\) 0 0
\(753\) 23.3205 0.849847
\(754\) 0 0
\(755\) 4.53590i 0.165078i
\(756\) 0 0
\(757\) − 48.1051i − 1.74841i −0.485557 0.874205i \(-0.661383\pi\)
0.485557 0.874205i \(-0.338617\pi\)
\(758\) 0 0
\(759\) 5.85641 0.212574
\(760\) 0 0
\(761\) −30.0000 −1.08750 −0.543750 0.839248i \(-0.682996\pi\)
−0.543750 + 0.839248i \(0.682996\pi\)
\(762\) 0 0
\(763\) 37.8564i 1.37049i
\(764\) 0 0
\(765\) 3.46410i 0.125245i
\(766\) 0 0
\(767\) 3.71281 0.134062
\(768\) 0 0
\(769\) −11.8564 −0.427553 −0.213776 0.976883i \(-0.568576\pi\)
−0.213776 + 0.976883i \(0.568576\pi\)
\(770\) 0 0
\(771\) 7.46410i 0.268813i
\(772\) 0 0
\(773\) − 41.7128i − 1.50031i −0.661265 0.750153i \(-0.729980\pi\)
0.661265 0.750153i \(-0.270020\pi\)
\(774\) 0 0
\(775\) 7.46410 0.268118
\(776\) 0 0
\(777\) −5.07180 −0.181950
\(778\) 0 0
\(779\) 61.8564i 2.21624i
\(780\) 0 0
\(781\) 10.1436i 0.362966i
\(782\) 0 0
\(783\) 4.92820 0.176120
\(784\) 0 0
\(785\) 21.4641 0.766087
\(786\) 0 0
\(787\) 23.7128i 0.845270i 0.906300 + 0.422635i \(0.138895\pi\)
−0.906300 + 0.422635i \(0.861105\pi\)
\(788\) 0 0
\(789\) 27.7128i 0.986602i
\(790\) 0 0
\(791\) −1.07180 −0.0381087
\(792\) 0 0
\(793\) 5.85641 0.207967
\(794\) 0 0
\(795\) 12.9282i 0.458516i
\(796\) 0 0
\(797\) 18.7846i 0.665385i 0.943035 + 0.332693i \(0.107957\pi\)
−0.943035 + 0.332693i \(0.892043\pi\)
\(798\) 0 0
\(799\) −13.8564 −0.490204
\(800\) 0 0
\(801\) 12.9282 0.456796
\(802\) 0 0
\(803\) − 14.6410i − 0.516670i
\(804\) 0 0
\(805\) 8.00000i 0.281963i
\(806\) 0 0
\(807\) −26.7846 −0.942863
\(808\) 0 0
\(809\) 18.7846 0.660432 0.330216 0.943905i \(-0.392878\pi\)
0.330216 + 0.943905i \(0.392878\pi\)
\(810\) 0 0
\(811\) 17.8564i 0.627023i 0.949584 + 0.313512i \(0.101505\pi\)
−0.949584 + 0.313512i \(0.898495\pi\)
\(812\) 0 0
\(813\) 11.4641i 0.402064i
\(814\) 0 0
\(815\) −4.00000 −0.140114
\(816\) 0 0
\(817\) −48.0000 −1.67931
\(818\) 0 0
\(819\) 2.92820i 0.102320i
\(820\) 0 0
\(821\) − 38.7846i − 1.35359i −0.736171 0.676796i \(-0.763368\pi\)
0.736171 0.676796i \(-0.236632\pi\)
\(822\) 0 0
\(823\) 54.7846 1.90967 0.954836 0.297134i \(-0.0960309\pi\)
0.954836 + 0.297134i \(0.0960309\pi\)
\(824\) 0 0
\(825\) 1.46410 0.0509735
\(826\) 0 0
\(827\) 37.5692i 1.30641i 0.757181 + 0.653205i \(0.226576\pi\)
−0.757181 + 0.653205i \(0.773424\pi\)
\(828\) 0 0
\(829\) 2.92820i 0.101701i 0.998706 + 0.0508504i \(0.0161932\pi\)
−0.998706 + 0.0508504i \(0.983807\pi\)
\(830\) 0 0
\(831\) −6.53590 −0.226728
\(832\) 0 0
\(833\) 10.3923 0.360072
\(834\) 0 0
\(835\) 13.8564i 0.479521i
\(836\) 0 0
\(837\) − 7.46410i − 0.257997i
\(838\) 0 0
\(839\) −42.6410 −1.47213 −0.736066 0.676910i \(-0.763319\pi\)
−0.736066 + 0.676910i \(0.763319\pi\)
\(840\) 0 0
\(841\) 4.71281 0.162511
\(842\) 0 0
\(843\) − 0.928203i − 0.0319690i
\(844\) 0 0
\(845\) 10.8564i 0.373472i
\(846\) 0 0
\(847\) −17.7128 −0.608619
\(848\) 0 0
\(849\) 22.9282 0.786894
\(850\) 0 0
\(851\) − 10.1436i − 0.347718i
\(852\) 0 0
\(853\) − 35.3205i − 1.20935i −0.796472 0.604676i \(-0.793303\pi\)
0.796472 0.604676i \(-0.206697\pi\)
\(854\) 0 0
\(855\) −6.92820 −0.236940
\(856\) 0 0
\(857\) 53.0333 1.81158 0.905792 0.423723i \(-0.139277\pi\)
0.905792 + 0.423723i \(0.139277\pi\)
\(858\) 0 0
\(859\) − 39.7128i − 1.35498i −0.735530 0.677492i \(-0.763067\pi\)
0.735530 0.677492i \(-0.236933\pi\)
\(860\) 0 0
\(861\) − 17.8564i − 0.608545i
\(862\) 0 0
\(863\) 24.0000 0.816970 0.408485 0.912765i \(-0.366057\pi\)
0.408485 + 0.912765i \(0.366057\pi\)
\(864\) 0 0
\(865\) 11.0718 0.376452
\(866\) 0 0
\(867\) 5.00000i 0.169809i
\(868\) 0 0
\(869\) − 9.35898i − 0.317482i
\(870\) 0 0
\(871\) 10.1436 0.343703
\(872\) 0 0
\(873\) −0.928203 −0.0314149
\(874\) 0 0
\(875\) 2.00000i 0.0676123i
\(876\) 0 0
\(877\) 18.5359i 0.625913i 0.949767 + 0.312956i \(0.101319\pi\)
−0.949767 + 0.312956i \(0.898681\pi\)
\(878\) 0 0
\(879\) 4.14359 0.139760
\(880\) 0 0
\(881\) −12.6410 −0.425887 −0.212943 0.977065i \(-0.568305\pi\)
−0.212943 + 0.977065i \(0.568305\pi\)
\(882\) 0 0
\(883\) − 49.8564i − 1.67780i −0.544284 0.838901i \(-0.683199\pi\)
0.544284 0.838901i \(-0.316801\pi\)
\(884\) 0 0
\(885\) − 2.53590i − 0.0852433i
\(886\) 0 0
\(887\) 10.1436 0.340589 0.170294 0.985393i \(-0.445528\pi\)
0.170294 + 0.985393i \(0.445528\pi\)
\(888\) 0 0
\(889\) 41.8564 1.40382
\(890\) 0 0
\(891\) − 1.46410i − 0.0490492i
\(892\) 0 0
\(893\) − 27.7128i − 0.927374i
\(894\) 0 0
\(895\) −16.3923 −0.547934
\(896\) 0 0
\(897\) −5.85641 −0.195540
\(898\) 0 0
\(899\) 36.7846i 1.22684i
\(900\) 0 0
\(901\) − 44.7846i − 1.49199i
\(902\) 0 0
\(903\) 13.8564 0.461112
\(904\) 0 0
\(905\) −2.92820 −0.0973368
\(906\) 0 0
\(907\) − 1.07180i − 0.0355884i −0.999842 0.0177942i \(-0.994336\pi\)
0.999842 0.0177942i \(-0.00566437\pi\)
\(908\) 0 0
\(909\) − 10.0000i − 0.331679i
\(910\) 0 0
\(911\) −27.7128 −0.918166 −0.459083 0.888393i \(-0.651822\pi\)
−0.459083 + 0.888393i \(0.651822\pi\)
\(912\) 0 0
\(913\) 11.7128 0.387638
\(914\) 0 0
\(915\) − 4.00000i − 0.132236i
\(916\) 0 0
\(917\) − 10.9282i − 0.360881i
\(918\) 0 0
\(919\) −14.3923 −0.474758 −0.237379 0.971417i \(-0.576288\pi\)
−0.237379 + 0.971417i \(0.576288\pi\)
\(920\) 0 0
\(921\) 9.85641 0.324780
\(922\) 0 0
\(923\) − 10.1436i − 0.333880i
\(924\) 0 0
\(925\) − 2.53590i − 0.0833798i
\(926\) 0 0
\(927\) 8.92820 0.293241
\(928\) 0 0
\(929\) 39.5692 1.29822 0.649112 0.760693i \(-0.275141\pi\)
0.649112 + 0.760693i \(0.275141\pi\)
\(930\) 0 0
\(931\) 20.7846i 0.681188i
\(932\) 0 0
\(933\) − 2.14359i − 0.0701781i
\(934\) 0 0
\(935\) −5.07180 −0.165865
\(936\) 0 0
\(937\) 0.143594 0.00469100 0.00234550 0.999997i \(-0.499253\pi\)
0.00234550 + 0.999997i \(0.499253\pi\)
\(938\) 0 0
\(939\) 4.92820i 0.160826i
\(940\) 0 0
\(941\) − 6.00000i − 0.195594i −0.995206 0.0977972i \(-0.968820\pi\)
0.995206 0.0977972i \(-0.0311797\pi\)
\(942\) 0 0
\(943\) 35.7128 1.16297
\(944\) 0 0
\(945\) 2.00000 0.0650600
\(946\) 0 0
\(947\) − 1.85641i − 0.0603251i −0.999545 0.0301626i \(-0.990398\pi\)
0.999545 0.0301626i \(-0.00960249\pi\)
\(948\) 0 0
\(949\) 14.6410i 0.475267i
\(950\) 0 0
\(951\) 11.8564 0.384470
\(952\) 0 0
\(953\) −29.3205 −0.949784 −0.474892 0.880044i \(-0.657513\pi\)
−0.474892 + 0.880044i \(0.657513\pi\)
\(954\) 0 0
\(955\) − 8.00000i − 0.258874i
\(956\) 0 0
\(957\) 7.21539i 0.233240i
\(958\) 0 0
\(959\) −44.7846 −1.44617
\(960\) 0 0
\(961\) 24.7128 0.797188
\(962\) 0 0
\(963\) − 6.92820i − 0.223258i
\(964\) 0 0
\(965\) 18.7846i 0.604698i
\(966\) 0 0
\(967\) 18.7846 0.604072 0.302036 0.953296i \(-0.402334\pi\)
0.302036 + 0.953296i \(0.402334\pi\)
\(968\) 0 0
\(969\) 24.0000 0.770991
\(970\) 0 0
\(971\) − 4.39230i − 0.140956i −0.997513 0.0704779i \(-0.977548\pi\)
0.997513 0.0704779i \(-0.0224524\pi\)
\(972\) 0 0
\(973\) 24.0000i 0.769405i
\(974\) 0 0
\(975\) −1.46410 −0.0468888
\(976\) 0 0
\(977\) 34.3923 1.10031 0.550154 0.835063i \(-0.314569\pi\)
0.550154 + 0.835063i \(0.314569\pi\)
\(978\) 0 0
\(979\) 18.9282i 0.604948i
\(980\) 0 0
\(981\) 18.9282i 0.604331i
\(982\) 0 0
\(983\) −13.8564 −0.441951 −0.220975 0.975279i \(-0.570924\pi\)
−0.220975 + 0.975279i \(0.570924\pi\)
\(984\) 0 0
\(985\) −23.8564 −0.760128
\(986\) 0 0
\(987\) 8.00000i 0.254643i
\(988\) 0 0
\(989\) 27.7128i 0.881216i
\(990\) 0 0
\(991\) −14.6795 −0.466309 −0.233155 0.972440i \(-0.574905\pi\)
−0.233155 + 0.972440i \(0.574905\pi\)
\(992\) 0 0
\(993\) −9.07180 −0.287885
\(994\) 0 0
\(995\) 25.3205i 0.802714i
\(996\) 0 0
\(997\) − 2.53590i − 0.0803127i −0.999193 0.0401564i \(-0.987214\pi\)
0.999193 0.0401564i \(-0.0127856\pi\)
\(998\) 0 0
\(999\) −2.53590 −0.0802323
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 960.2.k.e.481.1 4
3.2 odd 2 2880.2.k.f.1441.2 4
4.3 odd 2 960.2.k.f.481.4 yes 4
5.2 odd 4 4800.2.d.i.1249.1 4
5.3 odd 4 4800.2.d.r.1249.3 4
5.4 even 2 4800.2.k.o.2401.3 4
8.3 odd 2 960.2.k.f.481.1 yes 4
8.5 even 2 inner 960.2.k.e.481.4 yes 4
12.11 even 2 2880.2.k.k.1441.1 4
16.3 odd 4 3840.2.a.bf.1.2 2
16.5 even 4 3840.2.a.be.1.2 2
16.11 odd 4 3840.2.a.bi.1.1 2
16.13 even 4 3840.2.a.bn.1.1 2
20.3 even 4 4800.2.d.m.1249.2 4
20.7 even 4 4800.2.d.n.1249.4 4
20.19 odd 2 4800.2.k.i.2401.2 4
24.5 odd 2 2880.2.k.f.1441.3 4
24.11 even 2 2880.2.k.k.1441.4 4
40.3 even 4 4800.2.d.n.1249.1 4
40.13 odd 4 4800.2.d.i.1249.4 4
40.19 odd 2 4800.2.k.i.2401.3 4
40.27 even 4 4800.2.d.m.1249.3 4
40.29 even 2 4800.2.k.o.2401.2 4
40.37 odd 4 4800.2.d.r.1249.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
960.2.k.e.481.1 4 1.1 even 1 trivial
960.2.k.e.481.4 yes 4 8.5 even 2 inner
960.2.k.f.481.1 yes 4 8.3 odd 2
960.2.k.f.481.4 yes 4 4.3 odd 2
2880.2.k.f.1441.2 4 3.2 odd 2
2880.2.k.f.1441.3 4 24.5 odd 2
2880.2.k.k.1441.1 4 12.11 even 2
2880.2.k.k.1441.4 4 24.11 even 2
3840.2.a.be.1.2 2 16.5 even 4
3840.2.a.bf.1.2 2 16.3 odd 4
3840.2.a.bi.1.1 2 16.11 odd 4
3840.2.a.bn.1.1 2 16.13 even 4
4800.2.d.i.1249.1 4 5.2 odd 4
4800.2.d.i.1249.4 4 40.13 odd 4
4800.2.d.m.1249.2 4 20.3 even 4
4800.2.d.m.1249.3 4 40.27 even 4
4800.2.d.n.1249.1 4 40.3 even 4
4800.2.d.n.1249.4 4 20.7 even 4
4800.2.d.r.1249.2 4 40.37 odd 4
4800.2.d.r.1249.3 4 5.3 odd 4
4800.2.k.i.2401.2 4 20.19 odd 2
4800.2.k.i.2401.3 4 40.19 odd 2
4800.2.k.o.2401.2 4 40.29 even 2
4800.2.k.o.2401.3 4 5.4 even 2