Properties

Label 960.2.k.e.481.1
Level 960960
Weight 22
Character 960.481
Analytic conductor 7.6667.666
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [960,2,Mod(481,960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(960, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("960.481");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 960=2635 960 = 2^{6} \cdot 3 \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 960.k (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 7.665638594047.66563859404
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 24 2^{4}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 481.1
Root 0.866025+0.500000i0.866025 + 0.500000i of defining polynomial
Character χ\chi == 960.481
Dual form 960.2.k.e.481.4

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.00000iq3+1.00000iq52.00000q71.00000q91.46410iq11+1.46410iq13+1.00000q153.46410q176.92820iq19+2.00000iq214.00000q231.00000q25+1.00000iq274.92820iq297.46410q311.46410q332.00000iq35+2.53590iq37+1.46410q398.92820q416.92820iq431.00000iq45+4.00000q473.00000q49+3.46410iq51+12.9282iq53+1.46410q556.92820q572.53590iq594.00000iq61+2.00000q631.46410q656.92820iq67+4.00000iq696.92820q71+10.0000q73+1.00000iq75+2.92820iq77+6.39230q79+1.00000q81+8.00000iq833.46410iq854.92820q8712.9282q892.92820iq91+7.46410iq93+6.92820q95+0.928203q97+1.46410iq99+O(q100)q-1.00000i q^{3} +1.00000i q^{5} -2.00000 q^{7} -1.00000 q^{9} -1.46410i q^{11} +1.46410i q^{13} +1.00000 q^{15} -3.46410 q^{17} -6.92820i q^{19} +2.00000i q^{21} -4.00000 q^{23} -1.00000 q^{25} +1.00000i q^{27} -4.92820i q^{29} -7.46410 q^{31} -1.46410 q^{33} -2.00000i q^{35} +2.53590i q^{37} +1.46410 q^{39} -8.92820 q^{41} -6.92820i q^{43} -1.00000i q^{45} +4.00000 q^{47} -3.00000 q^{49} +3.46410i q^{51} +12.9282i q^{53} +1.46410 q^{55} -6.92820 q^{57} -2.53590i q^{59} -4.00000i q^{61} +2.00000 q^{63} -1.46410 q^{65} -6.92820i q^{67} +4.00000i q^{69} -6.92820 q^{71} +10.0000 q^{73} +1.00000i q^{75} +2.92820i q^{77} +6.39230 q^{79} +1.00000 q^{81} +8.00000i q^{83} -3.46410i q^{85} -4.92820 q^{87} -12.9282 q^{89} -2.92820i q^{91} +7.46410i q^{93} +6.92820 q^{95} +0.928203 q^{97} +1.46410i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q8q74q9+4q1516q234q2516q31+8q338q398q41+16q4712q498q55+8q63+8q65+40q7316q79+4q81+8q87+24q97+O(q100) 4 q - 8 q^{7} - 4 q^{9} + 4 q^{15} - 16 q^{23} - 4 q^{25} - 16 q^{31} + 8 q^{33} - 8 q^{39} - 8 q^{41} + 16 q^{47} - 12 q^{49} - 8 q^{55} + 8 q^{63} + 8 q^{65} + 40 q^{73} - 16 q^{79} + 4 q^{81} + 8 q^{87}+ \cdots - 24 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/960Z)×\left(\mathbb{Z}/960\mathbb{Z}\right)^\times.

nn 511511 577577 641641 901901
χ(n)\chi(n) 11 11 11 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 − 1.00000i − 0.577350i
44 0 0
55 1.00000i 0.447214i
66 0 0
77 −2.00000 −0.755929 −0.377964 0.925820i 0.623376π-0.623376\pi
−0.377964 + 0.925820i 0.623376π0.623376\pi
88 0 0
99 −1.00000 −0.333333
1010 0 0
1111 − 1.46410i − 0.441443i −0.975337 0.220722i 0.929159π-0.929159\pi
0.975337 0.220722i 0.0708412π-0.0708412\pi
1212 0 0
1313 1.46410i 0.406069i 0.979172 + 0.203034i 0.0650803π0.0650803\pi
−0.979172 + 0.203034i 0.934920π0.934920\pi
1414 0 0
1515 1.00000 0.258199
1616 0 0
1717 −3.46410 −0.840168 −0.420084 0.907485i 0.637999π-0.637999\pi
−0.420084 + 0.907485i 0.637999π0.637999\pi
1818 0 0
1919 − 6.92820i − 1.58944i −0.606977 0.794719i 0.707618π-0.707618\pi
0.606977 0.794719i 0.292382π-0.292382\pi
2020 0 0
2121 2.00000i 0.436436i
2222 0 0
2323 −4.00000 −0.834058 −0.417029 0.908893i 0.636929π-0.636929\pi
−0.417029 + 0.908893i 0.636929π0.636929\pi
2424 0 0
2525 −1.00000 −0.200000
2626 0 0
2727 1.00000i 0.192450i
2828 0 0
2929 − 4.92820i − 0.915144i −0.889172 0.457572i 0.848719π-0.848719\pi
0.889172 0.457572i 0.151281π-0.151281\pi
3030 0 0
3131 −7.46410 −1.34059 −0.670296 0.742094i 0.733833π-0.733833\pi
−0.670296 + 0.742094i 0.733833π0.733833\pi
3232 0 0
3333 −1.46410 −0.254867
3434 0 0
3535 − 2.00000i − 0.338062i
3636 0 0
3737 2.53590i 0.416899i 0.978033 + 0.208450i 0.0668417π0.0668417\pi
−0.978033 + 0.208450i 0.933158π0.933158\pi
3838 0 0
3939 1.46410 0.234444
4040 0 0
4141 −8.92820 −1.39435 −0.697176 0.716900i 0.745560π-0.745560\pi
−0.697176 + 0.716900i 0.745560π0.745560\pi
4242 0 0
4343 − 6.92820i − 1.05654i −0.849076 0.528271i 0.822841π-0.822841\pi
0.849076 0.528271i 0.177159π-0.177159\pi
4444 0 0
4545 − 1.00000i − 0.149071i
4646 0 0
4747 4.00000 0.583460 0.291730 0.956501i 0.405769π-0.405769\pi
0.291730 + 0.956501i 0.405769π0.405769\pi
4848 0 0
4949 −3.00000 −0.428571
5050 0 0
5151 3.46410i 0.485071i
5252 0 0
5353 12.9282i 1.77583i 0.460012 + 0.887913i 0.347845π0.347845\pi
−0.460012 + 0.887913i 0.652155π0.652155\pi
5454 0 0
5555 1.46410 0.197419
5656 0 0
5757 −6.92820 −0.917663
5858 0 0
5959 − 2.53590i − 0.330146i −0.986281 0.165073i 0.947214π-0.947214\pi
0.986281 0.165073i 0.0527859π-0.0527859\pi
6060 0 0
6161 − 4.00000i − 0.512148i −0.966657 0.256074i 0.917571π-0.917571\pi
0.966657 0.256074i 0.0824290π-0.0824290\pi
6262 0 0
6363 2.00000 0.251976
6464 0 0
6565 −1.46410 −0.181599
6666 0 0
6767 − 6.92820i − 0.846415i −0.906033 0.423207i 0.860904π-0.860904\pi
0.906033 0.423207i 0.139096π-0.139096\pi
6868 0 0
6969 4.00000i 0.481543i
7070 0 0
7171 −6.92820 −0.822226 −0.411113 0.911584i 0.634860π-0.634860\pi
−0.411113 + 0.911584i 0.634860π0.634860\pi
7272 0 0
7373 10.0000 1.17041 0.585206 0.810885i 0.301014π-0.301014\pi
0.585206 + 0.810885i 0.301014π0.301014\pi
7474 0 0
7575 1.00000i 0.115470i
7676 0 0
7777 2.92820i 0.333700i
7878 0 0
7979 6.39230 0.719190 0.359595 0.933108i 0.382915π-0.382915\pi
0.359595 + 0.933108i 0.382915π0.382915\pi
8080 0 0
8181 1.00000 0.111111
8282 0 0
8383 8.00000i 0.878114i 0.898459 + 0.439057i 0.144687π0.144687\pi
−0.898459 + 0.439057i 0.855313π0.855313\pi
8484 0 0
8585 − 3.46410i − 0.375735i
8686 0 0
8787 −4.92820 −0.528359
8888 0 0
8989 −12.9282 −1.37039 −0.685193 0.728361i 0.740282π-0.740282\pi
−0.685193 + 0.728361i 0.740282π0.740282\pi
9090 0 0
9191 − 2.92820i − 0.306959i
9292 0 0
9393 7.46410i 0.773991i
9494 0 0
9595 6.92820 0.710819
9696 0 0
9797 0.928203 0.0942448 0.0471224 0.998889i 0.484995π-0.484995\pi
0.0471224 + 0.998889i 0.484995π0.484995\pi
9898 0 0
9999 1.46410i 0.147148i
100100 0 0
101101 10.0000i 0.995037i 0.867453 + 0.497519i 0.165755π0.165755\pi
−0.867453 + 0.497519i 0.834245π0.834245\pi
102102 0 0
103103 −8.92820 −0.879722 −0.439861 0.898066i 0.644972π-0.644972\pi
−0.439861 + 0.898066i 0.644972π0.644972\pi
104104 0 0
105105 −2.00000 −0.195180
106106 0 0
107107 6.92820i 0.669775i 0.942258 + 0.334887i 0.108698π0.108698\pi
−0.942258 + 0.334887i 0.891302π0.891302\pi
108108 0 0
109109 − 18.9282i − 1.81299i −0.422213 0.906497i 0.638747π-0.638747\pi
0.422213 0.906497i 0.361253π-0.361253\pi
110110 0 0
111111 2.53590 0.240697
112112 0 0
113113 0.535898 0.0504131 0.0252065 0.999682i 0.491976π-0.491976\pi
0.0252065 + 0.999682i 0.491976π0.491976\pi
114114 0 0
115115 − 4.00000i − 0.373002i
116116 0 0
117117 − 1.46410i − 0.135356i
118118 0 0
119119 6.92820 0.635107
120120 0 0
121121 8.85641 0.805128
122122 0 0
123123 8.92820i 0.805029i
124124 0 0
125125 − 1.00000i − 0.0894427i
126126 0 0
127127 −20.9282 −1.85708 −0.928539 0.371235i 0.878934π-0.878934\pi
−0.928539 + 0.371235i 0.878934π0.878934\pi
128128 0 0
129129 −6.92820 −0.609994
130130 0 0
131131 5.46410i 0.477401i 0.971093 + 0.238700i 0.0767214π0.0767214\pi
−0.971093 + 0.238700i 0.923279π0.923279\pi
132132 0 0
133133 13.8564i 1.20150i
134134 0 0
135135 −1.00000 −0.0860663
136136 0 0
137137 22.3923 1.91310 0.956552 0.291562i 0.0941750π-0.0941750\pi
0.956552 + 0.291562i 0.0941750π0.0941750\pi
138138 0 0
139139 − 12.0000i − 1.01783i −0.860818 0.508913i 0.830047π-0.830047\pi
0.860818 0.508913i 0.169953π-0.169953\pi
140140 0 0
141141 − 4.00000i − 0.336861i
142142 0 0
143143 2.14359 0.179256
144144 0 0
145145 4.92820 0.409265
146146 0 0
147147 3.00000i 0.247436i
148148 0 0
149149 − 18.7846i − 1.53890i −0.638710 0.769448i 0.720532π-0.720532\pi
0.638710 0.769448i 0.279468π-0.279468\pi
150150 0 0
151151 4.53590 0.369126 0.184563 0.982821i 0.440913π-0.440913\pi
0.184563 + 0.982821i 0.440913π0.440913\pi
152152 0 0
153153 3.46410 0.280056
154154 0 0
155155 − 7.46410i − 0.599531i
156156 0 0
157157 − 21.4641i − 1.71302i −0.516129 0.856511i 0.672627π-0.672627\pi
0.516129 0.856511i 0.327373π-0.327373\pi
158158 0 0
159159 12.9282 1.02527
160160 0 0
161161 8.00000 0.630488
162162 0 0
163163 4.00000i 0.313304i 0.987654 + 0.156652i 0.0500701π0.0500701\pi
−0.987654 + 0.156652i 0.949930π0.949930\pi
164164 0 0
165165 − 1.46410i − 0.113980i
166166 0 0
167167 13.8564 1.07224 0.536120 0.844141i 0.319889π-0.319889\pi
0.536120 + 0.844141i 0.319889π0.319889\pi
168168 0 0
169169 10.8564 0.835108
170170 0 0
171171 6.92820i 0.529813i
172172 0 0
173173 − 11.0718i − 0.841773i −0.907113 0.420887i 0.861719π-0.861719\pi
0.907113 0.420887i 0.138281π-0.138281\pi
174174 0 0
175175 2.00000 0.151186
176176 0 0
177177 −2.53590 −0.190610
178178 0 0
179179 16.3923i 1.22522i 0.790386 + 0.612609i 0.209880π0.209880\pi
−0.790386 + 0.612609i 0.790120π0.790120\pi
180180 0 0
181181 2.92820i 0.217652i 0.994061 + 0.108826i 0.0347091π0.0347091\pi
−0.994061 + 0.108826i 0.965291π0.965291\pi
182182 0 0
183183 −4.00000 −0.295689
184184 0 0
185185 −2.53590 −0.186443
186186 0 0
187187 5.07180i 0.370887i
188188 0 0
189189 − 2.00000i − 0.145479i
190190 0 0
191191 −8.00000 −0.578860 −0.289430 0.957199i 0.593466π-0.593466\pi
−0.289430 + 0.957199i 0.593466π0.593466\pi
192192 0 0
193193 18.7846 1.35215 0.676073 0.736835i 0.263680π-0.263680\pi
0.676073 + 0.736835i 0.263680π0.263680\pi
194194 0 0
195195 1.46410i 0.104846i
196196 0 0
197197 23.8564i 1.69970i 0.527026 + 0.849849i 0.323307π0.323307\pi
−0.527026 + 0.849849i 0.676693π0.676693\pi
198198 0 0
199199 25.3205 1.79492 0.897462 0.441093i 0.145409π-0.145409\pi
0.897462 + 0.441093i 0.145409π0.145409\pi
200200 0 0
201201 −6.92820 −0.488678
202202 0 0
203203 9.85641i 0.691784i
204204 0 0
205205 − 8.92820i − 0.623573i
206206 0 0
207207 4.00000 0.278019
208208 0 0
209209 −10.1436 −0.701647
210210 0 0
211211 4.00000i 0.275371i 0.990476 + 0.137686i 0.0439664π0.0439664\pi
−0.990476 + 0.137686i 0.956034π0.956034\pi
212212 0 0
213213 6.92820i 0.474713i
214214 0 0
215215 6.92820 0.472500
216216 0 0
217217 14.9282 1.01339
218218 0 0
219219 − 10.0000i − 0.675737i
220220 0 0
221221 − 5.07180i − 0.341166i
222222 0 0
223223 −20.9282 −1.40146 −0.700728 0.713428i 0.747141π-0.747141\pi
−0.700728 + 0.713428i 0.747141π0.747141\pi
224224 0 0
225225 1.00000 0.0666667
226226 0 0
227227 − 13.0718i − 0.867606i −0.901008 0.433803i 0.857171π-0.857171\pi
0.901008 0.433803i 0.142829π-0.142829\pi
228228 0 0
229229 2.14359i 0.141653i 0.997489 + 0.0708263i 0.0225636π0.0225636\pi
−0.997489 + 0.0708263i 0.977436π0.977436\pi
230230 0 0
231231 2.92820 0.192662
232232 0 0
233233 4.53590 0.297157 0.148578 0.988901i 0.452530π-0.452530\pi
0.148578 + 0.988901i 0.452530π0.452530\pi
234234 0 0
235235 4.00000i 0.260931i
236236 0 0
237237 − 6.39230i − 0.415225i
238238 0 0
239239 16.0000 1.03495 0.517477 0.855697i 0.326871π-0.326871\pi
0.517477 + 0.855697i 0.326871π0.326871\pi
240240 0 0
241241 26.0000 1.67481 0.837404 0.546585i 0.184072π-0.184072\pi
0.837404 + 0.546585i 0.184072π0.184072\pi
242242 0 0
243243 − 1.00000i − 0.0641500i
244244 0 0
245245 − 3.00000i − 0.191663i
246246 0 0
247247 10.1436 0.645421
248248 0 0
249249 8.00000 0.506979
250250 0 0
251251 23.3205i 1.47198i 0.676994 + 0.735989i 0.263282π0.263282\pi
−0.676994 + 0.735989i 0.736718π0.736718\pi
252252 0 0
253253 5.85641i 0.368189i
254254 0 0
255255 −3.46410 −0.216930
256256 0 0
257257 −7.46410 −0.465598 −0.232799 0.972525i 0.574788π-0.574788\pi
−0.232799 + 0.972525i 0.574788π0.574788\pi
258258 0 0
259259 − 5.07180i − 0.315146i
260260 0 0
261261 4.92820i 0.305048i
262262 0 0
263263 −27.7128 −1.70885 −0.854423 0.519579i 0.826089π-0.826089\pi
−0.854423 + 0.519579i 0.826089π0.826089\pi
264264 0 0
265265 −12.9282 −0.794173
266266 0 0
267267 12.9282i 0.791193i
268268 0 0
269269 − 26.7846i − 1.63309i −0.577284 0.816543i 0.695888π-0.695888\pi
0.577284 0.816543i 0.304112π-0.304112\pi
270270 0 0
271271 −11.4641 −0.696395 −0.348197 0.937421i 0.613206π-0.613206\pi
−0.348197 + 0.937421i 0.613206π0.613206\pi
272272 0 0
273273 −2.92820 −0.177223
274274 0 0
275275 1.46410i 0.0882886i
276276 0 0
277277 − 6.53590i − 0.392704i −0.980533 0.196352i 0.937090π-0.937090\pi
0.980533 0.196352i 0.0629095π-0.0629095\pi
278278 0 0
279279 7.46410 0.446864
280280 0 0
281281 0.928203 0.0553720 0.0276860 0.999617i 0.491186π-0.491186\pi
0.0276860 + 0.999617i 0.491186π0.491186\pi
282282 0 0
283283 22.9282i 1.36294i 0.731846 + 0.681470i 0.238659π0.238659\pi
−0.731846 + 0.681470i 0.761341π0.761341\pi
284284 0 0
285285 − 6.92820i − 0.410391i
286286 0 0
287287 17.8564 1.05403
288288 0 0
289289 −5.00000 −0.294118
290290 0 0
291291 − 0.928203i − 0.0544122i
292292 0 0
293293 4.14359i 0.242071i 0.992648 + 0.121036i 0.0386215π0.0386215\pi
−0.992648 + 0.121036i 0.961378π0.961378\pi
294294 0 0
295295 2.53590 0.147646
296296 0 0
297297 1.46410 0.0849558
298298 0 0
299299 − 5.85641i − 0.338685i
300300 0 0
301301 13.8564i 0.798670i
302302 0 0
303303 10.0000 0.574485
304304 0 0
305305 4.00000 0.229039
306306 0 0
307307 9.85641i 0.562535i 0.959629 + 0.281267i 0.0907548π0.0907548\pi
−0.959629 + 0.281267i 0.909245π0.909245\pi
308308 0 0
309309 8.92820i 0.507908i
310310 0 0
311311 2.14359 0.121552 0.0607760 0.998151i 0.480642π-0.480642\pi
0.0607760 + 0.998151i 0.480642π0.480642\pi
312312 0 0
313313 −4.92820 −0.278559 −0.139279 0.990253i 0.544479π-0.544479\pi
−0.139279 + 0.990253i 0.544479π0.544479\pi
314314 0 0
315315 2.00000i 0.112687i
316316 0 0
317317 11.8564i 0.665922i 0.942941 + 0.332961i 0.108048π0.108048\pi
−0.942941 + 0.332961i 0.891952π0.891952\pi
318318 0 0
319319 −7.21539 −0.403984
320320 0 0
321321 6.92820 0.386695
322322 0 0
323323 24.0000i 1.33540i
324324 0 0
325325 − 1.46410i − 0.0812137i
326326 0 0
327327 −18.9282 −1.04673
328328 0 0
329329 −8.00000 −0.441054
330330 0 0
331331 − 9.07180i − 0.498631i −0.968422 0.249316i 0.919794π-0.919794\pi
0.968422 0.249316i 0.0802056π-0.0802056\pi
332332 0 0
333333 − 2.53590i − 0.138966i
334334 0 0
335335 6.92820 0.378528
336336 0 0
337337 −23.8564 −1.29954 −0.649771 0.760130i 0.725135π-0.725135\pi
−0.649771 + 0.760130i 0.725135π0.725135\pi
338338 0 0
339339 − 0.535898i − 0.0291060i
340340 0 0
341341 10.9282i 0.591795i
342342 0 0
343343 20.0000 1.07990
344344 0 0
345345 −4.00000 −0.215353
346346 0 0
347347 − 2.92820i − 0.157194i −0.996906 0.0785971i 0.974956π-0.974956\pi
0.996906 0.0785971i 0.0250441π-0.0250441\pi
348348 0 0
349349 − 4.00000i − 0.214115i −0.994253 0.107058i 0.965857π-0.965857\pi
0.994253 0.107058i 0.0341429π-0.0341429\pi
350350 0 0
351351 −1.46410 −0.0781480
352352 0 0
353353 3.46410 0.184376 0.0921878 0.995742i 0.470614π-0.470614\pi
0.0921878 + 0.995742i 0.470614π0.470614\pi
354354 0 0
355355 − 6.92820i − 0.367711i
356356 0 0
357357 − 6.92820i − 0.366679i
358358 0 0
359359 −22.9282 −1.21010 −0.605052 0.796186i 0.706848π-0.706848\pi
−0.605052 + 0.796186i 0.706848π0.706848\pi
360360 0 0
361361 −29.0000 −1.52632
362362 0 0
363363 − 8.85641i − 0.464841i
364364 0 0
365365 10.0000i 0.523424i
366366 0 0
367367 2.00000 0.104399 0.0521996 0.998637i 0.483377π-0.483377\pi
0.0521996 + 0.998637i 0.483377π0.483377\pi
368368 0 0
369369 8.92820 0.464784
370370 0 0
371371 − 25.8564i − 1.34240i
372372 0 0
373373 − 8.39230i − 0.434537i −0.976112 0.217269i 0.930285π-0.930285\pi
0.976112 0.217269i 0.0697147π-0.0697147\pi
374374 0 0
375375 −1.00000 −0.0516398
376376 0 0
377377 7.21539 0.371612
378378 0 0
379379 − 20.0000i − 1.02733i −0.857991 0.513665i 0.828287π-0.828287\pi
0.857991 0.513665i 0.171713π-0.171713\pi
380380 0 0
381381 20.9282i 1.07218i
382382 0 0
383383 −37.8564 −1.93437 −0.967186 0.254069i 0.918231π-0.918231\pi
−0.967186 + 0.254069i 0.918231π0.918231\pi
384384 0 0
385385 −2.92820 −0.149235
386386 0 0
387387 6.92820i 0.352180i
388388 0 0
389389 − 31.8564i − 1.61518i −0.589742 0.807592i 0.700770π-0.700770\pi
0.589742 0.807592i 0.299230π-0.299230\pi
390390 0 0
391391 13.8564 0.700749
392392 0 0
393393 5.46410 0.275627
394394 0 0
395395 6.39230i 0.321632i
396396 0 0
397397 15.6077i 0.783328i 0.920108 + 0.391664i 0.128100π0.128100\pi
−0.920108 + 0.391664i 0.871900π0.871900\pi
398398 0 0
399399 13.8564 0.693688
400400 0 0
401401 22.0000 1.09863 0.549314 0.835616i 0.314889π-0.314889\pi
0.549314 + 0.835616i 0.314889π0.314889\pi
402402 0 0
403403 − 10.9282i − 0.544373i
404404 0 0
405405 1.00000i 0.0496904i
406406 0 0
407407 3.71281 0.184037
408408 0 0
409409 −3.85641 −0.190687 −0.0953435 0.995444i 0.530395π-0.530395\pi
−0.0953435 + 0.995444i 0.530395π0.530395\pi
410410 0 0
411411 − 22.3923i − 1.10453i
412412 0 0
413413 5.07180i 0.249567i
414414 0 0
415415 −8.00000 −0.392705
416416 0 0
417417 −12.0000 −0.587643
418418 0 0
419419 − 15.3205i − 0.748456i −0.927337 0.374228i 0.877908π-0.877908\pi
0.927337 0.374228i 0.122092π-0.122092\pi
420420 0 0
421421 16.0000i 0.779792i 0.920859 + 0.389896i 0.127489π0.127489\pi
−0.920859 + 0.389896i 0.872511π0.872511\pi
422422 0 0
423423 −4.00000 −0.194487
424424 0 0
425425 3.46410 0.168034
426426 0 0
427427 8.00000i 0.387147i
428428 0 0
429429 − 2.14359i − 0.103494i
430430 0 0
431431 30.9282 1.48976 0.744880 0.667199i 0.232507π-0.232507\pi
0.744880 + 0.667199i 0.232507π0.232507\pi
432432 0 0
433433 −7.85641 −0.377555 −0.188777 0.982020i 0.560452π-0.560452\pi
−0.188777 + 0.982020i 0.560452π0.560452\pi
434434 0 0
435435 − 4.92820i − 0.236289i
436436 0 0
437437 27.7128i 1.32568i
438438 0 0
439439 33.3205 1.59030 0.795151 0.606412i 0.207392π-0.207392\pi
0.795151 + 0.606412i 0.207392π0.207392\pi
440440 0 0
441441 3.00000 0.142857
442442 0 0
443443 − 30.6410i − 1.45580i −0.685684 0.727899i 0.740497π-0.740497\pi
0.685684 0.727899i 0.259503π-0.259503\pi
444444 0 0
445445 − 12.9282i − 0.612856i
446446 0 0
447447 −18.7846 −0.888482
448448 0 0
449449 −37.7128 −1.77978 −0.889889 0.456177i 0.849218π-0.849218\pi
−0.889889 + 0.456177i 0.849218π0.849218\pi
450450 0 0
451451 13.0718i 0.615527i
452452 0 0
453453 − 4.53590i − 0.213115i
454454 0 0
455455 2.92820 0.137276
456456 0 0
457457 −8.92820 −0.417644 −0.208822 0.977954i 0.566963π-0.566963\pi
−0.208822 + 0.977954i 0.566963π0.566963\pi
458458 0 0
459459 − 3.46410i − 0.161690i
460460 0 0
461461 − 16.9282i − 0.788425i −0.919019 0.394213i 0.871017π-0.871017\pi
0.919019 0.394213i 0.128983π-0.128983\pi
462462 0 0
463463 −15.8564 −0.736910 −0.368455 0.929646i 0.620113π-0.620113\pi
−0.368455 + 0.929646i 0.620113π0.620113\pi
464464 0 0
465465 −7.46410 −0.346139
466466 0 0
467467 − 37.8564i − 1.75179i −0.482506 0.875893i 0.660273π-0.660273\pi
0.482506 0.875893i 0.339727π-0.339727\pi
468468 0 0
469469 13.8564i 0.639829i
470470 0 0
471471 −21.4641 −0.989014
472472 0 0
473473 −10.1436 −0.466403
474474 0 0
475475 6.92820i 0.317888i
476476 0 0
477477 − 12.9282i − 0.591942i
478478 0 0
479479 −36.7846 −1.68073 −0.840366 0.542020i 0.817660π-0.817660\pi
−0.840366 + 0.542020i 0.817660π0.817660\pi
480480 0 0
481481 −3.71281 −0.169290
482482 0 0
483483 − 8.00000i − 0.364013i
484484 0 0
485485 0.928203i 0.0421475i
486486 0 0
487487 −18.7846 −0.851212 −0.425606 0.904909i 0.639939π-0.639939\pi
−0.425606 + 0.904909i 0.639939π0.639939\pi
488488 0 0
489489 4.00000 0.180886
490490 0 0
491491 − 3.32051i − 0.149852i −0.997189 0.0749262i 0.976128π-0.976128\pi
0.997189 0.0749262i 0.0238721π-0.0238721\pi
492492 0 0
493493 17.0718i 0.768875i
494494 0 0
495495 −1.46410 −0.0658065
496496 0 0
497497 13.8564 0.621545
498498 0 0
499499 9.07180i 0.406109i 0.979167 + 0.203055i 0.0650869π0.0650869\pi
−0.979167 + 0.203055i 0.934913π0.934913\pi
500500 0 0
501501 − 13.8564i − 0.619059i
502502 0 0
503503 −4.00000 −0.178351 −0.0891756 0.996016i 0.528423π-0.528423\pi
−0.0891756 + 0.996016i 0.528423π0.528423\pi
504504 0 0
505505 −10.0000 −0.444994
506506 0 0
507507 − 10.8564i − 0.482150i
508508 0 0
509509 16.1436i 0.715552i 0.933807 + 0.357776i 0.116465π0.116465\pi
−0.933807 + 0.357776i 0.883535π0.883535\pi
510510 0 0
511511 −20.0000 −0.884748
512512 0 0
513513 6.92820 0.305888
514514 0 0
515515 − 8.92820i − 0.393424i
516516 0 0
517517 − 5.85641i − 0.257564i
518518 0 0
519519 −11.0718 −0.485998
520520 0 0
521521 −30.0000 −1.31432 −0.657162 0.753749i 0.728243π-0.728243\pi
−0.657162 + 0.753749i 0.728243π0.728243\pi
522522 0 0
523523 − 20.0000i − 0.874539i −0.899331 0.437269i 0.855946π-0.855946\pi
0.899331 0.437269i 0.144054π-0.144054\pi
524524 0 0
525525 − 2.00000i − 0.0872872i
526526 0 0
527527 25.8564 1.12632
528528 0 0
529529 −7.00000 −0.304348
530530 0 0
531531 2.53590i 0.110049i
532532 0 0
533533 − 13.0718i − 0.566202i
534534 0 0
535535 −6.92820 −0.299532
536536 0 0
537537 16.3923 0.707380
538538 0 0
539539 4.39230i 0.189190i
540540 0 0
541541 − 2.92820i − 0.125893i −0.998017 0.0629466i 0.979950π-0.979950\pi
0.998017 0.0629466i 0.0200498π-0.0200498\pi
542542 0 0
543543 2.92820 0.125661
544544 0 0
545545 18.9282 0.810795
546546 0 0
547547 9.07180i 0.387882i 0.981013 + 0.193941i 0.0621270π0.0621270\pi
−0.981013 + 0.193941i 0.937873π0.937873\pi
548548 0 0
549549 4.00000i 0.170716i
550550 0 0
551551 −34.1436 −1.45457
552552 0 0
553553 −12.7846 −0.543657
554554 0 0
555555 2.53590i 0.107643i
556556 0 0
557557 26.7846i 1.13490i 0.823408 + 0.567450i 0.192070π0.192070\pi
−0.823408 + 0.567450i 0.807930π0.807930\pi
558558 0 0
559559 10.1436 0.429028
560560 0 0
561561 5.07180 0.214131
562562 0 0
563563 18.9282i 0.797729i 0.917010 + 0.398864i 0.130596π0.130596\pi
−0.917010 + 0.398864i 0.869404π0.869404\pi
564564 0 0
565565 0.535898i 0.0225454i
566566 0 0
567567 −2.00000 −0.0839921
568568 0 0
569569 31.8564 1.33549 0.667745 0.744390i 0.267260π-0.267260\pi
0.667745 + 0.744390i 0.267260π0.267260\pi
570570 0 0
571571 − 1.07180i − 0.0448533i −0.999748 0.0224266i 0.992861π-0.992861\pi
0.999748 0.0224266i 0.00713922π-0.00713922\pi
572572 0 0
573573 8.00000i 0.334205i
574574 0 0
575575 4.00000 0.166812
576576 0 0
577577 −28.9282 −1.20430 −0.602148 0.798384i 0.705688π-0.705688\pi
−0.602148 + 0.798384i 0.705688π0.705688\pi
578578 0 0
579579 − 18.7846i − 0.780662i
580580 0 0
581581 − 16.0000i − 0.663792i
582582 0 0
583583 18.9282 0.783926
584584 0 0
585585 1.46410 0.0605332
586586 0 0
587587 − 34.6410i − 1.42979i −0.699233 0.714894i 0.746475π-0.746475\pi
0.699233 0.714894i 0.253525π-0.253525\pi
588588 0 0
589589 51.7128i 2.13079i
590590 0 0
591591 23.8564 0.981321
592592 0 0
593593 −37.3205 −1.53257 −0.766285 0.642501i 0.777897π-0.777897\pi
−0.766285 + 0.642501i 0.777897π0.777897\pi
594594 0 0
595595 6.92820i 0.284029i
596596 0 0
597597 − 25.3205i − 1.03630i
598598 0 0
599599 −34.6410 −1.41539 −0.707697 0.706516i 0.750266π-0.750266\pi
−0.707697 + 0.706516i 0.750266π0.750266\pi
600600 0 0
601601 −47.5692 −1.94039 −0.970194 0.242328i 0.922089π-0.922089\pi
−0.970194 + 0.242328i 0.922089π0.922089\pi
602602 0 0
603603 6.92820i 0.282138i
604604 0 0
605605 8.85641i 0.360064i
606606 0 0
607607 −18.0000 −0.730597 −0.365299 0.930890i 0.619033π-0.619033\pi
−0.365299 + 0.930890i 0.619033π0.619033\pi
608608 0 0
609609 9.85641 0.399402
610610 0 0
611611 5.85641i 0.236925i
612612 0 0
613613 22.2487i 0.898617i 0.893377 + 0.449308i 0.148330π0.148330\pi
−0.893377 + 0.449308i 0.851670π0.851670\pi
614614 0 0
615615 −8.92820 −0.360020
616616 0 0
617617 14.6795 0.590974 0.295487 0.955347i 0.404518π-0.404518\pi
0.295487 + 0.955347i 0.404518π0.404518\pi
618618 0 0
619619 33.8564i 1.36080i 0.732839 + 0.680402i 0.238195π0.238195\pi
−0.732839 + 0.680402i 0.761805π0.761805\pi
620620 0 0
621621 − 4.00000i − 0.160514i
622622 0 0
623623 25.8564 1.03592
624624 0 0
625625 1.00000 0.0400000
626626 0 0
627627 10.1436i 0.405096i
628628 0 0
629629 − 8.78461i − 0.350265i
630630 0 0
631631 9.60770 0.382476 0.191238 0.981544i 0.438750π-0.438750\pi
0.191238 + 0.981544i 0.438750π0.438750\pi
632632 0 0
633633 4.00000 0.158986
634634 0 0
635635 − 20.9282i − 0.830510i
636636 0 0
637637 − 4.39230i − 0.174029i
638638 0 0
639639 6.92820 0.274075
640640 0 0
641641 44.6410 1.76321 0.881607 0.471984i 0.156462π-0.156462\pi
0.881607 + 0.471984i 0.156462π0.156462\pi
642642 0 0
643643 15.7128i 0.619653i 0.950793 + 0.309826i 0.100271π0.100271\pi
−0.950793 + 0.309826i 0.899729π0.899729\pi
644644 0 0
645645 − 6.92820i − 0.272798i
646646 0 0
647647 9.85641 0.387495 0.193748 0.981051i 0.437936π-0.437936\pi
0.193748 + 0.981051i 0.437936π0.437936\pi
648648 0 0
649649 −3.71281 −0.145741
650650 0 0
651651 − 14.9282i − 0.585082i
652652 0 0
653653 − 19.8564i − 0.777041i −0.921440 0.388521i 0.872986π-0.872986\pi
0.921440 0.388521i 0.127014π-0.127014\pi
654654 0 0
655655 −5.46410 −0.213500
656656 0 0
657657 −10.0000 −0.390137
658658 0 0
659659 − 0.392305i − 0.0152820i −0.999971 0.00764101i 0.997568π-0.997568\pi
0.999971 0.00764101i 0.00243223π-0.00243223\pi
660660 0 0
661661 − 4.00000i − 0.155582i −0.996970 0.0777910i 0.975213π-0.975213\pi
0.996970 0.0777910i 0.0247867π-0.0247867\pi
662662 0 0
663663 −5.07180 −0.196972
664664 0 0
665665 −13.8564 −0.537328
666666 0 0
667667 19.7128i 0.763283i
668668 0 0
669669 20.9282i 0.809131i
670670 0 0
671671 −5.85641 −0.226084
672672 0 0
673673 −29.7128 −1.14534 −0.572672 0.819784i 0.694093π-0.694093\pi
−0.572672 + 0.819784i 0.694093π0.694093\pi
674674 0 0
675675 − 1.00000i − 0.0384900i
676676 0 0
677677 − 4.14359i − 0.159251i −0.996825 0.0796256i 0.974628π-0.974628\pi
0.996825 0.0796256i 0.0253725π-0.0253725\pi
678678 0 0
679679 −1.85641 −0.0712423
680680 0 0
681681 −13.0718 −0.500912
682682 0 0
683683 − 18.1436i − 0.694245i −0.937820 0.347123i 0.887159π-0.887159\pi
0.937820 0.347123i 0.112841π-0.112841\pi
684684 0 0
685685 22.3923i 0.855566i
686686 0 0
687687 2.14359 0.0817832
688688 0 0
689689 −18.9282 −0.721107
690690 0 0
691691 − 9.07180i − 0.345107i −0.985000 0.172554i 0.944798π-0.944798\pi
0.985000 0.172554i 0.0552018π-0.0552018\pi
692692 0 0
693693 − 2.92820i − 0.111233i
694694 0 0
695695 12.0000 0.455186
696696 0 0
697697 30.9282 1.17149
698698 0 0
699699 − 4.53590i − 0.171563i
700700 0 0
701701 24.1436i 0.911891i 0.890008 + 0.455945i 0.150699π0.150699\pi
−0.890008 + 0.455945i 0.849301π0.849301\pi
702702 0 0
703703 17.5692 0.662636
704704 0 0
705705 4.00000 0.150649
706706 0 0
707707 − 20.0000i − 0.752177i
708708 0 0
709709 3.71281i 0.139438i 0.997567 + 0.0697188i 0.0222102π0.0222102\pi
−0.997567 + 0.0697188i 0.977790π0.977790\pi
710710 0 0
711711 −6.39230 −0.239730
712712 0 0
713713 29.8564 1.11813
714714 0 0
715715 2.14359i 0.0801659i
716716 0 0
717717 − 16.0000i − 0.597531i
718718 0 0
719719 3.21539 0.119914 0.0599569 0.998201i 0.480904π-0.480904\pi
0.0599569 + 0.998201i 0.480904π0.480904\pi
720720 0 0
721721 17.8564 0.665007
722722 0 0
723723 − 26.0000i − 0.966950i
724724 0 0
725725 4.92820i 0.183029i
726726 0 0
727727 8.92820 0.331129 0.165564 0.986199i 0.447055π-0.447055\pi
0.165564 + 0.986199i 0.447055π0.447055\pi
728728 0 0
729729 −1.00000 −0.0370370
730730 0 0
731731 24.0000i 0.887672i
732732 0 0
733733 − 1.46410i − 0.0540778i −0.999634 0.0270389i 0.991392π-0.991392\pi
0.999634 0.0270389i 0.00860780π-0.00860780\pi
734734 0 0
735735 −3.00000 −0.110657
736736 0 0
737737 −10.1436 −0.373644
738738 0 0
739739 26.6410i 0.980006i 0.871721 + 0.490003i 0.163004π0.163004\pi
−0.871721 + 0.490003i 0.836996π0.836996\pi
740740 0 0
741741 − 10.1436i − 0.372634i
742742 0 0
743743 19.7128 0.723193 0.361596 0.932335i 0.382232π-0.382232\pi
0.361596 + 0.932335i 0.382232π0.382232\pi
744744 0 0
745745 18.7846 0.688215
746746 0 0
747747 − 8.00000i − 0.292705i
748748 0 0
749749 − 13.8564i − 0.506302i
750750 0 0
751751 46.3923 1.69288 0.846440 0.532485i 0.178742π-0.178742\pi
0.846440 + 0.532485i 0.178742π0.178742\pi
752752 0 0
753753 23.3205 0.849847
754754 0 0
755755 4.53590i 0.165078i
756756 0 0
757757 − 48.1051i − 1.74841i −0.485557 0.874205i 0.661383π-0.661383\pi
0.485557 0.874205i 0.338617π-0.338617\pi
758758 0 0
759759 5.85641 0.212574
760760 0 0
761761 −30.0000 −1.08750 −0.543750 0.839248i 0.682996π-0.682996\pi
−0.543750 + 0.839248i 0.682996π0.682996\pi
762762 0 0
763763 37.8564i 1.37049i
764764 0 0
765765 3.46410i 0.125245i
766766 0 0
767767 3.71281 0.134062
768768 0 0
769769 −11.8564 −0.427553 −0.213776 0.976883i 0.568576π-0.568576\pi
−0.213776 + 0.976883i 0.568576π0.568576\pi
770770 0 0
771771 7.46410i 0.268813i
772772 0 0
773773 − 41.7128i − 1.50031i −0.661265 0.750153i 0.729980π-0.729980\pi
0.661265 0.750153i 0.270020π-0.270020\pi
774774 0 0
775775 7.46410 0.268118
776776 0 0
777777 −5.07180 −0.181950
778778 0 0
779779 61.8564i 2.21624i
780780 0 0
781781 10.1436i 0.362966i
782782 0 0
783783 4.92820 0.176120
784784 0 0
785785 21.4641 0.766087
786786 0 0
787787 23.7128i 0.845270i 0.906300 + 0.422635i 0.138895π0.138895\pi
−0.906300 + 0.422635i 0.861105π0.861105\pi
788788 0 0
789789 27.7128i 0.986602i
790790 0 0
791791 −1.07180 −0.0381087
792792 0 0
793793 5.85641 0.207967
794794 0 0
795795 12.9282i 0.458516i
796796 0 0
797797 18.7846i 0.665385i 0.943035 + 0.332693i 0.107957π0.107957\pi
−0.943035 + 0.332693i 0.892043π0.892043\pi
798798 0 0
799799 −13.8564 −0.490204
800800 0 0
801801 12.9282 0.456796
802802 0 0
803803 − 14.6410i − 0.516670i
804804 0 0
805805 8.00000i 0.281963i
806806 0 0
807807 −26.7846 −0.942863
808808 0 0
809809 18.7846 0.660432 0.330216 0.943905i 0.392878π-0.392878\pi
0.330216 + 0.943905i 0.392878π0.392878\pi
810810 0 0
811811 17.8564i 0.627023i 0.949584 + 0.313512i 0.101505π0.101505\pi
−0.949584 + 0.313512i 0.898495π0.898495\pi
812812 0 0
813813 11.4641i 0.402064i
814814 0 0
815815 −4.00000 −0.140114
816816 0 0
817817 −48.0000 −1.67931
818818 0 0
819819 2.92820i 0.102320i
820820 0 0
821821 − 38.7846i − 1.35359i −0.736171 0.676796i 0.763368π-0.763368\pi
0.736171 0.676796i 0.236632π-0.236632\pi
822822 0 0
823823 54.7846 1.90967 0.954836 0.297134i 0.0960309π-0.0960309\pi
0.954836 + 0.297134i 0.0960309π0.0960309\pi
824824 0 0
825825 1.46410 0.0509735
826826 0 0
827827 37.5692i 1.30641i 0.757181 + 0.653205i 0.226576π0.226576\pi
−0.757181 + 0.653205i 0.773424π0.773424\pi
828828 0 0
829829 2.92820i 0.101701i 0.998706 + 0.0508504i 0.0161932π0.0161932\pi
−0.998706 + 0.0508504i 0.983807π0.983807\pi
830830 0 0
831831 −6.53590 −0.226728
832832 0 0
833833 10.3923 0.360072
834834 0 0
835835 13.8564i 0.479521i
836836 0 0
837837 − 7.46410i − 0.257997i
838838 0 0
839839 −42.6410 −1.47213 −0.736066 0.676910i 0.763319π-0.763319\pi
−0.736066 + 0.676910i 0.763319π0.763319\pi
840840 0 0
841841 4.71281 0.162511
842842 0 0
843843 − 0.928203i − 0.0319690i
844844 0 0
845845 10.8564i 0.373472i
846846 0 0
847847 −17.7128 −0.608619
848848 0 0
849849 22.9282 0.786894
850850 0 0
851851 − 10.1436i − 0.347718i
852852 0 0
853853 − 35.3205i − 1.20935i −0.796472 0.604676i 0.793303π-0.793303\pi
0.796472 0.604676i 0.206697π-0.206697\pi
854854 0 0
855855 −6.92820 −0.236940
856856 0 0
857857 53.0333 1.81158 0.905792 0.423723i 0.139277π-0.139277\pi
0.905792 + 0.423723i 0.139277π0.139277\pi
858858 0 0
859859 − 39.7128i − 1.35498i −0.735530 0.677492i 0.763067π-0.763067\pi
0.735530 0.677492i 0.236933π-0.236933\pi
860860 0 0
861861 − 17.8564i − 0.608545i
862862 0 0
863863 24.0000 0.816970 0.408485 0.912765i 0.366057π-0.366057\pi
0.408485 + 0.912765i 0.366057π0.366057\pi
864864 0 0
865865 11.0718 0.376452
866866 0 0
867867 5.00000i 0.169809i
868868 0 0
869869 − 9.35898i − 0.317482i
870870 0 0
871871 10.1436 0.343703
872872 0 0
873873 −0.928203 −0.0314149
874874 0 0
875875 2.00000i 0.0676123i
876876 0 0
877877 18.5359i 0.625913i 0.949767 + 0.312956i 0.101319π0.101319\pi
−0.949767 + 0.312956i 0.898681π0.898681\pi
878878 0 0
879879 4.14359 0.139760
880880 0 0
881881 −12.6410 −0.425887 −0.212943 0.977065i 0.568305π-0.568305\pi
−0.212943 + 0.977065i 0.568305π0.568305\pi
882882 0 0
883883 − 49.8564i − 1.67780i −0.544284 0.838901i 0.683199π-0.683199\pi
0.544284 0.838901i 0.316801π-0.316801\pi
884884 0 0
885885 − 2.53590i − 0.0852433i
886886 0 0
887887 10.1436 0.340589 0.170294 0.985393i 0.445528π-0.445528\pi
0.170294 + 0.985393i 0.445528π0.445528\pi
888888 0 0
889889 41.8564 1.40382
890890 0 0
891891 − 1.46410i − 0.0490492i
892892 0 0
893893 − 27.7128i − 0.927374i
894894 0 0
895895 −16.3923 −0.547934
896896 0 0
897897 −5.85641 −0.195540
898898 0 0
899899 36.7846i 1.22684i
900900 0 0
901901 − 44.7846i − 1.49199i
902902 0 0
903903 13.8564 0.461112
904904 0 0
905905 −2.92820 −0.0973368
906906 0 0
907907 − 1.07180i − 0.0355884i −0.999842 0.0177942i 0.994336π-0.994336\pi
0.999842 0.0177942i 0.00566437π-0.00566437\pi
908908 0 0
909909 − 10.0000i − 0.331679i
910910 0 0
911911 −27.7128 −0.918166 −0.459083 0.888393i 0.651822π-0.651822\pi
−0.459083 + 0.888393i 0.651822π0.651822\pi
912912 0 0
913913 11.7128 0.387638
914914 0 0
915915 − 4.00000i − 0.132236i
916916 0 0
917917 − 10.9282i − 0.360881i
918918 0 0
919919 −14.3923 −0.474758 −0.237379 0.971417i 0.576288π-0.576288\pi
−0.237379 + 0.971417i 0.576288π0.576288\pi
920920 0 0
921921 9.85641 0.324780
922922 0 0
923923 − 10.1436i − 0.333880i
924924 0 0
925925 − 2.53590i − 0.0833798i
926926 0 0
927927 8.92820 0.293241
928928 0 0
929929 39.5692 1.29822 0.649112 0.760693i 0.275141π-0.275141\pi
0.649112 + 0.760693i 0.275141π0.275141\pi
930930 0 0
931931 20.7846i 0.681188i
932932 0 0
933933 − 2.14359i − 0.0701781i
934934 0 0
935935 −5.07180 −0.165865
936936 0 0
937937 0.143594 0.00469100 0.00234550 0.999997i 0.499253π-0.499253\pi
0.00234550 + 0.999997i 0.499253π0.499253\pi
938938 0 0
939939 4.92820i 0.160826i
940940 0 0
941941 − 6.00000i − 0.195594i −0.995206 0.0977972i 0.968820π-0.968820\pi
0.995206 0.0977972i 0.0311797π-0.0311797\pi
942942 0 0
943943 35.7128 1.16297
944944 0 0
945945 2.00000 0.0650600
946946 0 0
947947 − 1.85641i − 0.0603251i −0.999545 0.0301626i 0.990398π-0.990398\pi
0.999545 0.0301626i 0.00960249π-0.00960249\pi
948948 0 0
949949 14.6410i 0.475267i
950950 0 0
951951 11.8564 0.384470
952952 0 0
953953 −29.3205 −0.949784 −0.474892 0.880044i 0.657513π-0.657513\pi
−0.474892 + 0.880044i 0.657513π0.657513\pi
954954 0 0
955955 − 8.00000i − 0.258874i
956956 0 0
957957 7.21539i 0.233240i
958958 0 0
959959 −44.7846 −1.44617
960960 0 0
961961 24.7128 0.797188
962962 0 0
963963 − 6.92820i − 0.223258i
964964 0 0
965965 18.7846i 0.604698i
966966 0 0
967967 18.7846 0.604072 0.302036 0.953296i 0.402334π-0.402334\pi
0.302036 + 0.953296i 0.402334π0.402334\pi
968968 0 0
969969 24.0000 0.770991
970970 0 0
971971 − 4.39230i − 0.140956i −0.997513 0.0704779i 0.977548π-0.977548\pi
0.997513 0.0704779i 0.0224524π-0.0224524\pi
972972 0 0
973973 24.0000i 0.769405i
974974 0 0
975975 −1.46410 −0.0468888
976976 0 0
977977 34.3923 1.10031 0.550154 0.835063i 0.314569π-0.314569\pi
0.550154 + 0.835063i 0.314569π0.314569\pi
978978 0 0
979979 18.9282i 0.604948i
980980 0 0
981981 18.9282i 0.604331i
982982 0 0
983983 −13.8564 −0.441951 −0.220975 0.975279i 0.570924π-0.570924\pi
−0.220975 + 0.975279i 0.570924π0.570924\pi
984984 0 0
985985 −23.8564 −0.760128
986986 0 0
987987 8.00000i 0.254643i
988988 0 0
989989 27.7128i 0.881216i
990990 0 0
991991 −14.6795 −0.466309 −0.233155 0.972440i 0.574905π-0.574905\pi
−0.233155 + 0.972440i 0.574905π0.574905\pi
992992 0 0
993993 −9.07180 −0.287885
994994 0 0
995995 25.3205i 0.802714i
996996 0 0
997997 − 2.53590i − 0.0803127i −0.999193 0.0401564i 0.987214π-0.987214\pi
0.999193 0.0401564i 0.0127856π-0.0127856\pi
998998 0 0
999999 −2.53590 −0.0802323
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 960.2.k.e.481.1 4
3.2 odd 2 2880.2.k.f.1441.2 4
4.3 odd 2 960.2.k.f.481.4 yes 4
5.2 odd 4 4800.2.d.i.1249.1 4
5.3 odd 4 4800.2.d.r.1249.3 4
5.4 even 2 4800.2.k.o.2401.3 4
8.3 odd 2 960.2.k.f.481.1 yes 4
8.5 even 2 inner 960.2.k.e.481.4 yes 4
12.11 even 2 2880.2.k.k.1441.1 4
16.3 odd 4 3840.2.a.bf.1.2 2
16.5 even 4 3840.2.a.be.1.2 2
16.11 odd 4 3840.2.a.bi.1.1 2
16.13 even 4 3840.2.a.bn.1.1 2
20.3 even 4 4800.2.d.m.1249.2 4
20.7 even 4 4800.2.d.n.1249.4 4
20.19 odd 2 4800.2.k.i.2401.2 4
24.5 odd 2 2880.2.k.f.1441.3 4
24.11 even 2 2880.2.k.k.1441.4 4
40.3 even 4 4800.2.d.n.1249.1 4
40.13 odd 4 4800.2.d.i.1249.4 4
40.19 odd 2 4800.2.k.i.2401.3 4
40.27 even 4 4800.2.d.m.1249.3 4
40.29 even 2 4800.2.k.o.2401.2 4
40.37 odd 4 4800.2.d.r.1249.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
960.2.k.e.481.1 4 1.1 even 1 trivial
960.2.k.e.481.4 yes 4 8.5 even 2 inner
960.2.k.f.481.1 yes 4 8.3 odd 2
960.2.k.f.481.4 yes 4 4.3 odd 2
2880.2.k.f.1441.2 4 3.2 odd 2
2880.2.k.f.1441.3 4 24.5 odd 2
2880.2.k.k.1441.1 4 12.11 even 2
2880.2.k.k.1441.4 4 24.11 even 2
3840.2.a.be.1.2 2 16.5 even 4
3840.2.a.bf.1.2 2 16.3 odd 4
3840.2.a.bi.1.1 2 16.11 odd 4
3840.2.a.bn.1.1 2 16.13 even 4
4800.2.d.i.1249.1 4 5.2 odd 4
4800.2.d.i.1249.4 4 40.13 odd 4
4800.2.d.m.1249.2 4 20.3 even 4
4800.2.d.m.1249.3 4 40.27 even 4
4800.2.d.n.1249.1 4 40.3 even 4
4800.2.d.n.1249.4 4 20.7 even 4
4800.2.d.r.1249.2 4 40.37 odd 4
4800.2.d.r.1249.3 4 5.3 odd 4
4800.2.k.i.2401.2 4 20.19 odd 2
4800.2.k.i.2401.3 4 40.19 odd 2
4800.2.k.o.2401.2 4 40.29 even 2
4800.2.k.o.2401.3 4 5.4 even 2