Properties

Label 960.2.m.a.479.1
Level $960$
Weight $2$
Character 960.479
Analytic conductor $7.666$
Analytic rank $0$
Dimension $8$
CM discriminant -120
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [960,2,Mod(479,960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(960, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("960.479");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 960 = 2^{6} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 960.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.66563859404\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.12960000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{6} + 8x^{4} - 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 479.1
Root \(-0.535233 + 0.309017i\) of defining polynomial
Character \(\chi\) \(=\) 960.479
Dual form 960.2.m.a.479.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205i q^{3} -2.23607 q^{5} -3.00000 q^{9} +O(q^{10})\) \(q-1.73205i q^{3} -2.23607 q^{5} -3.00000 q^{9} -4.47214i q^{11} +3.46410 q^{13} +3.87298i q^{15} -7.74597 q^{17} +7.74597i q^{23} +5.00000 q^{25} +5.19615i q^{27} -4.47214 q^{29} +2.00000i q^{31} -7.74597 q^{33} -10.3923 q^{37} -6.00000i q^{39} -3.46410i q^{43} +6.70820 q^{45} +7.74597i q^{47} -7.00000 q^{49} +13.4164i q^{51} +10.0000i q^{55} -4.47214i q^{59} -7.74597 q^{65} +10.3923i q^{67} +13.4164 q^{69} -8.66025i q^{75} -14.0000i q^{79} +9.00000 q^{81} +17.3205 q^{85} +7.74597i q^{87} +3.46410 q^{93} +13.4164i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 24 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 24 q^{9} + 40 q^{25} - 56 q^{49} + 72 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/960\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(577\) \(641\) \(901\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.73205i − 1.00000i
\(4\) 0 0
\(5\) −2.23607 −1.00000
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 0 0
\(9\) −3.00000 −1.00000
\(10\) 0 0
\(11\) − 4.47214i − 1.34840i −0.738549 0.674200i \(-0.764489\pi\)
0.738549 0.674200i \(-0.235511\pi\)
\(12\) 0 0
\(13\) 3.46410 0.960769 0.480384 0.877058i \(-0.340497\pi\)
0.480384 + 0.877058i \(0.340497\pi\)
\(14\) 0 0
\(15\) 3.87298i 1.00000i
\(16\) 0 0
\(17\) −7.74597 −1.87867 −0.939336 0.342997i \(-0.888558\pi\)
−0.939336 + 0.342997i \(0.888558\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 7.74597i 1.61515i 0.589768 + 0.807573i \(0.299219\pi\)
−0.589768 + 0.807573i \(0.700781\pi\)
\(24\) 0 0
\(25\) 5.00000 1.00000
\(26\) 0 0
\(27\) 5.19615i 1.00000i
\(28\) 0 0
\(29\) −4.47214 −0.830455 −0.415227 0.909718i \(-0.636298\pi\)
−0.415227 + 0.909718i \(0.636298\pi\)
\(30\) 0 0
\(31\) 2.00000i 0.359211i 0.983739 + 0.179605i \(0.0574821\pi\)
−0.983739 + 0.179605i \(0.942518\pi\)
\(32\) 0 0
\(33\) −7.74597 −1.34840
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −10.3923 −1.70848 −0.854242 0.519875i \(-0.825978\pi\)
−0.854242 + 0.519875i \(0.825978\pi\)
\(38\) 0 0
\(39\) − 6.00000i − 0.960769i
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) − 3.46410i − 0.528271i −0.964486 0.264135i \(-0.914913\pi\)
0.964486 0.264135i \(-0.0850865\pi\)
\(44\) 0 0
\(45\) 6.70820 1.00000
\(46\) 0 0
\(47\) 7.74597i 1.12987i 0.825137 + 0.564933i \(0.191098\pi\)
−0.825137 + 0.564933i \(0.808902\pi\)
\(48\) 0 0
\(49\) −7.00000 −1.00000
\(50\) 0 0
\(51\) 13.4164i 1.87867i
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 10.0000i 1.34840i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 4.47214i − 0.582223i −0.956689 0.291111i \(-0.905975\pi\)
0.956689 0.291111i \(-0.0940250\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −7.74597 −0.960769
\(66\) 0 0
\(67\) 10.3923i 1.26962i 0.772667 + 0.634811i \(0.218922\pi\)
−0.772667 + 0.634811i \(0.781078\pi\)
\(68\) 0 0
\(69\) 13.4164 1.61515
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) − 8.66025i − 1.00000i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) − 14.0000i − 1.57512i −0.616236 0.787562i \(-0.711343\pi\)
0.616236 0.787562i \(-0.288657\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 17.3205 1.87867
\(86\) 0 0
\(87\) 7.74597i 0.830455i
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 3.46410 0.359211
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 13.4164i 1.34840i
\(100\) 0 0
\(101\) −4.47214 −0.444994 −0.222497 0.974933i \(-0.571421\pi\)
−0.222497 + 0.974933i \(0.571421\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 18.0000i 1.70848i
\(112\) 0 0
\(113\) −7.74597 −0.728679 −0.364340 0.931266i \(-0.618705\pi\)
−0.364340 + 0.931266i \(0.618705\pi\)
\(114\) 0 0
\(115\) − 17.3205i − 1.61515i
\(116\) 0 0
\(117\) −10.3923 −0.960769
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −9.00000 −0.818182
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −11.1803 −1.00000
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0 0
\(129\) −6.00000 −0.528271
\(130\) 0 0
\(131\) − 22.3607i − 1.95366i −0.214013 0.976831i \(-0.568653\pi\)
0.214013 0.976831i \(-0.431347\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) − 11.6190i − 1.00000i
\(136\) 0 0
\(137\) 23.2379 1.98535 0.992674 0.120824i \(-0.0385538\pi\)
0.992674 + 0.120824i \(0.0385538\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 13.4164 1.12987
\(142\) 0 0
\(143\) − 15.4919i − 1.29550i
\(144\) 0 0
\(145\) 10.0000 0.830455
\(146\) 0 0
\(147\) 12.1244i 1.00000i
\(148\) 0 0
\(149\) −22.3607 −1.83186 −0.915929 0.401340i \(-0.868545\pi\)
−0.915929 + 0.401340i \(0.868545\pi\)
\(150\) 0 0
\(151\) − 22.0000i − 1.79033i −0.445730 0.895167i \(-0.647056\pi\)
0.445730 0.895167i \(-0.352944\pi\)
\(152\) 0 0
\(153\) 23.2379 1.87867
\(154\) 0 0
\(155\) − 4.47214i − 0.359211i
\(156\) 0 0
\(157\) −24.2487 −1.93526 −0.967629 0.252377i \(-0.918788\pi\)
−0.967629 + 0.252377i \(0.918788\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) − 3.46410i − 0.271329i −0.990755 0.135665i \(-0.956683\pi\)
0.990755 0.135665i \(-0.0433170\pi\)
\(164\) 0 0
\(165\) 17.3205 1.34840
\(166\) 0 0
\(167\) − 23.2379i − 1.79820i −0.437741 0.899101i \(-0.644221\pi\)
0.437741 0.899101i \(-0.355779\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −7.74597 −0.582223
\(178\) 0 0
\(179\) − 22.3607i − 1.67132i −0.549250 0.835658i \(-0.685087\pi\)
0.549250 0.835658i \(-0.314913\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 23.2379 1.70848
\(186\) 0 0
\(187\) 34.6410i 2.53320i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 13.4164i 0.960769i
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 26.0000i 1.84309i 0.388270 + 0.921546i \(0.373073\pi\)
−0.388270 + 0.921546i \(0.626927\pi\)
\(200\) 0 0
\(201\) 18.0000 1.26962
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 23.2379i − 1.61515i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 7.74597i 0.528271i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −26.8328 −1.80497
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) −15.0000 −1.00000
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 23.2379 1.52237 0.761183 0.648537i \(-0.224619\pi\)
0.761183 + 0.648537i \(0.224619\pi\)
\(234\) 0 0
\(235\) − 17.3205i − 1.12987i
\(236\) 0 0
\(237\) −24.2487 −1.57512
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −22.0000 −1.41714 −0.708572 0.705638i \(-0.750660\pi\)
−0.708572 + 0.705638i \(0.750660\pi\)
\(242\) 0 0
\(243\) − 15.5885i − 1.00000i
\(244\) 0 0
\(245\) 15.6525 1.00000
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 31.3050i 1.97595i 0.154610 + 0.987976i \(0.450588\pi\)
−0.154610 + 0.987976i \(0.549412\pi\)
\(252\) 0 0
\(253\) 34.6410 2.17786
\(254\) 0 0
\(255\) − 30.0000i − 1.87867i
\(256\) 0 0
\(257\) −7.74597 −0.483180 −0.241590 0.970378i \(-0.577669\pi\)
−0.241590 + 0.970378i \(0.577669\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 13.4164 0.830455
\(262\) 0 0
\(263\) − 23.2379i − 1.43291i −0.697633 0.716455i \(-0.745763\pi\)
0.697633 0.716455i \(-0.254237\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 31.3050 1.90870 0.954348 0.298696i \(-0.0965517\pi\)
0.954348 + 0.298696i \(0.0965517\pi\)
\(270\) 0 0
\(271\) 2.00000i 0.121491i 0.998153 + 0.0607457i \(0.0193479\pi\)
−0.998153 + 0.0607457i \(0.980652\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 22.3607i − 1.34840i
\(276\) 0 0
\(277\) −10.3923 −0.624413 −0.312207 0.950014i \(-0.601068\pi\)
−0.312207 + 0.950014i \(0.601068\pi\)
\(278\) 0 0
\(279\) − 6.00000i − 0.359211i
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) − 31.1769i − 1.85328i −0.375956 0.926638i \(-0.622686\pi\)
0.375956 0.926638i \(-0.377314\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 43.0000 2.52941
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 10.0000i 0.582223i
\(296\) 0 0
\(297\) 23.2379 1.34840
\(298\) 0 0
\(299\) 26.8328i 1.55178i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 7.74597i 0.444994i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 24.2487i 1.38395i 0.721923 + 0.691974i \(0.243259\pi\)
−0.721923 + 0.691974i \(0.756741\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 20.0000i 1.11979i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 17.3205 0.960769
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 0 0
\(333\) 31.1769 1.70848
\(334\) 0 0
\(335\) − 23.2379i − 1.26962i
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 13.4164i 0.728679i
\(340\) 0 0
\(341\) 8.94427 0.484359
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −30.0000 −1.61515
\(346\) 0 0
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 18.0000i 0.960769i
\(352\) 0 0
\(353\) −7.74597 −0.412276 −0.206138 0.978523i \(-0.566090\pi\)
−0.206138 + 0.978523i \(0.566090\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 15.5885i 0.818182i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −38.1051 −1.97301 −0.986504 0.163737i \(-0.947645\pi\)
−0.986504 + 0.163737i \(0.947645\pi\)
\(374\) 0 0
\(375\) 19.3649i 1.00000i
\(376\) 0 0
\(377\) −15.4919 −0.797875
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 38.7298i 1.97900i 0.144526 + 0.989501i \(0.453834\pi\)
−0.144526 + 0.989501i \(0.546166\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 10.3923i 0.528271i
\(388\) 0 0
\(389\) −4.47214 −0.226746 −0.113373 0.993552i \(-0.536166\pi\)
−0.113373 + 0.993552i \(0.536166\pi\)
\(390\) 0 0
\(391\) − 60.0000i − 3.03433i
\(392\) 0 0
\(393\) −38.7298 −1.95366
\(394\) 0 0
\(395\) 31.3050i 1.57512i
\(396\) 0 0
\(397\) −24.2487 −1.21701 −0.608504 0.793551i \(-0.708230\pi\)
−0.608504 + 0.793551i \(0.708230\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 6.92820i 0.345118i
\(404\) 0 0
\(405\) −20.1246 −1.00000
\(406\) 0 0
\(407\) 46.4758i 2.30372i
\(408\) 0 0
\(409\) 34.0000 1.68119 0.840596 0.541663i \(-0.182205\pi\)
0.840596 + 0.541663i \(0.182205\pi\)
\(410\) 0 0
\(411\) − 40.2492i − 1.98535i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 22.3607i − 1.09239i −0.837658 0.546195i \(-0.816076\pi\)
0.837658 0.546195i \(-0.183924\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) − 23.2379i − 1.12987i
\(424\) 0 0
\(425\) −38.7298 −1.87867
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −26.8328 −1.29550
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) − 17.3205i − 0.830455i
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 26.0000i 1.24091i 0.784241 + 0.620456i \(0.213053\pi\)
−0.784241 + 0.620456i \(0.786947\pi\)
\(440\) 0 0
\(441\) 21.0000 1.00000
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 38.7298i 1.83186i
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −38.1051 −1.79033
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) − 40.2492i − 1.87867i
\(460\) 0 0
\(461\) 31.3050 1.45802 0.729008 0.684505i \(-0.239981\pi\)
0.729008 + 0.684505i \(0.239981\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) −7.74597 −0.359211
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 42.0000i 1.93526i
\(472\) 0 0
\(473\) −15.4919 −0.712320
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) −36.0000 −1.64146
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(488\) 0 0
\(489\) −6.00000 −0.271329
\(490\) 0 0
\(491\) − 4.47214i − 0.201825i −0.994895 0.100912i \(-0.967824\pi\)
0.994895 0.100912i \(-0.0321762\pi\)
\(492\) 0 0
\(493\) 34.6410 1.56015
\(494\) 0 0
\(495\) − 30.0000i − 1.34840i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 0 0
\(501\) −40.2492 −1.79820
\(502\) 0 0
\(503\) 38.7298i 1.72688i 0.504453 + 0.863439i \(0.331694\pi\)
−0.504453 + 0.863439i \(0.668306\pi\)
\(504\) 0 0
\(505\) 10.0000 0.444994
\(506\) 0 0
\(507\) 1.73205i 0.0769231i
\(508\) 0 0
\(509\) −22.3607 −0.991120 −0.495560 0.868574i \(-0.665037\pi\)
−0.495560 + 0.868574i \(0.665037\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 34.6410 1.52351
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 38.1051i 1.66622i 0.553107 + 0.833110i \(0.313442\pi\)
−0.553107 + 0.833110i \(0.686558\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 15.4919i − 0.674839i
\(528\) 0 0
\(529\) −37.0000 −1.60870
\(530\) 0 0
\(531\) 13.4164i 0.582223i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −38.7298 −1.67132
\(538\) 0 0
\(539\) 31.3050i 1.34840i
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 45.0333i − 1.92549i −0.270418 0.962743i \(-0.587162\pi\)
0.270418 0.962743i \(-0.412838\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) − 40.2492i − 1.70848i
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) − 12.0000i − 0.507546i
\(560\) 0 0
\(561\) 60.0000 2.53320
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 17.3205 0.728679
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 38.7298i 1.61515i
\(576\) 0 0
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 23.2379 0.960769
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −7.74597 −0.318089 −0.159044 0.987271i \(-0.550841\pi\)
−0.159044 + 0.987271i \(0.550841\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 45.0333 1.84309
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −22.0000 −0.897399 −0.448699 0.893683i \(-0.648113\pi\)
−0.448699 + 0.893683i \(0.648113\pi\)
\(602\) 0 0
\(603\) − 31.1769i − 1.26962i
\(604\) 0 0
\(605\) 20.1246 0.818182
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 26.8328i 1.08554i
\(612\) 0 0
\(613\) −38.1051 −1.53905 −0.769526 0.638616i \(-0.779507\pi\)
−0.769526 + 0.638616i \(0.779507\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −38.7298 −1.55920 −0.779602 0.626275i \(-0.784579\pi\)
−0.779602 + 0.626275i \(0.784579\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) −40.2492 −1.61515
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 80.4984 3.20968
\(630\) 0 0
\(631\) − 38.0000i − 1.51276i −0.654135 0.756378i \(-0.726967\pi\)
0.654135 0.756378i \(-0.273033\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −24.2487 −0.960769
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) − 3.46410i − 0.136611i −0.997664 0.0683054i \(-0.978241\pi\)
0.997664 0.0683054i \(-0.0217592\pi\)
\(644\) 0 0
\(645\) 13.4164 0.528271
\(646\) 0 0
\(647\) − 23.2379i − 0.913576i −0.889576 0.456788i \(-0.849000\pi\)
0.889576 0.456788i \(-0.151000\pi\)
\(648\) 0 0
\(649\) −20.0000 −0.785069
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 50.0000i 1.95366i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 49.1935i 1.91631i 0.286256 + 0.958153i \(0.407589\pi\)
−0.286256 + 0.958153i \(0.592411\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 46.4758i 1.80497i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 34.6410i − 1.34131i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 25.9808i 1.00000i
\(676\) 0 0
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) −51.9615 −1.98535
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) − 40.2492i − 1.52237i
\(700\) 0 0
\(701\) 49.1935 1.85801 0.929006 0.370064i \(-0.120664\pi\)
0.929006 + 0.370064i \(0.120664\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −30.0000 −1.12987
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 42.0000i 1.57512i
\(712\) 0 0
\(713\) −15.4919 −0.580177
\(714\) 0 0
\(715\) 34.6410i 1.29550i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 38.1051i 1.41714i
\(724\) 0 0
\(725\) −22.3607 −0.830455
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 26.8328i 0.992448i
\(732\) 0 0
\(733\) 31.1769 1.15155 0.575773 0.817610i \(-0.304701\pi\)
0.575773 + 0.817610i \(0.304701\pi\)
\(734\) 0 0
\(735\) − 27.1109i − 1.00000i
\(736\) 0 0
\(737\) 46.4758 1.71196
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 54.2218i − 1.98920i −0.103765 0.994602i \(-0.533089\pi\)
0.103765 0.994602i \(-0.466911\pi\)
\(744\) 0 0
\(745\) 50.0000 1.83186
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 2.00000i 0.0729810i 0.999334 + 0.0364905i \(0.0116179\pi\)
−0.999334 + 0.0364905i \(0.988382\pi\)
\(752\) 0 0
\(753\) 54.2218 1.97595
\(754\) 0 0
\(755\) 49.1935i 1.79033i
\(756\) 0 0
\(757\) 45.0333 1.63676 0.818382 0.574675i \(-0.194871\pi\)
0.818382 + 0.574675i \(0.194871\pi\)
\(758\) 0 0
\(759\) − 60.0000i − 2.17786i
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −51.9615 −1.87867
\(766\) 0 0
\(767\) − 15.4919i − 0.559381i
\(768\) 0 0
\(769\) 34.0000 1.22607 0.613036 0.790055i \(-0.289948\pi\)
0.613036 + 0.790055i \(0.289948\pi\)
\(770\) 0 0
\(771\) 13.4164i 0.483180i
\(772\) 0 0
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 10.0000i 0.359211i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) − 23.2379i − 0.830455i
\(784\) 0 0
\(785\) 54.2218 1.93526
\(786\) 0 0
\(787\) 24.2487i 0.864373i 0.901784 + 0.432187i \(0.142258\pi\)
−0.901784 + 0.432187i \(0.857742\pi\)
\(788\) 0 0
\(789\) −40.2492 −1.43291
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) − 60.0000i − 2.12265i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 54.2218i − 1.90870i
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 3.46410 0.121491
\(814\) 0 0
\(815\) 7.74597i 0.271329i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 49.1935 1.71686 0.858432 0.512927i \(-0.171439\pi\)
0.858432 + 0.512927i \(0.171439\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) 0 0
\(825\) −38.7298 −1.34840
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 18.0000i 0.624413i
\(832\) 0 0
\(833\) 54.2218 1.87867
\(834\) 0 0
\(835\) 51.9615i 1.79820i
\(836\) 0 0
\(837\) −10.3923 −0.359211
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −9.00000 −0.310345
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 2.23607 0.0769231
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −54.0000 −1.85328
\(850\) 0 0
\(851\) − 80.4984i − 2.75945i
\(852\) 0 0
\(853\) −38.1051 −1.30469 −0.652347 0.757920i \(-0.726216\pi\)
−0.652347 + 0.757920i \(0.726216\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 23.2379 0.793792 0.396896 0.917864i \(-0.370087\pi\)
0.396896 + 0.917864i \(0.370087\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 54.2218i − 1.84573i −0.385123 0.922865i \(-0.625841\pi\)
0.385123 0.922865i \(-0.374159\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 74.4782i − 2.52941i
\(868\) 0 0
\(869\) −62.6099 −2.12390
\(870\) 0 0
\(871\) 36.0000i 1.21981i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 58.8897 1.98856 0.994282 0.106783i \(-0.0340549\pi\)
0.994282 + 0.106783i \(0.0340549\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) − 31.1769i − 1.04919i −0.851353 0.524593i \(-0.824217\pi\)
0.851353 0.524593i \(-0.175783\pi\)
\(884\) 0 0
\(885\) 17.3205 0.582223
\(886\) 0 0
\(887\) 38.7298i 1.30042i 0.759754 + 0.650210i \(0.225319\pi\)
−0.759754 + 0.650210i \(0.774681\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) − 40.2492i − 1.34840i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 50.0000i 1.67132i
\(896\) 0 0
\(897\) 46.4758 1.55178
\(898\) 0 0
\(899\) − 8.94427i − 0.298308i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 58.8897i − 1.95540i −0.210003 0.977701i \(-0.567348\pi\)
0.210003 0.977701i \(-0.432652\pi\)
\(908\) 0 0
\(909\) 13.4164 0.444994
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 26.0000i 0.857661i 0.903385 + 0.428830i \(0.141074\pi\)
−0.903385 + 0.428830i \(0.858926\pi\)
\(920\) 0 0
\(921\) 42.0000 1.38395
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −51.9615 −1.70848
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) − 77.4597i − 2.53320i
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −58.1378 −1.89524 −0.947619 0.319404i \(-0.896517\pi\)
−0.947619 + 0.319404i \(0.896517\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −38.7298 −1.25458 −0.627291 0.778785i \(-0.715836\pi\)
−0.627291 + 0.778785i \(0.715836\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 34.6410 1.11979
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 27.0000 0.870968
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 31.3050i 1.00462i 0.864687 + 0.502312i \(0.167517\pi\)
−0.864687 + 0.502312i \(0.832483\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) − 30.0000i − 0.960769i
\(976\) 0 0
\(977\) 54.2218 1.73471 0.867354 0.497692i \(-0.165819\pi\)
0.867354 + 0.497692i \(0.165819\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 7.74597i 0.247058i 0.992341 + 0.123529i \(0.0394212\pi\)
−0.992341 + 0.123529i \(0.960579\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 26.8328 0.853234
\(990\) 0 0
\(991\) − 62.0000i − 1.96949i −0.173990 0.984747i \(-0.555666\pi\)
0.173990 0.984747i \(-0.444334\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 58.1378i − 1.84309i
\(996\) 0 0
\(997\) 45.0333 1.42622 0.713110 0.701052i \(-0.247286\pi\)
0.713110 + 0.701052i \(0.247286\pi\)
\(998\) 0 0
\(999\) − 54.0000i − 1.70848i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 960.2.m.a.479.1 8
3.2 odd 2 inner 960.2.m.a.479.4 yes 8
4.3 odd 2 inner 960.2.m.a.479.6 yes 8
5.4 even 2 inner 960.2.m.a.479.5 yes 8
8.3 odd 2 inner 960.2.m.a.479.3 yes 8
8.5 even 2 inner 960.2.m.a.479.8 yes 8
12.11 even 2 inner 960.2.m.a.479.7 yes 8
15.14 odd 2 inner 960.2.m.a.479.8 yes 8
20.19 odd 2 inner 960.2.m.a.479.2 yes 8
24.5 odd 2 inner 960.2.m.a.479.5 yes 8
24.11 even 2 inner 960.2.m.a.479.2 yes 8
40.19 odd 2 inner 960.2.m.a.479.7 yes 8
40.29 even 2 inner 960.2.m.a.479.4 yes 8
60.59 even 2 inner 960.2.m.a.479.3 yes 8
120.29 odd 2 CM 960.2.m.a.479.1 8
120.59 even 2 inner 960.2.m.a.479.6 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
960.2.m.a.479.1 8 1.1 even 1 trivial
960.2.m.a.479.1 8 120.29 odd 2 CM
960.2.m.a.479.2 yes 8 20.19 odd 2 inner
960.2.m.a.479.2 yes 8 24.11 even 2 inner
960.2.m.a.479.3 yes 8 8.3 odd 2 inner
960.2.m.a.479.3 yes 8 60.59 even 2 inner
960.2.m.a.479.4 yes 8 3.2 odd 2 inner
960.2.m.a.479.4 yes 8 40.29 even 2 inner
960.2.m.a.479.5 yes 8 5.4 even 2 inner
960.2.m.a.479.5 yes 8 24.5 odd 2 inner
960.2.m.a.479.6 yes 8 4.3 odd 2 inner
960.2.m.a.479.6 yes 8 120.59 even 2 inner
960.2.m.a.479.7 yes 8 12.11 even 2 inner
960.2.m.a.479.7 yes 8 40.19 odd 2 inner
960.2.m.a.479.8 yes 8 8.5 even 2 inner
960.2.m.a.479.8 yes 8 15.14 odd 2 inner