Properties

Label 960.2.m.a.479.1
Level 960960
Weight 22
Character 960.479
Analytic conductor 7.6667.666
Analytic rank 00
Dimension 88
CM discriminant -120
Inner twists 1616

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [960,2,Mod(479,960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(960, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("960.479");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 960=2635 960 = 2^{6} \cdot 3 \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 960.m (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 7.665638594047.66563859404
Analytic rank: 00
Dimension: 88
Coefficient field: 8.0.12960000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x83x6+8x43x2+1 x^{8} - 3x^{6} + 8x^{4} - 3x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 212 2^{12}
Twist minimal: yes
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

Embedding invariants

Embedding label 479.1
Root 0.535233+0.309017i-0.535233 + 0.309017i of defining polynomial
Character χ\chi == 960.479
Dual form 960.2.m.a.479.6

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.73205iq32.23607q53.00000q94.47214iq11+3.46410q13+3.87298iq157.74597q17+7.74597iq23+5.00000q25+5.19615iq274.47214q29+2.00000iq317.74597q3310.3923q376.00000iq393.46410iq43+6.70820q45+7.74597iq477.00000q49+13.4164iq51+10.0000iq554.47214iq597.74597q65+10.3923iq67+13.4164q698.66025iq7514.0000iq79+9.00000q81+17.3205q85+7.74597iq87+3.46410q93+13.4164iq99+O(q100)q-1.73205i q^{3} -2.23607 q^{5} -3.00000 q^{9} -4.47214i q^{11} +3.46410 q^{13} +3.87298i q^{15} -7.74597 q^{17} +7.74597i q^{23} +5.00000 q^{25} +5.19615i q^{27} -4.47214 q^{29} +2.00000i q^{31} -7.74597 q^{33} -10.3923 q^{37} -6.00000i q^{39} -3.46410i q^{43} +6.70820 q^{45} +7.74597i q^{47} -7.00000 q^{49} +13.4164i q^{51} +10.0000i q^{55} -4.47214i q^{59} -7.74597 q^{65} +10.3923i q^{67} +13.4164 q^{69} -8.66025i q^{75} -14.0000i q^{79} +9.00000 q^{81} +17.3205 q^{85} +7.74597i q^{87} +3.46410 q^{93} +13.4164i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q24q9+40q2556q49+72q81+O(q100) 8 q - 24 q^{9} + 40 q^{25} - 56 q^{49} + 72 q^{81}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/960Z)×\left(\mathbb{Z}/960\mathbb{Z}\right)^\times.

nn 511511 577577 641641 901901
χ(n)\chi(n) 1-1 1-1 1-1 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 − 1.73205i − 1.00000i
44 0 0
55 −2.23607 −1.00000
66 0 0
77 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
88 0 0
99 −3.00000 −1.00000
1010 0 0
1111 − 4.47214i − 1.34840i −0.738549 0.674200i 0.764489π-0.764489\pi
0.738549 0.674200i 0.235511π-0.235511\pi
1212 0 0
1313 3.46410 0.960769 0.480384 0.877058i 0.340497π-0.340497\pi
0.480384 + 0.877058i 0.340497π0.340497\pi
1414 0 0
1515 3.87298i 1.00000i
1616 0 0
1717 −7.74597 −1.87867 −0.939336 0.342997i 0.888558π-0.888558\pi
−0.939336 + 0.342997i 0.888558π0.888558\pi
1818 0 0
1919 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
2020 0 0
2121 0 0
2222 0 0
2323 7.74597i 1.61515i 0.589768 + 0.807573i 0.299219π0.299219\pi
−0.589768 + 0.807573i 0.700781π0.700781\pi
2424 0 0
2525 5.00000 1.00000
2626 0 0
2727 5.19615i 1.00000i
2828 0 0
2929 −4.47214 −0.830455 −0.415227 0.909718i 0.636298π-0.636298\pi
−0.415227 + 0.909718i 0.636298π0.636298\pi
3030 0 0
3131 2.00000i 0.359211i 0.983739 + 0.179605i 0.0574821π0.0574821\pi
−0.983739 + 0.179605i 0.942518π0.942518\pi
3232 0 0
3333 −7.74597 −1.34840
3434 0 0
3535 0 0
3636 0 0
3737 −10.3923 −1.70848 −0.854242 0.519875i 0.825978π-0.825978\pi
−0.854242 + 0.519875i 0.825978π0.825978\pi
3838 0 0
3939 − 6.00000i − 0.960769i
4040 0 0
4141 0 0 1.00000 00
−1.00000 π\pi
4242 0 0
4343 − 3.46410i − 0.528271i −0.964486 0.264135i 0.914913π-0.914913\pi
0.964486 0.264135i 0.0850865π-0.0850865\pi
4444 0 0
4545 6.70820 1.00000
4646 0 0
4747 7.74597i 1.12987i 0.825137 + 0.564933i 0.191098π0.191098\pi
−0.825137 + 0.564933i 0.808902π0.808902\pi
4848 0 0
4949 −7.00000 −1.00000
5050 0 0
5151 13.4164i 1.87867i
5252 0 0
5353 0 0 1.00000 00
−1.00000 π\pi
5454 0 0
5555 10.0000i 1.34840i
5656 0 0
5757 0 0
5858 0 0
5959 − 4.47214i − 0.582223i −0.956689 0.291111i 0.905975π-0.905975\pi
0.956689 0.291111i 0.0940250π-0.0940250\pi
6060 0 0
6161 0 0 1.00000 00
−1.00000 π\pi
6262 0 0
6363 0 0
6464 0 0
6565 −7.74597 −0.960769
6666 0 0
6767 10.3923i 1.26962i 0.772667 + 0.634811i 0.218922π0.218922\pi
−0.772667 + 0.634811i 0.781078π0.781078\pi
6868 0 0
6969 13.4164 1.61515
7070 0 0
7171 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
7272 0 0
7373 0 0 1.00000 00
−1.00000 π\pi
7474 0 0
7575 − 8.66025i − 1.00000i
7676 0 0
7777 0 0
7878 0 0
7979 − 14.0000i − 1.57512i −0.616236 0.787562i 0.711343π-0.711343\pi
0.616236 0.787562i 0.288657π-0.288657\pi
8080 0 0
8181 9.00000 1.00000
8282 0 0
8383 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
8484 0 0
8585 17.3205 1.87867
8686 0 0
8787 7.74597i 0.830455i
8888 0 0
8989 0 0 1.00000 00
−1.00000 π\pi
9090 0 0
9191 0 0
9292 0 0
9393 3.46410 0.359211
9494 0 0
9595 0 0
9696 0 0
9797 0 0 1.00000 00
−1.00000 π\pi
9898 0 0
9999 13.4164i 1.34840i
100100 0 0
101101 −4.47214 −0.444994 −0.222497 0.974933i 0.571421π-0.571421\pi
−0.222497 + 0.974933i 0.571421π0.571421\pi
102102 0 0
103103 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
104104 0 0
105105 0 0
106106 0 0
107107 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
108108 0 0
109109 0 0 1.00000 00
−1.00000 π\pi
110110 0 0
111111 18.0000i 1.70848i
112112 0 0
113113 −7.74597 −0.728679 −0.364340 0.931266i 0.618705π-0.618705\pi
−0.364340 + 0.931266i 0.618705π0.618705\pi
114114 0 0
115115 − 17.3205i − 1.61515i
116116 0 0
117117 −10.3923 −0.960769
118118 0 0
119119 0 0
120120 0 0
121121 −9.00000 −0.818182
122122 0 0
123123 0 0
124124 0 0
125125 −11.1803 −1.00000
126126 0 0
127127 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
128128 0 0
129129 −6.00000 −0.528271
130130 0 0
131131 − 22.3607i − 1.95366i −0.214013 0.976831i 0.568653π-0.568653\pi
0.214013 0.976831i 0.431347π-0.431347\pi
132132 0 0
133133 0 0
134134 0 0
135135 − 11.6190i − 1.00000i
136136 0 0
137137 23.2379 1.98535 0.992674 0.120824i 0.0385538π-0.0385538\pi
0.992674 + 0.120824i 0.0385538π0.0385538\pi
138138 0 0
139139 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
140140 0 0
141141 13.4164 1.12987
142142 0 0
143143 − 15.4919i − 1.29550i
144144 0 0
145145 10.0000 0.830455
146146 0 0
147147 12.1244i 1.00000i
148148 0 0
149149 −22.3607 −1.83186 −0.915929 0.401340i 0.868545π-0.868545\pi
−0.915929 + 0.401340i 0.868545π0.868545\pi
150150 0 0
151151 − 22.0000i − 1.79033i −0.445730 0.895167i 0.647056π-0.647056\pi
0.445730 0.895167i 0.352944π-0.352944\pi
152152 0 0
153153 23.2379 1.87867
154154 0 0
155155 − 4.47214i − 0.359211i
156156 0 0
157157 −24.2487 −1.93526 −0.967629 0.252377i 0.918788π-0.918788\pi
−0.967629 + 0.252377i 0.918788π0.918788\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 0 0
163163 − 3.46410i − 0.271329i −0.990755 0.135665i 0.956683π-0.956683\pi
0.990755 0.135665i 0.0433170π-0.0433170\pi
164164 0 0
165165 17.3205 1.34840
166166 0 0
167167 − 23.2379i − 1.79820i −0.437741 0.899101i 0.644221π-0.644221\pi
0.437741 0.899101i 0.355779π-0.355779\pi
168168 0 0
169169 −1.00000 −0.0769231
170170 0 0
171171 0 0
172172 0 0
173173 0 0 1.00000 00
−1.00000 π\pi
174174 0 0
175175 0 0
176176 0 0
177177 −7.74597 −0.582223
178178 0 0
179179 − 22.3607i − 1.67132i −0.549250 0.835658i 0.685087π-0.685087\pi
0.549250 0.835658i 0.314913π-0.314913\pi
180180 0 0
181181 0 0 1.00000 00
−1.00000 π\pi
182182 0 0
183183 0 0
184184 0 0
185185 23.2379 1.70848
186186 0 0
187187 34.6410i 2.53320i
188188 0 0
189189 0 0
190190 0 0
191191 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
192192 0 0
193193 0 0 1.00000 00
−1.00000 π\pi
194194 0 0
195195 13.4164i 0.960769i
196196 0 0
197197 0 0 1.00000 00
−1.00000 π\pi
198198 0 0
199199 26.0000i 1.84309i 0.388270 + 0.921546i 0.373073π0.373073\pi
−0.388270 + 0.921546i 0.626927π0.626927\pi
200200 0 0
201201 18.0000 1.26962
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 − 23.2379i − 1.61515i
208208 0 0
209209 0 0
210210 0 0
211211 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
212212 0 0
213213 0 0
214214 0 0
215215 7.74597i 0.528271i
216216 0 0
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 −26.8328 −1.80497
222222 0 0
223223 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
224224 0 0
225225 −15.0000 −1.00000
226226 0 0
227227 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
228228 0 0
229229 0 0 1.00000 00
−1.00000 π\pi
230230 0 0
231231 0 0
232232 0 0
233233 23.2379 1.52237 0.761183 0.648537i 0.224619π-0.224619\pi
0.761183 + 0.648537i 0.224619π0.224619\pi
234234 0 0
235235 − 17.3205i − 1.12987i
236236 0 0
237237 −24.2487 −1.57512
238238 0 0
239239 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
240240 0 0
241241 −22.0000 −1.41714 −0.708572 0.705638i 0.750660π-0.750660\pi
−0.708572 + 0.705638i 0.750660π0.750660\pi
242242 0 0
243243 − 15.5885i − 1.00000i
244244 0 0
245245 15.6525 1.00000
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 31.3050i 1.97595i 0.154610 + 0.987976i 0.450588π0.450588\pi
−0.154610 + 0.987976i 0.549412π0.549412\pi
252252 0 0
253253 34.6410 2.17786
254254 0 0
255255 − 30.0000i − 1.87867i
256256 0 0
257257 −7.74597 −0.483180 −0.241590 0.970378i 0.577669π-0.577669\pi
−0.241590 + 0.970378i 0.577669π0.577669\pi
258258 0 0
259259 0 0
260260 0 0
261261 13.4164 0.830455
262262 0 0
263263 − 23.2379i − 1.43291i −0.697633 0.716455i 0.745763π-0.745763\pi
0.697633 0.716455i 0.254237π-0.254237\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 31.3050 1.90870 0.954348 0.298696i 0.0965517π-0.0965517\pi
0.954348 + 0.298696i 0.0965517π0.0965517\pi
270270 0 0
271271 2.00000i 0.121491i 0.998153 + 0.0607457i 0.0193479π0.0193479\pi
−0.998153 + 0.0607457i 0.980652π0.980652\pi
272272 0 0
273273 0 0
274274 0 0
275275 − 22.3607i − 1.34840i
276276 0 0
277277 −10.3923 −0.624413 −0.312207 0.950014i 0.601068π-0.601068\pi
−0.312207 + 0.950014i 0.601068π0.601068\pi
278278 0 0
279279 − 6.00000i − 0.359211i
280280 0 0
281281 0 0 1.00000 00
−1.00000 π\pi
282282 0 0
283283 − 31.1769i − 1.85328i −0.375956 0.926638i 0.622686π-0.622686\pi
0.375956 0.926638i 0.377314π-0.377314\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 43.0000 2.52941
290290 0 0
291291 0 0
292292 0 0
293293 0 0 1.00000 00
−1.00000 π\pi
294294 0 0
295295 10.0000i 0.582223i
296296 0 0
297297 23.2379 1.34840
298298 0 0
299299 26.8328i 1.55178i
300300 0 0
301301 0 0
302302 0 0
303303 7.74597i 0.444994i
304304 0 0
305305 0 0
306306 0 0
307307 24.2487i 1.38395i 0.721923 + 0.691974i 0.243259π0.243259\pi
−0.721923 + 0.691974i 0.756741π0.756741\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
312312 0 0
313313 0 0 1.00000 00
−1.00000 π\pi
314314 0 0
315315 0 0
316316 0 0
317317 0 0 1.00000 00
−1.00000 π\pi
318318 0 0
319319 20.0000i 1.11979i
320320 0 0
321321 0 0
322322 0 0
323323 0 0
324324 0 0
325325 17.3205 0.960769
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
332332 0 0
333333 31.1769 1.70848
334334 0 0
335335 − 23.2379i − 1.26962i
336336 0 0
337337 0 0 1.00000 00
−1.00000 π\pi
338338 0 0
339339 13.4164i 0.728679i
340340 0 0
341341 8.94427 0.484359
342342 0 0
343343 0 0
344344 0 0
345345 −30.0000 −1.61515
346346 0 0
347347 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
348348 0 0
349349 0 0 1.00000 00
−1.00000 π\pi
350350 0 0
351351 18.0000i 0.960769i
352352 0 0
353353 −7.74597 −0.412276 −0.206138 0.978523i 0.566090π-0.566090\pi
−0.206138 + 0.978523i 0.566090π0.566090\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
360360 0 0
361361 −19.0000 −1.00000
362362 0 0
363363 15.5885i 0.818182i
364364 0 0
365365 0 0
366366 0 0
367367 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
368368 0 0
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 −38.1051 −1.97301 −0.986504 0.163737i 0.947645π-0.947645\pi
−0.986504 + 0.163737i 0.947645π0.947645\pi
374374 0 0
375375 19.3649i 1.00000i
376376 0 0
377377 −15.4919 −0.797875
378378 0 0
379379 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
380380 0 0
381381 0 0
382382 0 0
383383 38.7298i 1.97900i 0.144526 + 0.989501i 0.453834π0.453834\pi
−0.144526 + 0.989501i 0.546166π0.546166\pi
384384 0 0
385385 0 0
386386 0 0
387387 10.3923i 0.528271i
388388 0 0
389389 −4.47214 −0.226746 −0.113373 0.993552i 0.536166π-0.536166\pi
−0.113373 + 0.993552i 0.536166π0.536166\pi
390390 0 0
391391 − 60.0000i − 3.03433i
392392 0 0
393393 −38.7298 −1.95366
394394 0 0
395395 31.3050i 1.57512i
396396 0 0
397397 −24.2487 −1.21701 −0.608504 0.793551i 0.708230π-0.708230\pi
−0.608504 + 0.793551i 0.708230π0.708230\pi
398398 0 0
399399 0 0
400400 0 0
401401 0 0 1.00000 00
−1.00000 π\pi
402402 0 0
403403 6.92820i 0.345118i
404404 0 0
405405 −20.1246 −1.00000
406406 0 0
407407 46.4758i 2.30372i
408408 0 0
409409 34.0000 1.68119 0.840596 0.541663i 0.182205π-0.182205\pi
0.840596 + 0.541663i 0.182205π0.182205\pi
410410 0 0
411411 − 40.2492i − 1.98535i
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 − 22.3607i − 1.09239i −0.837658 0.546195i 0.816076π-0.816076\pi
0.837658 0.546195i 0.183924π-0.183924\pi
420420 0 0
421421 0 0 1.00000 00
−1.00000 π\pi
422422 0 0
423423 − 23.2379i − 1.12987i
424424 0 0
425425 −38.7298 −1.87867
426426 0 0
427427 0 0
428428 0 0
429429 −26.8328 −1.29550
430430 0 0
431431 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
432432 0 0
433433 0 0 1.00000 00
−1.00000 π\pi
434434 0 0
435435 − 17.3205i − 0.830455i
436436 0 0
437437 0 0
438438 0 0
439439 26.0000i 1.24091i 0.784241 + 0.620456i 0.213053π0.213053\pi
−0.784241 + 0.620456i 0.786947π0.786947\pi
440440 0 0
441441 21.0000 1.00000
442442 0 0
443443 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
444444 0 0
445445 0 0
446446 0 0
447447 38.7298i 1.83186i
448448 0 0
449449 0 0 1.00000 00
−1.00000 π\pi
450450 0 0
451451 0 0
452452 0 0
453453 −38.1051 −1.79033
454454 0 0
455455 0 0
456456 0 0
457457 0 0 1.00000 00
−1.00000 π\pi
458458 0 0
459459 − 40.2492i − 1.87867i
460460 0 0
461461 31.3050 1.45802 0.729008 0.684505i 0.239981π-0.239981\pi
0.729008 + 0.684505i 0.239981π0.239981\pi
462462 0 0
463463 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
464464 0 0
465465 −7.74597 −0.359211
466466 0 0
467467 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
468468 0 0
469469 0 0
470470 0 0
471471 42.0000i 1.93526i
472472 0 0
473473 −15.4919 −0.712320
474474 0 0
475475 0 0
476476 0 0
477477 0 0
478478 0 0
479479 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
480480 0 0
481481 −36.0000 −1.64146
482482 0 0
483483 0 0
484484 0 0
485485 0 0
486486 0 0
487487 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
488488 0 0
489489 −6.00000 −0.271329
490490 0 0
491491 − 4.47214i − 0.201825i −0.994895 0.100912i 0.967824π-0.967824\pi
0.994895 0.100912i 0.0321762π-0.0321762\pi
492492 0 0
493493 34.6410 1.56015
494494 0 0
495495 − 30.0000i − 1.34840i
496496 0 0
497497 0 0
498498 0 0
499499 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
500500 0 0
501501 −40.2492 −1.79820
502502 0 0
503503 38.7298i 1.72688i 0.504453 + 0.863439i 0.331694π0.331694\pi
−0.504453 + 0.863439i 0.668306π0.668306\pi
504504 0 0
505505 10.0000 0.444994
506506 0 0
507507 1.73205i 0.0769231i
508508 0 0
509509 −22.3607 −0.991120 −0.495560 0.868574i 0.665037π-0.665037\pi
−0.495560 + 0.868574i 0.665037π0.665037\pi
510510 0 0
511511 0 0
512512 0 0
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 34.6410 1.52351
518518 0 0
519519 0 0
520520 0 0
521521 0 0 1.00000 00
−1.00000 π\pi
522522 0 0
523523 38.1051i 1.66622i 0.553107 + 0.833110i 0.313442π0.313442\pi
−0.553107 + 0.833110i 0.686558π0.686558\pi
524524 0 0
525525 0 0
526526 0 0
527527 − 15.4919i − 0.674839i
528528 0 0
529529 −37.0000 −1.60870
530530 0 0
531531 13.4164i 0.582223i
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 −38.7298 −1.67132
538538 0 0
539539 31.3050i 1.34840i
540540 0 0
541541 0 0 1.00000 00
−1.00000 π\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 − 45.0333i − 1.92549i −0.270418 0.962743i 0.587162π-0.587162\pi
0.270418 0.962743i 0.412838π-0.412838\pi
548548 0 0
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 − 40.2492i − 1.70848i
556556 0 0
557557 0 0 1.00000 00
−1.00000 π\pi
558558 0 0
559559 − 12.0000i − 0.507546i
560560 0 0
561561 60.0000 2.53320
562562 0 0
563563 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
564564 0 0
565565 17.3205 0.728679
566566 0 0
567567 0 0
568568 0 0
569569 0 0 1.00000 00
−1.00000 π\pi
570570 0 0
571571 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
572572 0 0
573573 0 0
574574 0 0
575575 38.7298i 1.61515i
576576 0 0
577577 0 0 1.00000 00
−1.00000 π\pi
578578 0 0
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 23.2379 0.960769
586586 0 0
587587 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 −7.74597 −0.318089 −0.159044 0.987271i 0.550841π-0.550841\pi
−0.159044 + 0.987271i 0.550841π0.550841\pi
594594 0 0
595595 0 0
596596 0 0
597597 45.0333 1.84309
598598 0 0
599599 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
600600 0 0
601601 −22.0000 −0.897399 −0.448699 0.893683i 0.648113π-0.648113\pi
−0.448699 + 0.893683i 0.648113π0.648113\pi
602602 0 0
603603 − 31.1769i − 1.26962i
604604 0 0
605605 20.1246 0.818182
606606 0 0
607607 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
608608 0 0
609609 0 0
610610 0 0
611611 26.8328i 1.08554i
612612 0 0
613613 −38.1051 −1.53905 −0.769526 0.638616i 0.779507π-0.779507\pi
−0.769526 + 0.638616i 0.779507π0.779507\pi
614614 0 0
615615 0 0
616616 0 0
617617 −38.7298 −1.55920 −0.779602 0.626275i 0.784579π-0.784579\pi
−0.779602 + 0.626275i 0.784579π0.784579\pi
618618 0 0
619619 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
620620 0 0
621621 −40.2492 −1.61515
622622 0 0
623623 0 0
624624 0 0
625625 25.0000 1.00000
626626 0 0
627627 0 0
628628 0 0
629629 80.4984 3.20968
630630 0 0
631631 − 38.0000i − 1.51276i −0.654135 0.756378i 0.726967π-0.726967\pi
0.654135 0.756378i 0.273033π-0.273033\pi
632632 0 0
633633 0 0
634634 0 0
635635 0 0
636636 0 0
637637 −24.2487 −0.960769
638638 0 0
639639 0 0
640640 0 0
641641 0 0 1.00000 00
−1.00000 π\pi
642642 0 0
643643 − 3.46410i − 0.136611i −0.997664 0.0683054i 0.978241π-0.978241\pi
0.997664 0.0683054i 0.0217592π-0.0217592\pi
644644 0 0
645645 13.4164 0.528271
646646 0 0
647647 − 23.2379i − 0.913576i −0.889576 0.456788i 0.849000π-0.849000\pi
0.889576 0.456788i 0.151000π-0.151000\pi
648648 0 0
649649 −20.0000 −0.785069
650650 0 0
651651 0 0
652652 0 0
653653 0 0 1.00000 00
−1.00000 π\pi
654654 0 0
655655 50.0000i 1.95366i
656656 0 0
657657 0 0
658658 0 0
659659 49.1935i 1.91631i 0.286256 + 0.958153i 0.407589π0.407589\pi
−0.286256 + 0.958153i 0.592411π0.592411\pi
660660 0 0
661661 0 0 1.00000 00
−1.00000 π\pi
662662 0 0
663663 46.4758i 1.80497i
664664 0 0
665665 0 0
666666 0 0
667667 − 34.6410i − 1.34131i
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0 0 1.00000 00
−1.00000 π\pi
674674 0 0
675675 25.9808i 1.00000i
676676 0 0
677677 0 0 1.00000 00
−1.00000 π\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
684684 0 0
685685 −51.9615 −1.98535
686686 0 0
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
692692 0 0
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 − 40.2492i − 1.52237i
700700 0 0
701701 49.1935 1.85801 0.929006 0.370064i 0.120664π-0.120664\pi
0.929006 + 0.370064i 0.120664π0.120664\pi
702702 0 0
703703 0 0
704704 0 0
705705 −30.0000 −1.12987
706706 0 0
707707 0 0
708708 0 0
709709 0 0 1.00000 00
−1.00000 π\pi
710710 0 0
711711 42.0000i 1.57512i
712712 0 0
713713 −15.4919 −0.580177
714714 0 0
715715 34.6410i 1.29550i
716716 0 0
717717 0 0
718718 0 0
719719 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
720720 0 0
721721 0 0
722722 0 0
723723 38.1051i 1.41714i
724724 0 0
725725 −22.3607 −0.830455
726726 0 0
727727 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
728728 0 0
729729 −27.0000 −1.00000
730730 0 0
731731 26.8328i 0.992448i
732732 0 0
733733 31.1769 1.15155 0.575773 0.817610i 0.304701π-0.304701\pi
0.575773 + 0.817610i 0.304701π0.304701\pi
734734 0 0
735735 − 27.1109i − 1.00000i
736736 0 0
737737 46.4758 1.71196
738738 0 0
739739 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
740740 0 0
741741 0 0
742742 0 0
743743 − 54.2218i − 1.98920i −0.103765 0.994602i 0.533089π-0.533089\pi
0.103765 0.994602i 0.466911π-0.466911\pi
744744 0 0
745745 50.0000 1.83186
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 2.00000i 0.0729810i 0.999334 + 0.0364905i 0.0116179π0.0116179\pi
−0.999334 + 0.0364905i 0.988382π0.988382\pi
752752 0 0
753753 54.2218 1.97595
754754 0 0
755755 49.1935i 1.79033i
756756 0 0
757757 45.0333 1.63676 0.818382 0.574675i 0.194871π-0.194871\pi
0.818382 + 0.574675i 0.194871π0.194871\pi
758758 0 0
759759 − 60.0000i − 2.17786i
760760 0 0
761761 0 0 1.00000 00
−1.00000 π\pi
762762 0 0
763763 0 0
764764 0 0
765765 −51.9615 −1.87867
766766 0 0
767767 − 15.4919i − 0.559381i
768768 0 0
769769 34.0000 1.22607 0.613036 0.790055i 0.289948π-0.289948\pi
0.613036 + 0.790055i 0.289948π0.289948\pi
770770 0 0
771771 13.4164i 0.483180i
772772 0 0
773773 0 0 1.00000 00
−1.00000 π\pi
774774 0 0
775775 10.0000i 0.359211i
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 − 23.2379i − 0.830455i
784784 0 0
785785 54.2218 1.93526
786786 0 0
787787 24.2487i 0.864373i 0.901784 + 0.432187i 0.142258π0.142258\pi
−0.901784 + 0.432187i 0.857742π0.857742\pi
788788 0 0
789789 −40.2492 −1.43291
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 0 0 1.00000 00
−1.00000 π\pi
798798 0 0
799799 − 60.0000i − 2.12265i
800800 0 0
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 − 54.2218i − 1.90870i
808808 0 0
809809 0 0 1.00000 00
−1.00000 π\pi
810810 0 0
811811 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
812812 0 0
813813 3.46410 0.121491
814814 0 0
815815 7.74597i 0.271329i
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 49.1935 1.71686 0.858432 0.512927i 0.171439π-0.171439\pi
0.858432 + 0.512927i 0.171439π0.171439\pi
822822 0 0
823823 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
824824 0 0
825825 −38.7298 −1.34840
826826 0 0
827827 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
828828 0 0
829829 0 0 1.00000 00
−1.00000 π\pi
830830 0 0
831831 18.0000i 0.624413i
832832 0 0
833833 54.2218 1.87867
834834 0 0
835835 51.9615i 1.79820i
836836 0 0
837837 −10.3923 −0.359211
838838 0 0
839839 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
840840 0 0
841841 −9.00000 −0.310345
842842 0 0
843843 0 0
844844 0 0
845845 2.23607 0.0769231
846846 0 0
847847 0 0
848848 0 0
849849 −54.0000 −1.85328
850850 0 0
851851 − 80.4984i − 2.75945i
852852 0 0
853853 −38.1051 −1.30469 −0.652347 0.757920i 0.726216π-0.726216\pi
−0.652347 + 0.757920i 0.726216π0.726216\pi
854854 0 0
855855 0 0
856856 0 0
857857 23.2379 0.793792 0.396896 0.917864i 0.370087π-0.370087\pi
0.396896 + 0.917864i 0.370087π0.370087\pi
858858 0 0
859859 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
860860 0 0
861861 0 0
862862 0 0
863863 − 54.2218i − 1.84573i −0.385123 0.922865i 0.625841π-0.625841\pi
0.385123 0.922865i 0.374159π-0.374159\pi
864864 0 0
865865 0 0
866866 0 0
867867 − 74.4782i − 2.52941i
868868 0 0
869869 −62.6099 −2.12390
870870 0 0
871871 36.0000i 1.21981i
872872 0 0
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 58.8897 1.98856 0.994282 0.106783i 0.0340549π-0.0340549\pi
0.994282 + 0.106783i 0.0340549π0.0340549\pi
878878 0 0
879879 0 0
880880 0 0
881881 0 0 1.00000 00
−1.00000 π\pi
882882 0 0
883883 − 31.1769i − 1.04919i −0.851353 0.524593i 0.824217π-0.824217\pi
0.851353 0.524593i 0.175783π-0.175783\pi
884884 0 0
885885 17.3205 0.582223
886886 0 0
887887 38.7298i 1.30042i 0.759754 + 0.650210i 0.225319π0.225319\pi
−0.759754 + 0.650210i 0.774681π0.774681\pi
888888 0 0
889889 0 0
890890 0 0
891891 − 40.2492i − 1.34840i
892892 0 0
893893 0 0
894894 0 0
895895 50.0000i 1.67132i
896896 0 0
897897 46.4758 1.55178
898898 0 0
899899 − 8.94427i − 0.298308i
900900 0 0
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 − 58.8897i − 1.95540i −0.210003 0.977701i 0.567348π-0.567348\pi
0.210003 0.977701i 0.432652π-0.432652\pi
908908 0 0
909909 13.4164 0.444994
910910 0 0
911911 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 26.0000i 0.857661i 0.903385 + 0.428830i 0.141074π0.141074\pi
−0.903385 + 0.428830i 0.858926π0.858926\pi
920920 0 0
921921 42.0000 1.38395
922922 0 0
923923 0 0
924924 0 0
925925 −51.9615 −1.70848
926926 0 0
927927 0 0
928928 0 0
929929 0 0 1.00000 00
−1.00000 π\pi
930930 0 0
931931 0 0
932932 0 0
933933 0 0
934934 0 0
935935 − 77.4597i − 2.53320i
936936 0 0
937937 0 0 1.00000 00
−1.00000 π\pi
938938 0 0
939939 0 0
940940 0 0
941941 −58.1378 −1.89524 −0.947619 0.319404i 0.896517π-0.896517\pi
−0.947619 + 0.319404i 0.896517π0.896517\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 −38.7298 −1.25458 −0.627291 0.778785i 0.715836π-0.715836\pi
−0.627291 + 0.778785i 0.715836π0.715836\pi
954954 0 0
955955 0 0
956956 0 0
957957 34.6410 1.11979
958958 0 0
959959 0 0
960960 0 0
961961 27.0000 0.870968
962962 0 0
963963 0 0
964964 0 0
965965 0 0
966966 0 0
967967 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
968968 0 0
969969 0 0
970970 0 0
971971 31.3050i 1.00462i 0.864687 + 0.502312i 0.167517π0.167517\pi
−0.864687 + 0.502312i 0.832483π0.832483\pi
972972 0 0
973973 0 0
974974 0 0
975975 − 30.0000i − 0.960769i
976976 0 0
977977 54.2218 1.73471 0.867354 0.497692i 0.165819π-0.165819\pi
0.867354 + 0.497692i 0.165819π0.165819\pi
978978 0 0
979979 0 0
980980 0 0
981981 0 0
982982 0 0
983983 7.74597i 0.247058i 0.992341 + 0.123529i 0.0394212π0.0394212\pi
−0.992341 + 0.123529i 0.960579π0.960579\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 26.8328 0.853234
990990 0 0
991991 − 62.0000i − 1.96949i −0.173990 0.984747i 0.555666π-0.555666\pi
0.173990 0.984747i 0.444334π-0.444334\pi
992992 0 0
993993 0 0
994994 0 0
995995 − 58.1378i − 1.84309i
996996 0 0
997997 45.0333 1.42622 0.713110 0.701052i 0.247286π-0.247286\pi
0.713110 + 0.701052i 0.247286π0.247286\pi
998998 0 0
999999 − 54.0000i − 1.70848i
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 960.2.m.a.479.1 8
3.2 odd 2 inner 960.2.m.a.479.4 yes 8
4.3 odd 2 inner 960.2.m.a.479.6 yes 8
5.4 even 2 inner 960.2.m.a.479.5 yes 8
8.3 odd 2 inner 960.2.m.a.479.3 yes 8
8.5 even 2 inner 960.2.m.a.479.8 yes 8
12.11 even 2 inner 960.2.m.a.479.7 yes 8
15.14 odd 2 inner 960.2.m.a.479.8 yes 8
20.19 odd 2 inner 960.2.m.a.479.2 yes 8
24.5 odd 2 inner 960.2.m.a.479.5 yes 8
24.11 even 2 inner 960.2.m.a.479.2 yes 8
40.19 odd 2 inner 960.2.m.a.479.7 yes 8
40.29 even 2 inner 960.2.m.a.479.4 yes 8
60.59 even 2 inner 960.2.m.a.479.3 yes 8
120.29 odd 2 CM 960.2.m.a.479.1 8
120.59 even 2 inner 960.2.m.a.479.6 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
960.2.m.a.479.1 8 1.1 even 1 trivial
960.2.m.a.479.1 8 120.29 odd 2 CM
960.2.m.a.479.2 yes 8 20.19 odd 2 inner
960.2.m.a.479.2 yes 8 24.11 even 2 inner
960.2.m.a.479.3 yes 8 8.3 odd 2 inner
960.2.m.a.479.3 yes 8 60.59 even 2 inner
960.2.m.a.479.4 yes 8 3.2 odd 2 inner
960.2.m.a.479.4 yes 8 40.29 even 2 inner
960.2.m.a.479.5 yes 8 5.4 even 2 inner
960.2.m.a.479.5 yes 8 24.5 odd 2 inner
960.2.m.a.479.6 yes 8 4.3 odd 2 inner
960.2.m.a.479.6 yes 8 120.59 even 2 inner
960.2.m.a.479.7 yes 8 12.11 even 2 inner
960.2.m.a.479.7 yes 8 40.19 odd 2 inner
960.2.m.a.479.8 yes 8 8.5 even 2 inner
960.2.m.a.479.8 yes 8 15.14 odd 2 inner