Properties

Label 960.3.c.i
Level $960$
Weight $3$
Character orbit 960.c
Analytic conductor $26.158$
Analytic rank $0$
Dimension $8$
CM discriminant -20
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [960,3,Mod(449,960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(960, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("960.449");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 960 = 2^{6} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 960.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.1581053786\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.40960000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 7x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: no (minimal twist has level 480)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{5} q^{3} + 5 \beta_1 q^{5} + ( - 2 \beta_{5} + \beta_{4} + \cdots + 2 \beta_{2}) q^{7}+ \cdots + (\beta_{6} - \beta_1) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_{5} q^{3} + 5 \beta_1 q^{5} + ( - 2 \beta_{5} + \beta_{4} + \cdots + 2 \beta_{2}) q^{7}+ \cdots + 12 \beta_{7} q^{89}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 152 q^{21} - 200 q^{25} + 40 q^{45} - 392 q^{49} + 232 q^{69} + 632 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 7x^{4} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{6} + 8\nu^{2} ) / 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -4\nu^{7} + \nu^{5} - 26\nu^{3} + 11\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 4\nu^{7} + \nu^{5} + 26\nu^{3} + 11\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 4\nu^{7} + 2\nu^{5} + 29\nu^{3} + 10\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -4\nu^{7} + 2\nu^{5} - 29\nu^{3} + 10\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 8\nu^{4} + 28 ) / 3 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( -4\nu^{6} - 24\nu^{2} \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{5} - \beta_{4} + 2\beta_{3} + 2\beta_{2} ) / 8 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{7} + 12\beta_1 ) / 8 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -\beta_{5} + \beta_{4} - \beta_{3} + \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 3\beta_{6} - 28 ) / 8 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 11\beta_{5} + 11\beta_{4} - 10\beta_{3} - 10\beta_{2} ) / 8 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -\beta_{7} - 9\beta_1 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 26\beta_{5} - 26\beta_{4} + 29\beta_{3} - 29\beta_{2} ) / 8 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/960\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(577\) \(641\) \(901\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
449.1
−0.437016 + 0.437016i
−0.437016 0.437016i
−1.14412 + 1.14412i
−1.14412 1.14412i
1.14412 + 1.14412i
1.14412 1.14412i
0.437016 + 0.437016i
0.437016 0.437016i
0 −2.99535 0.166925i 0 5.00000i 0 6.65841i 0 8.94427 + 1.00000i 0
449.2 0 −2.99535 + 0.166925i 0 5.00000i 0 6.65841i 0 8.94427 1.00000i 0
449.3 0 −0.166925 2.99535i 0 5.00000i 0 12.3153i 0 −8.94427 + 1.00000i 0
449.4 0 −0.166925 + 2.99535i 0 5.00000i 0 12.3153i 0 −8.94427 1.00000i 0
449.5 0 0.166925 2.99535i 0 5.00000i 0 12.3153i 0 −8.94427 1.00000i 0
449.6 0 0.166925 + 2.99535i 0 5.00000i 0 12.3153i 0 −8.94427 + 1.00000i 0
449.7 0 2.99535 0.166925i 0 5.00000i 0 6.65841i 0 8.94427 1.00000i 0
449.8 0 2.99535 + 0.166925i 0 5.00000i 0 6.65841i 0 8.94427 + 1.00000i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 449.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
20.d odd 2 1 CM by \(\Q(\sqrt{-5}) \)
3.b odd 2 1 inner
4.b odd 2 1 inner
5.b even 2 1 inner
12.b even 2 1 inner
15.d odd 2 1 inner
60.h even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 960.3.c.i 8
3.b odd 2 1 inner 960.3.c.i 8
4.b odd 2 1 inner 960.3.c.i 8
5.b even 2 1 inner 960.3.c.i 8
8.b even 2 1 480.3.c.a 8
8.d odd 2 1 480.3.c.a 8
12.b even 2 1 inner 960.3.c.i 8
15.d odd 2 1 inner 960.3.c.i 8
20.d odd 2 1 CM 960.3.c.i 8
24.f even 2 1 480.3.c.a 8
24.h odd 2 1 480.3.c.a 8
40.e odd 2 1 480.3.c.a 8
40.f even 2 1 480.3.c.a 8
60.h even 2 1 inner 960.3.c.i 8
120.i odd 2 1 480.3.c.a 8
120.m even 2 1 480.3.c.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
480.3.c.a 8 8.b even 2 1
480.3.c.a 8 8.d odd 2 1
480.3.c.a 8 24.f even 2 1
480.3.c.a 8 24.h odd 2 1
480.3.c.a 8 40.e odd 2 1
480.3.c.a 8 40.f even 2 1
480.3.c.a 8 120.i odd 2 1
480.3.c.a 8 120.m even 2 1
960.3.c.i 8 1.a even 1 1 trivial
960.3.c.i 8 3.b odd 2 1 inner
960.3.c.i 8 4.b odd 2 1 inner
960.3.c.i 8 5.b even 2 1 inner
960.3.c.i 8 12.b even 2 1 inner
960.3.c.i 8 15.d odd 2 1 inner
960.3.c.i 8 20.d odd 2 1 CM
960.3.c.i 8 60.h even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(960, [\chi])\):

\( T_{7}^{4} + 196T_{7}^{2} + 6724 \) Copy content Toggle raw display
\( T_{17} \) Copy content Toggle raw display
\( T_{19} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} - 158T^{4} + 6561 \) Copy content Toggle raw display
$5$ \( (T^{2} + 25)^{4} \) Copy content Toggle raw display
$7$ \( (T^{4} + 196 T^{2} + 6724)^{2} \) Copy content Toggle raw display
$11$ \( T^{8} \) Copy content Toggle raw display
$13$ \( T^{8} \) Copy content Toggle raw display
$17$ \( T^{8} \) Copy content Toggle raw display
$19$ \( T^{8} \) Copy content Toggle raw display
$23$ \( (T^{4} - 2116 T^{2} + 770884)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 2880)^{4} \) Copy content Toggle raw display
$31$ \( T^{8} \) Copy content Toggle raw display
$37$ \( T^{8} \) Copy content Toggle raw display
$41$ \( (T^{2} + 3844)^{4} \) Copy content Toggle raw display
$43$ \( (T^{4} + 7396 T^{2} + 4318084)^{2} \) Copy content Toggle raw display
$47$ \( (T^{4} - 8836 T^{2} + 19377604)^{2} \) Copy content Toggle raw display
$53$ \( T^{8} \) Copy content Toggle raw display
$59$ \( T^{8} \) Copy content Toggle raw display
$61$ \( (T^{2} - 11520)^{4} \) Copy content Toggle raw display
$67$ \( (T^{4} + 17956 T^{2} + 20052484)^{2} \) Copy content Toggle raw display
$71$ \( T^{8} \) Copy content Toggle raw display
$73$ \( T^{8} \) Copy content Toggle raw display
$79$ \( T^{8} \) Copy content Toggle raw display
$83$ \( (T^{4} - 27556 T^{2} + 64032004)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 11520)^{4} \) Copy content Toggle raw display
$97$ \( T^{8} \) Copy content Toggle raw display
show more
show less