Properties

Label 960.3.j.e
Level 960960
Weight 33
Character orbit 960.j
Analytic conductor 26.15826.158
Analytic rank 00
Dimension 88
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [960,3,Mod(319,960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(960, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("960.319");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 960=2635 960 = 2^{6} \cdot 3 \cdot 5
Weight: k k == 3 3
Character orbit: [χ][\chi] == 960.j (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 26.158105378626.1581053786
Analytic rank: 00
Dimension: 88
Coefficient field: 8.0.389136420864.4
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8+5x6+24x4+80x2+256 x^{8} + 5x^{6} + 24x^{4} + 80x^{2} + 256 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 211 2^{11}
Twist minimal: no (minimal twist has level 60)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q3+(β31)q5+(β43β1)q7+3q9+β6q11+(β5β3)q13+(β4+β2)q15+β7q17+(2β4+4β2+2β1)q19++3β6q99+O(q100) q + \beta_1 q^{3} + (\beta_{3} - 1) q^{5} + ( - \beta_{4} - 3 \beta_1) q^{7} + 3 q^{9} + \beta_{6} q^{11} + ( - \beta_{5} - \beta_{3}) q^{13} + (\beta_{4} + \beta_{2}) q^{15} + \beta_{7} q^{17} + ( - 2 \beta_{4} + 4 \beta_{2} + 2 \beta_1) q^{19}+ \cdots + 3 \beta_{6} q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q4q5+24q972q21+32q25+184q29256q4112q4524q49304q61+168q65+144q69+72q8124q85+560q89+O(q100) 8 q - 4 q^{5} + 24 q^{9} - 72 q^{21} + 32 q^{25} + 184 q^{29} - 256 q^{41} - 12 q^{45} - 24 q^{49} - 304 q^{61} + 168 q^{65} + 144 q^{69} + 72 q^{81} - 24 q^{85} + 560 q^{89}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x8+5x6+24x4+80x2+256 x^{8} + 5x^{6} + 24x^{4} + 80x^{2} + 256 : Copy content Toggle raw display

β1\beta_{1}== (ν5+ν3+4ν)/16 ( \nu^{5} + \nu^{3} + 4\nu ) / 16 Copy content Toggle raw display
β2\beta_{2}== (ν7+4ν65ν512ν424ν316ν64)/64 ( -\nu^{7} + 4\nu^{6} - 5\nu^{5} - 12\nu^{4} - 24\nu^{3} - 16\nu - 64 ) / 64 Copy content Toggle raw display
β3\beta_{3}== (ν7+4ν6+5ν5+20ν4+24ν3+32ν2+144ν+192)/64 ( \nu^{7} + 4\nu^{6} + 5\nu^{5} + 20\nu^{4} + 24\nu^{3} + 32\nu^{2} + 144\nu + 192 ) / 64 Copy content Toggle raw display
β4\beta_{4}== (ν73ν522ν38ν)/32 ( -\nu^{7} - 3\nu^{5} - 22\nu^{3} - 8\nu ) / 32 Copy content Toggle raw display
β5\beta_{5}== (ν74ν6+5ν520ν4+24ν332ν2+144ν192)/64 ( \nu^{7} - 4\nu^{6} + 5\nu^{5} - 20\nu^{4} + 24\nu^{3} - 32\nu^{2} + 144\nu - 192 ) / 64 Copy content Toggle raw display
β6\beta_{6}== (ν6+5ν4+40ν2+80)/8 ( \nu^{6} + 5\nu^{4} + 40\nu^{2} + 80 ) / 8 Copy content Toggle raw display
β7\beta_{7}== (5ν79ν5+24ν316ν)/32 ( -5\nu^{7} - 9\nu^{5} + 24\nu^{3} - 16\nu ) / 32 Copy content Toggle raw display
ν\nu== (β5+β4+β3β1)/4 ( \beta_{5} + \beta_{4} + \beta_{3} - \beta_1 ) / 4 Copy content Toggle raw display
ν2\nu^{2}== (β6+β5β34)/4 ( \beta_{6} + \beta_{5} - \beta_{3} - 4 ) / 4 Copy content Toggle raw display
ν3\nu^{3}== (β75β43β1)/4 ( \beta_{7} - 5\beta_{4} - 3\beta_1 ) / 4 Copy content Toggle raw display
ν4\nu^{4}== (β65β5+4β4+5β38β24β128)/4 ( -\beta_{6} - 5\beta_{5} + 4\beta_{4} + 5\beta_{3} - 8\beta_{2} - 4\beta _1 - 28 ) / 4 Copy content Toggle raw display
ν5\nu^{5}== (β74β5+β44β3+71β1)/4 ( -\beta_{7} - 4\beta_{5} + \beta_{4} - 4\beta_{3} + 71\beta_1 ) / 4 Copy content Toggle raw display
ν6\nu^{6}== (3β615β520β4+15β3+40β2+20β120)/4 ( -3\beta_{6} - 15\beta_{5} - 20\beta_{4} + 15\beta_{3} + 40\beta_{2} + 20\beta _1 - 20 ) / 4 Copy content Toggle raw display
ν7\nu^{7}== (19β7+4β529β4+4β3139β1)/4 ( -19\beta_{7} + 4\beta_{5} - 29\beta_{4} + 4\beta_{3} - 139\beta_1 ) / 4 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/960Z)×\left(\mathbb{Z}/960\mathbb{Z}\right)^\times.

nn 511511 577577 641641 901901
χ(n)\chi(n) 1-1 1-1 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
319.1
1.52274 1.29664i
1.52274 + 1.29664i
−0.656712 1.88911i
−0.656712 + 1.88911i
−1.52274 1.29664i
−1.52274 + 1.29664i
0.656712 1.88911i
0.656712 + 1.88911i
0 −1.73205 0 −4.27492 2.59328i 0 0.837253 0 3.00000 0
319.2 0 −1.73205 0 −4.27492 + 2.59328i 0 0.837253 0 3.00000 0
319.3 0 −1.73205 0 3.27492 3.77822i 0 9.55505 0 3.00000 0
319.4 0 −1.73205 0 3.27492 + 3.77822i 0 9.55505 0 3.00000 0
319.5 0 1.73205 0 −4.27492 2.59328i 0 −0.837253 0 3.00000 0
319.6 0 1.73205 0 −4.27492 + 2.59328i 0 −0.837253 0 3.00000 0
319.7 0 1.73205 0 3.27492 3.77822i 0 −9.55505 0 3.00000 0
319.8 0 1.73205 0 3.27492 + 3.77822i 0 −9.55505 0 3.00000 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 319.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
5.b even 2 1 inner
20.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 960.3.j.e 8
4.b odd 2 1 inner 960.3.j.e 8
5.b even 2 1 inner 960.3.j.e 8
8.b even 2 1 60.3.f.b 8
8.d odd 2 1 60.3.f.b 8
20.d odd 2 1 inner 960.3.j.e 8
24.f even 2 1 180.3.f.h 8
24.h odd 2 1 180.3.f.h 8
40.e odd 2 1 60.3.f.b 8
40.f even 2 1 60.3.f.b 8
40.i odd 4 2 300.3.c.f 8
40.k even 4 2 300.3.c.f 8
120.i odd 2 1 180.3.f.h 8
120.m even 2 1 180.3.f.h 8
120.q odd 4 2 900.3.c.r 8
120.w even 4 2 900.3.c.r 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
60.3.f.b 8 8.b even 2 1
60.3.f.b 8 8.d odd 2 1
60.3.f.b 8 40.e odd 2 1
60.3.f.b 8 40.f even 2 1
180.3.f.h 8 24.f even 2 1
180.3.f.h 8 24.h odd 2 1
180.3.f.h 8 120.i odd 2 1
180.3.f.h 8 120.m even 2 1
300.3.c.f 8 40.i odd 4 2
300.3.c.f 8 40.k even 4 2
900.3.c.r 8 120.q odd 4 2
900.3.c.r 8 120.w even 4 2
960.3.j.e 8 1.a even 1 1 trivial
960.3.j.e 8 4.b odd 2 1 inner
960.3.j.e 8 5.b even 2 1 inner
960.3.j.e 8 20.d odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S3new(960,[χ])S_{3}^{\mathrm{new}}(960, [\chi]):

T7492T72+64 T_{7}^{4} - 92T_{7}^{2} + 64 Copy content Toggle raw display
T114+348T112+24576 T_{11}^{4} + 348T_{11}^{2} + 24576 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 (T23)4 (T^{2} - 3)^{4} Copy content Toggle raw display
55 (T4+2T3++625)2 (T^{4} + 2 T^{3} + \cdots + 625)^{2} Copy content Toggle raw display
77 (T492T2+64)2 (T^{4} - 92 T^{2} + 64)^{2} Copy content Toggle raw display
1111 (T4+348T2+24576)2 (T^{4} + 348 T^{2} + 24576)^{2} Copy content Toggle raw display
1313 (T4+84T2+1536)2 (T^{4} + 84 T^{2} + 1536)^{2} Copy content Toggle raw display
1717 (T4+1044T2+221184)2 (T^{4} + 1044 T^{2} + 221184)^{2} Copy content Toggle raw display
1919 (T4+1008T2+221184)2 (T^{4} + 1008 T^{2} + 221184)^{2} Copy content Toggle raw display
2323 (T4368T2+1024)2 (T^{4} - 368 T^{2} + 1024)^{2} Copy content Toggle raw display
2929 (T246T+16)4 (T^{2} - 46 T + 16)^{4} Copy content Toggle raw display
3131 (T4+2304T2+393216)2 (T^{4} + 2304 T^{2} + 393216)^{2} Copy content Toggle raw display
3737 (T4+756T2+124416)2 (T^{4} + 756 T^{2} + 124416)^{2} Copy content Toggle raw display
4141 (T2+64T1028)4 (T^{2} + 64 T - 1028)^{4} Copy content Toggle raw display
4343 (T42528T2+1364224)2 (T^{4} - 2528 T^{2} + 1364224)^{2} Copy content Toggle raw display
4747 (T43296T2+614656)2 (T^{4} - 3296 T^{2} + 614656)^{2} Copy content Toggle raw display
5353 (T4+756T2+124416)2 (T^{4} + 756 T^{2} + 124416)^{2} Copy content Toggle raw display
5959 (T4+16668T2+69033984)2 (T^{4} + 16668 T^{2} + 69033984)^{2} Copy content Toggle raw display
6161 (T+38)8 (T + 38)^{8} Copy content Toggle raw display
6767 (T49392T2+7573504)2 (T^{4} - 9392 T^{2} + 7573504)^{2} Copy content Toggle raw display
7171 (T4+17136T2+884736)2 (T^{4} + 17136 T^{2} + 884736)^{2} Copy content Toggle raw display
7373 (T4+4176T2+3538944)2 (T^{4} + 4176 T^{2} + 3538944)^{2} Copy content Toggle raw display
7979 (T4+2304T2+393216)2 (T^{4} + 2304 T^{2} + 393216)^{2} Copy content Toggle raw display
8383 (T44064T2+2027776)2 (T^{4} - 4064 T^{2} + 2027776)^{2} Copy content Toggle raw display
8989 (T2140T+3988)4 (T^{2} - 140 T + 3988)^{4} Copy content Toggle raw display
9797 (T4+45888T2+495550464)2 (T^{4} + 45888 T^{2} + 495550464)^{2} Copy content Toggle raw display
show more
show less