Properties

Label 960.3.p.b.799.8
Level 960960
Weight 33
Character 960.799
Analytic conductor 26.15826.158
Analytic rank 00
Dimension 88
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [960,3,Mod(799,960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(960, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("960.799");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 960=2635 960 = 2^{6} \cdot 3 \cdot 5
Weight: k k == 3 3
Character orbit: [χ][\chi] == 960.p (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 26.158105378626.1581053786
Analytic rank: 00
Dimension: 88
Coefficient field: 8.0.49787136.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8+3x6+5x4+12x2+16 x^{8} + 3x^{6} + 5x^{4} + 12x^{2} + 16 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 28 2^{8}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 799.8
Root 0.2284251.39564i-0.228425 - 1.39564i of defining polynomial
Character χ\chi == 960.799
Dual form 960.3.p.b.799.4

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+1.73205iq3+(4.834651.27520i)q5+7.58258q73.00000q918.4249q11+13.1334q13+(2.20871+8.37386i)q15+28.7477iq17+20.7846q19+13.1334iq2124.0000q23+(21.747712.3303i)q255.19615iq27+18.2342iq29+31.4955iq3131.9129iq33+(36.65919.66930i)q35+18.6156q37+22.7477iq39+72.9909q415.48220iq43+(14.5040+3.82560i)q45+30.9909q47+8.49545q4949.7925q51+11.1153q53+(89.0780+23.4955i)q55+36.0000iq5728.2451q59116.032iq6122.7477q63+(63.495516.7477i)q6599.5850iq6741.5692iq69+54.9909iq71+77.6697iq73+(21.3567+37.6682i)q75139.708q77+150.486iq79+9.00000q81+40.1232iq83+(36.6591+138.985i)q8531.5826q87+91.9818q89+99.5850q9154.5517q93+(100.48626.5045i)q9539.8258iq97+55.2747q99+O(q100)q+1.73205i q^{3} +(4.83465 - 1.27520i) q^{5} +7.58258 q^{7} -3.00000 q^{9} -18.4249 q^{11} +13.1334 q^{13} +(2.20871 + 8.37386i) q^{15} +28.7477i q^{17} +20.7846 q^{19} +13.1334i q^{21} -24.0000 q^{23} +(21.7477 - 12.3303i) q^{25} -5.19615i q^{27} +18.2342i q^{29} +31.4955i q^{31} -31.9129i q^{33} +(36.6591 - 9.66930i) q^{35} +18.6156 q^{37} +22.7477i q^{39} +72.9909 q^{41} -5.48220i q^{43} +(-14.5040 + 3.82560i) q^{45} +30.9909 q^{47} +8.49545 q^{49} -49.7925 q^{51} +11.1153 q^{53} +(-89.0780 + 23.4955i) q^{55} +36.0000i q^{57} -28.2451 q^{59} -116.032i q^{61} -22.7477 q^{63} +(63.4955 - 16.7477i) q^{65} -99.5850i q^{67} -41.5692i q^{69} +54.9909i q^{71} +77.6697i q^{73} +(21.3567 + 37.6682i) q^{75} -139.708 q^{77} +150.486i q^{79} +9.00000 q^{81} +40.1232i q^{83} +(36.6591 + 138.985i) q^{85} -31.5826 q^{87} +91.9818 q^{89} +99.5850 q^{91} -54.5517 q^{93} +(100.486 - 26.5045i) q^{95} -39.8258i q^{97} +55.2747 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+24q724q9+36q15192q23+64q25+144q41192q47152q49456q5572q63+288q65+72q81216q87144q89+144q95+O(q100) 8 q + 24 q^{7} - 24 q^{9} + 36 q^{15} - 192 q^{23} + 64 q^{25} + 144 q^{41} - 192 q^{47} - 152 q^{49} - 456 q^{55} - 72 q^{63} + 288 q^{65} + 72 q^{81} - 216 q^{87} - 144 q^{89} + 144 q^{95}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/960Z)×\left(\mathbb{Z}/960\mathbb{Z}\right)^\times.

nn 511511 577577 641641 901901
χ(n)\chi(n) 1-1 1-1 11 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 1.73205i 0.577350i
44 0 0
55 4.83465 1.27520i 0.966930 0.255040i
66 0 0
77 7.58258 1.08323 0.541613 0.840628i 0.317814π-0.317814\pi
0.541613 + 0.840628i 0.317814π0.317814\pi
88 0 0
99 −3.00000 −0.333333
1010 0 0
1111 −18.4249 −1.67499 −0.837496 0.546444i 0.815981π-0.815981\pi
−0.837496 + 0.546444i 0.815981π0.815981\pi
1212 0 0
1313 13.1334 1.01026 0.505131 0.863043i 0.331444π-0.331444\pi
0.505131 + 0.863043i 0.331444π0.331444\pi
1414 0 0
1515 2.20871 + 8.37386i 0.147247 + 0.558258i
1616 0 0
1717 28.7477i 1.69104i 0.533942 + 0.845521i 0.320710π0.320710\pi
−0.533942 + 0.845521i 0.679290π0.679290\pi
1818 0 0
1919 20.7846 1.09393 0.546963 0.837157i 0.315784π-0.315784\pi
0.546963 + 0.837157i 0.315784π0.315784\pi
2020 0 0
2121 13.1334i 0.625400i
2222 0 0
2323 −24.0000 −1.04348 −0.521739 0.853105i 0.674717π-0.674717\pi
−0.521739 + 0.853105i 0.674717π0.674717\pi
2424 0 0
2525 21.7477 12.3303i 0.869909 0.493212i
2626 0 0
2727 5.19615i 0.192450i
2828 0 0
2929 18.2342i 0.628766i 0.949296 + 0.314383i 0.101798π0.101798\pi
−0.949296 + 0.314383i 0.898202π0.898202\pi
3030 0 0
3131 31.4955i 1.01598i 0.861362 + 0.507991i 0.169612π0.169612\pi
−0.861362 + 0.507991i 0.830388π0.830388\pi
3232 0 0
3333 31.9129i 0.967057i
3434 0 0
3535 36.6591 9.66930i 1.04740 0.276266i
3636 0 0
3737 18.6156 0.503125 0.251562 0.967841i 0.419056π-0.419056\pi
0.251562 + 0.967841i 0.419056π0.419056\pi
3838 0 0
3939 22.7477i 0.583275i
4040 0 0
4141 72.9909 1.78027 0.890133 0.455701i 0.150611π-0.150611\pi
0.890133 + 0.455701i 0.150611π0.150611\pi
4242 0 0
4343 5.48220i 0.127493i −0.997966 0.0637465i 0.979695π-0.979695\pi
0.997966 0.0637465i 0.0203049π-0.0203049\pi
4444 0 0
4545 −14.5040 + 3.82560i −0.322310 + 0.0850134i
4646 0 0
4747 30.9909 0.659381 0.329691 0.944089i 0.393056π-0.393056\pi
0.329691 + 0.944089i 0.393056π0.393056\pi
4848 0 0
4949 8.49545 0.173377
5050 0 0
5151 −49.7925 −0.976324
5252 0 0
5353 11.1153 0.209723 0.104861 0.994487i 0.466560π-0.466560\pi
0.104861 + 0.994487i 0.466560π0.466560\pi
5454 0 0
5555 −89.0780 + 23.4955i −1.61960 + 0.427190i
5656 0 0
5757 36.0000i 0.631579i
5858 0 0
5959 −28.2451 −0.478731 −0.239365 0.970930i 0.576939π-0.576939\pi
−0.239365 + 0.970930i 0.576939π0.576939\pi
6060 0 0
6161 116.032i 1.90216i −0.308947 0.951079i 0.599977π-0.599977\pi
0.308947 0.951079i 0.400023π-0.400023\pi
6262 0 0
6363 −22.7477 −0.361075
6464 0 0
6565 63.4955 16.7477i 0.976853 0.257657i
6666 0 0
6767 99.5850i 1.48634i −0.669100 0.743172i 0.733320π-0.733320\pi
0.669100 0.743172i 0.266680π-0.266680\pi
6868 0 0
6969 41.5692i 0.602452i
7070 0 0
7171 54.9909i 0.774520i 0.921971 + 0.387260i 0.126578π0.126578\pi
−0.921971 + 0.387260i 0.873422π0.873422\pi
7272 0 0
7373 77.6697i 1.06397i 0.846754 + 0.531984i 0.178553π0.178553\pi
−0.846754 + 0.531984i 0.821447π0.821447\pi
7474 0 0
7575 21.3567 + 37.6682i 0.284756 + 0.502242i
7676 0 0
7777 −139.708 −1.81439
7878 0 0
7979 150.486i 1.90489i 0.304710 + 0.952445i 0.401441π0.401441\pi
−0.304710 + 0.952445i 0.598559π0.598559\pi
8080 0 0
8181 9.00000 0.111111
8282 0 0
8383 40.1232i 0.483412i 0.970349 + 0.241706i 0.0777070π0.0777070\pi
−0.970349 + 0.241706i 0.922293π0.922293\pi
8484 0 0
8585 36.6591 + 138.985i 0.431284 + 1.63512i
8686 0 0
8787 −31.5826 −0.363018
8888 0 0
8989 91.9818 1.03350 0.516752 0.856135i 0.327141π-0.327141\pi
0.516752 + 0.856135i 0.327141π0.327141\pi
9090 0 0
9191 99.5850 1.09434
9292 0 0
9393 −54.5517 −0.586578
9494 0 0
9595 100.486 26.5045i 1.05775 0.278995i
9696 0 0
9797 39.8258i 0.410575i −0.978702 0.205287i 0.934187π-0.934187\pi
0.978702 0.205287i 0.0658129π-0.0658129\pi
9898 0 0
9999 55.2747 0.558331
100100 0 0
101101 33.1552i 0.328269i −0.986438 0.164135i 0.947517π-0.947517\pi
0.986438 0.164135i 0.0524832π-0.0524832\pi
102102 0 0
103103 132.730 1.28864 0.644318 0.764758i 0.277141π-0.277141\pi
0.644318 + 0.764758i 0.277141π0.277141\pi
104104 0 0
105105 16.7477 + 63.4955i 0.159502 + 0.604719i
106106 0 0
107107 92.3550i 0.863131i 0.902082 + 0.431566i 0.142039π0.142039\pi
−0.902082 + 0.431566i 0.857961π0.857961\pi
108108 0 0
109109 120.370i 1.10431i 0.833742 + 0.552154i 0.186194π0.186194\pi
−0.833742 + 0.552154i 0.813806π0.813806\pi
110110 0 0
111111 32.2432i 0.290479i
112112 0 0
113113 110.243i 0.975603i 0.872954 + 0.487802i 0.162201π0.162201\pi
−0.872954 + 0.487802i 0.837799π0.837799\pi
114114 0 0
115115 −116.032 + 30.6048i −1.00897 + 0.266129i
116116 0 0
117117 −39.4002 −0.336754
118118 0 0
119119 217.982i 1.83178i
120120 0 0
121121 218.477 1.80560
122122 0 0
123123 126.424i 1.02784i
124124 0 0
125125 89.4191 87.3454i 0.715353 0.698764i
126126 0 0
127127 −170.573 −1.34310 −0.671549 0.740960i 0.734371π-0.734371\pi
−0.671549 + 0.740960i 0.734371π0.734371\pi
128128 0 0
129129 9.49545 0.0736082
130130 0 0
131131 −107.427 −0.820053 −0.410027 0.912074i 0.634481π-0.634481\pi
−0.410027 + 0.912074i 0.634481π0.634481\pi
132132 0 0
133133 157.601 1.18497
134134 0 0
135135 −6.62614 25.1216i −0.0490825 0.186086i
136136 0 0
137137 124.225i 0.906752i −0.891319 0.453376i 0.850220π-0.850220\pi
0.891319 0.453376i 0.149780π-0.149780\pi
138138 0 0
139139 −111.694 −0.803551 −0.401776 0.915738i 0.631607π-0.631607\pi
−0.401776 + 0.915738i 0.631607π0.631607\pi
140140 0 0
141141 53.6778i 0.380694i
142142 0 0
143143 −241.982 −1.69218
144144 0 0
145145 23.2523 + 88.1561i 0.160361 + 0.607973i
146146 0 0
147147 14.7146i 0.100099i
148148 0 0
149149 59.8034i 0.401365i −0.979656 0.200683i 0.935684π-0.935684\pi
0.979656 0.200683i 0.0643160π-0.0643160\pi
150150 0 0
151151 64.5045i 0.427182i −0.976923 0.213591i 0.931484π-0.931484\pi
0.976923 0.213591i 0.0685161π-0.0685161\pi
152152 0 0
153153 86.2432i 0.563681i
154154 0 0
155155 40.1630 + 152.270i 0.259116 + 0.982384i
156156 0 0
157157 73.4376 0.467756 0.233878 0.972266i 0.424858π-0.424858\pi
0.233878 + 0.972266i 0.424858π0.424858\pi
158158 0 0
159159 19.2523i 0.121083i
160160 0 0
161161 −181.982 −1.13032
162162 0 0
163163 158.745i 0.973896i −0.873431 0.486948i 0.838110π-0.838110\pi
0.873431 0.486948i 0.161890π-0.161890\pi
164164 0 0
165165 −40.6953 154.288i −0.246638 0.935077i
166166 0 0
167167 −119.477 −0.715433 −0.357716 0.933830i 0.616445π-0.616445\pi
−0.357716 + 0.933830i 0.616445π0.616445\pi
168168 0 0
169169 3.48636 0.0206294
170170 0 0
171171 −62.3538 −0.364642
172172 0 0
173173 −46.9005 −0.271101 −0.135551 0.990770i 0.543280π-0.543280\pi
−0.135551 + 0.990770i 0.543280π0.543280\pi
174174 0 0
175175 164.904 93.4955i 0.942307 0.534260i
176176 0 0
177177 48.9220i 0.276395i
178178 0 0
179179 144.277 0.806015 0.403008 0.915197i 0.367965π-0.367965\pi
0.403008 + 0.915197i 0.367965π0.367965\pi
180180 0 0
181181 170.615i 0.942624i 0.881967 + 0.471312i 0.156219π0.156219\pi
−0.881967 + 0.471312i 0.843781π0.843781\pi
182182 0 0
183183 200.973 1.09821
184184 0 0
185185 90.0000 23.7386i 0.486486 0.128317i
186186 0 0
187187 529.674i 2.83248i
188188 0 0
189189 39.4002i 0.208467i
190190 0 0
191191 53.0091i 0.277535i 0.990325 + 0.138767i 0.0443140π0.0443140\pi
−0.990325 + 0.138767i 0.955686π0.955686\pi
192192 0 0
193193 272.835i 1.41365i −0.707387 0.706826i 0.750126π-0.750126\pi
0.707387 0.706826i 0.249874π-0.249874\pi
194194 0 0
195195 29.0079 + 109.977i 0.148759 + 0.563986i
196196 0 0
197197 −333.547 −1.69313 −0.846566 0.532284i 0.821334π-0.821334\pi
−0.846566 + 0.532284i 0.821334π0.821334\pi
198198 0 0
199199 73.4773i 0.369233i −0.982811 0.184616i 0.940896π-0.940896\pi
0.982811 0.184616i 0.0591042π-0.0591042\pi
200200 0 0
201201 172.486 0.858141
202202 0 0
203203 138.262i 0.681095i
204204 0 0
205205 352.886 93.0780i 1.72139 0.454039i
206206 0 0
207207 72.0000 0.347826
208208 0 0
209209 −382.955 −1.83232
210210 0 0
211211 286.647 1.35851 0.679257 0.733900i 0.262302π-0.262302\pi
0.679257 + 0.733900i 0.262302π0.262302\pi
212212 0 0
213213 −95.2470 −0.447169
214214 0 0
215215 −6.99091 26.5045i −0.0325159 0.123277i
216216 0 0
217217 238.817i 1.10054i
218218 0 0
219219 −134.528 −0.614282
220220 0 0
221221 377.556i 1.70840i
222222 0 0
223223 −60.7295 −0.272330 −0.136165 0.990686i 0.543478π-0.543478\pi
−0.136165 + 0.990686i 0.543478π0.543478\pi
224224 0 0
225225 −65.2432 + 36.9909i −0.289970 + 0.164404i
226226 0 0
227227 328.216i 1.44588i −0.690909 0.722942i 0.742789π-0.742789\pi
0.690909 0.722942i 0.257211π-0.257211\pi
228228 0 0
229229 103.018i 0.449859i −0.974375 0.224929i 0.927785π-0.927785\pi
0.974375 0.224929i 0.0722151π-0.0722151\pi
230230 0 0
231231 241.982i 1.04754i
232232 0 0
233233 249.234i 1.06967i 0.844955 + 0.534837i 0.179627π0.179627\pi
−0.844955 + 0.534837i 0.820373π0.820373\pi
234234 0 0
235235 149.830 39.5196i 0.637576 0.168169i
236236 0 0
237237 −260.650 −1.09979
238238 0 0
239239 272.973i 1.14215i −0.820900 0.571073i 0.806527π-0.806527\pi
0.820900 0.571073i 0.193473π-0.193473\pi
240240 0 0
241241 −315.945 −1.31098 −0.655488 0.755205i 0.727537π-0.727537\pi
−0.655488 + 0.755205i 0.727537π0.727537\pi
242242 0 0
243243 15.5885i 0.0641500i
244244 0 0
245245 41.0726 10.8334i 0.167643 0.0442180i
246246 0 0
247247 272.973 1.10515
248248 0 0
249249 −69.4955 −0.279098
250250 0 0
251251 125.781 0.501118 0.250559 0.968101i 0.419386π-0.419386\pi
0.250559 + 0.968101i 0.419386π0.419386\pi
252252 0 0
253253 442.198 1.74782
254254 0 0
255255 −240.730 + 63.4955i −0.944037 + 0.249002i
256256 0 0
257257 149.270i 0.580819i −0.956902 0.290409i 0.906208π-0.906208\pi
0.956902 0.290409i 0.0937915π-0.0937915\pi
258258 0 0
259259 141.154 0.544997
260260 0 0
261261 54.7026i 0.209589i
262262 0 0
263263 96.5227 0.367007 0.183503 0.983019i 0.441256π-0.441256\pi
0.183503 + 0.983019i 0.441256π0.441256\pi
264264 0 0
265265 53.7386 14.1742i 0.202787 0.0534877i
266266 0 0
267267 159.317i 0.596694i
268268 0 0
269269 361.752i 1.34480i −0.740186 0.672402i 0.765263π-0.765263\pi
0.740186 0.672402i 0.234737π-0.234737\pi
270270 0 0
271271 145.477i 0.536816i −0.963305 0.268408i 0.913502π-0.913502\pi
0.963305 0.268408i 0.0864976π-0.0864976\pi
272272 0 0
273273 172.486i 0.631818i
274274 0 0
275275 −400.700 + 227.185i −1.45709 + 0.826126i
276276 0 0
277277 −102.659 −0.370612 −0.185306 0.982681i 0.559328π-0.559328\pi
−0.185306 + 0.982681i 0.559328π0.559328\pi
278278 0 0
279279 94.4864i 0.338661i
280280 0 0
281281 −107.009 −0.380815 −0.190408 0.981705i 0.560981π-0.560981\pi
−0.190408 + 0.981705i 0.560981π0.560981\pi
282282 0 0
283283 239.834i 0.847470i −0.905786 0.423735i 0.860719π-0.860719\pi
0.905786 0.423735i 0.139281π-0.139281\pi
284284 0 0
285285 45.9072 + 174.047i 0.161078 + 0.610693i
286286 0 0
287287 553.459 1.92843
288288 0 0
289289 −537.432 −1.85963
290290 0 0
291291 68.9802 0.237045
292292 0 0
293293 −11.6559 −0.0397813 −0.0198906 0.999802i 0.506332π-0.506332\pi
−0.0198906 + 0.999802i 0.506332π0.506332\pi
294294 0 0
295295 −136.555 + 36.0182i −0.462899 + 0.122096i
296296 0 0
297297 95.7386i 0.322352i
298298 0 0
299299 −315.202 −1.05419
300300 0 0
301301 41.5692i 0.138104i
302302 0 0
303303 57.4265 0.189526
304304 0 0
305305 −147.964 560.973i −0.485127 1.83925i
306306 0 0
307307 289.840i 0.944105i −0.881570 0.472053i 0.843513π-0.843513\pi
0.881570 0.472053i 0.156487π-0.156487\pi
308308 0 0
309309 229.894i 0.743995i
310310 0 0
311311 37.9818i 0.122128i −0.998134 0.0610640i 0.980551π-0.980551\pi
0.998134 0.0610640i 0.0194494π-0.0194494\pi
312312 0 0
313313 326.120i 1.04192i −0.853582 0.520958i 0.825575π-0.825575\pi
0.853582 0.520958i 0.174425π-0.174425\pi
314314 0 0
315315 −109.977 + 29.0079i −0.349134 + 0.0920886i
316316 0 0
317317 −264.869 −0.835548 −0.417774 0.908551i 0.637190π-0.637190\pi
−0.417774 + 0.908551i 0.637190π0.637190\pi
318318 0 0
319319 335.964i 1.05318i
320320 0 0
321321 −159.964 −0.498329
322322 0 0
323323 597.510i 1.84988i
324324 0 0
325325 285.622 161.939i 0.878836 0.498273i
326326 0 0
327327 −208.486 −0.637573
328328 0 0
329329 234.991 0.714258
330330 0 0
331331 −77.8950 −0.235332 −0.117666 0.993053i 0.537541π-0.537541\pi
−0.117666 + 0.993053i 0.537541π0.537541\pi
332332 0 0
333333 −55.8468 −0.167708
334334 0 0
335335 −126.991 481.459i −0.379077 1.43719i
336336 0 0
337337 77.9455i 0.231292i 0.993290 + 0.115646i 0.0368938π0.0368938\pi
−0.993290 + 0.115646i 0.963106π0.963106\pi
338338 0 0
339339 −190.947 −0.563265
340340 0 0
341341 580.301i 1.70176i
342342 0 0
343343 −307.129 −0.895419
344344 0 0
345345 −53.0091 200.973i −0.153650 0.582530i
346346 0 0
347347 342.676i 0.987538i −0.869593 0.493769i 0.835619π-0.835619\pi
0.869593 0.493769i 0.164381π-0.164381\pi
348348 0 0
349349 365.447i 1.04713i 0.851987 + 0.523563i 0.175398π0.175398\pi
−0.851987 + 0.523563i 0.824602π0.824602\pi
350350 0 0
351351 68.2432i 0.194425i
352352 0 0
353353 183.289i 0.519231i −0.965712 0.259616i 0.916404π-0.916404\pi
0.965712 0.259616i 0.0835959π-0.0835959\pi
354354 0 0
355355 70.1244 + 265.862i 0.197534 + 0.748907i
356356 0 0
357357 −377.556 −1.05758
358358 0 0
359359 509.945i 1.42046i −0.703969 0.710230i 0.748591π-0.748591\pi
0.703969 0.710230i 0.251409π-0.251409\pi
360360 0 0
361361 71.0000 0.196676
362362 0 0
363363 378.414i 1.04246i
364364 0 0
365365 99.0444 + 375.506i 0.271355 + 1.02878i
366366 0 0
367367 30.1235 0.0820803 0.0410402 0.999157i 0.486933π-0.486933\pi
0.0410402 + 0.999157i 0.486933π0.486933\pi
368368 0 0
369369 −218.973 −0.593422
370370 0 0
371371 84.2826 0.227177
372372 0 0
373373 602.873 1.61628 0.808141 0.588989i 0.200474π-0.200474\pi
0.808141 + 0.588989i 0.200474π0.200474\pi
374374 0 0
375375 151.287 + 154.878i 0.403431 + 0.413009i
376376 0 0
377377 239.477i 0.635218i
378378 0 0
379379 336.892 0.888896 0.444448 0.895805i 0.353400π-0.353400\pi
0.444448 + 0.895805i 0.353400π0.353400\pi
380380 0 0
381381 295.442i 0.775438i
382382 0 0
383383 270.468 0.706183 0.353092 0.935589i 0.385130π-0.385130\pi
0.353092 + 0.935589i 0.385130π0.385130\pi
384384 0 0
385385 −675.441 + 178.156i −1.75439 + 0.462743i
386386 0 0
387387 16.4466i 0.0424977i
388388 0 0
389389 721.956i 1.85593i 0.372670 + 0.927964i 0.378442π0.378442\pi
−0.372670 + 0.927964i 0.621558π0.621558\pi
390390 0 0
391391 689.945i 1.76457i
392392 0 0
393393 186.069i 0.473458i
394394 0 0
395395 191.900 + 727.549i 0.485824 + 1.84190i
396396 0 0
397397 −486.841 −1.22630 −0.613150 0.789966i 0.710098π-0.710098\pi
−0.613150 + 0.789966i 0.710098π0.710098\pi
398398 0 0
399399 272.973i 0.684142i
400400 0 0
401401 −688.955 −1.71809 −0.859046 0.511899i 0.828942π-0.828942\pi
−0.859046 + 0.511899i 0.828942π0.828942\pi
402402 0 0
403403 413.643i 1.02641i
404404 0 0
405405 43.5119 11.4768i 0.107437 0.0283378i
406406 0 0
407407 −342.991 −0.842730
408408 0 0
409409 412.468 1.00848 0.504240 0.863564i 0.331773π-0.331773\pi
0.504240 + 0.863564i 0.331773π0.331773\pi
410410 0 0
411411 215.164 0.523513
412412 0 0
413413 −214.171 −0.518573
414414 0 0
415415 51.1652 + 193.982i 0.123290 + 0.467426i
416416 0 0
417417 193.459i 0.463931i
418418 0 0
419419 189.279 0.451739 0.225869 0.974158i 0.427478π-0.427478\pi
0.225869 + 0.974158i 0.427478π0.427478\pi
420420 0 0
421421 593.172i 1.40896i 0.709724 + 0.704480i 0.248820π0.248820\pi
−0.709724 + 0.704480i 0.751180π0.751180\pi
422422 0 0
423423 −92.9727 −0.219794
424424 0 0
425425 354.468 + 625.198i 0.834043 + 1.47105i
426426 0 0
427427 879.819i 2.06047i
428428 0 0
429429 419.125i 0.976981i
430430 0 0
431431 411.027i 0.953660i 0.878996 + 0.476830i 0.158214π0.158214\pi
−0.878996 + 0.476830i 0.841786π0.841786\pi
432432 0 0
433433 159.303i 0.367905i 0.982935 + 0.183953i 0.0588893π0.0588893\pi
−0.982935 + 0.183953i 0.941111π0.941111\pi
434434 0 0
435435 −152.691 + 40.2741i −0.351013 + 0.0925842i
436436 0 0
437437 −498.831 −1.14149
438438 0 0
439439 409.441i 0.932667i 0.884609 + 0.466334i 0.154425π0.154425\pi
−0.884609 + 0.466334i 0.845575π0.845575\pi
440440 0 0
441441 −25.4864 −0.0577922
442442 0 0
443443 13.0140i 0.0293770i 0.999892 + 0.0146885i 0.00467566π0.00467566\pi
−0.999892 + 0.0146885i 0.995324π0.995324\pi
444444 0 0
445445 444.700 117.295i 0.999326 0.263585i
446446 0 0
447447 103.583 0.231728
448448 0 0
449449 450.000 1.00223 0.501114 0.865382i 0.332924π-0.332924\pi
0.501114 + 0.865382i 0.332924π0.332924\pi
450450 0 0
451451 −1344.85 −2.98193
452452 0 0
453453 111.725 0.246634
454454 0 0
455455 481.459 126.991i 1.05815 0.279101i
456456 0 0
457457 642.744i 1.40644i −0.710971 0.703221i 0.751744π-0.751744\pi
0.710971 0.703221i 0.248256π-0.248256\pi
458458 0 0
459459 149.378 0.325441
460460 0 0
461461 534.894i 1.16029i −0.814513 0.580146i 0.802996π-0.802996\pi
0.814513 0.580146i 0.197004π-0.197004\pi
462462 0 0
463463 455.023 0.982772 0.491386 0.870942i 0.336490π-0.336490\pi
0.491386 + 0.870942i 0.336490π0.336490\pi
464464 0 0
465465 −263.739 + 69.5644i −0.567180 + 0.149601i
466466 0 0
467467 580.523i 1.24309i −0.783378 0.621545i 0.786505π-0.786505\pi
0.783378 0.621545i 0.213495π-0.213495\pi
468468 0 0
469469 755.111i 1.61005i
470470 0 0
471471 127.198i 0.270059i
472472 0 0
473473 101.009i 0.213550i
474474 0 0
475475 452.018 256.281i 0.951617 0.539538i
476476 0 0
477477 −33.3459 −0.0699076
478478 0 0
479479 320.036i 0.668134i −0.942549 0.334067i 0.891579π-0.891579\pi
0.942549 0.334067i 0.108421π-0.108421\pi
480480 0 0
481481 244.486 0.508288
482482 0 0
483483 315.202i 0.652592i
484484 0 0
485485 −50.7858 192.544i −0.104713 0.396997i
486486 0 0
487487 147.757 0.303402 0.151701 0.988426i 0.451525π-0.451525\pi
0.151701 + 0.988426i 0.451525π0.451525\pi
488488 0 0
489489 274.955 0.562279
490490 0 0
491491 −207.775 −0.423167 −0.211583 0.977360i 0.567862π-0.567862\pi
−0.211583 + 0.977360i 0.567862π0.567862\pi
492492 0 0
493493 −524.192 −1.06327
494494 0 0
495495 267.234 70.4864i 0.539867 0.142397i
496496 0 0
497497 416.973i 0.838979i
498498 0 0
499499 77.8950 0.156102 0.0780511 0.996949i 0.475130π-0.475130\pi
0.0780511 + 0.996949i 0.475130π0.475130\pi
500500 0 0
501501 206.941i 0.413055i
502502 0 0
503503 −243.027 −0.483156 −0.241578 0.970381i 0.577665π-0.577665\pi
−0.241578 + 0.970381i 0.577665π0.577665\pi
504504 0 0
505505 −42.2795 160.294i −0.0837219 0.317414i
506506 0 0
507507 6.03856i 0.0119104i
508508 0 0
509509 411.331i 0.808116i −0.914733 0.404058i 0.867599π-0.867599\pi
0.914733 0.404058i 0.132401π-0.132401\pi
510510 0 0
511511 588.936i 1.15252i
512512 0 0
513513 108.000i 0.210526i
514514 0 0
515515 641.701 169.257i 1.24602 0.328654i
516516 0 0
517517 −571.005 −1.10446
518518 0 0
519519 81.2341i 0.156520i
520520 0 0
521521 −247.045 −0.474176 −0.237088 0.971488i 0.576193π-0.576193\pi
−0.237088 + 0.971488i 0.576193π0.576193\pi
522522 0 0
523523 465.271i 0.889619i −0.895625 0.444810i 0.853271π-0.853271\pi
0.895625 0.444810i 0.146729π-0.146729\pi
524524 0 0
525525 161.939 + 285.622i 0.308455 + 0.544041i
526526 0 0
527527 −905.423 −1.71807
528528 0 0
529529 47.0000 0.0888469
530530 0 0
531531 84.7353 0.159577
532532 0 0
533533 958.619 1.79854
534534 0 0
535535 117.771 + 446.505i 0.220133 + 0.834588i
536536 0 0
537537 249.895i 0.465353i
538538 0 0
539539 −156.528 −0.290404
540540 0 0
541541 494.493i 0.914034i 0.889458 + 0.457017i 0.151082π0.151082\pi
−0.889458 + 0.457017i 0.848918π0.848918\pi
542542 0 0
543543 −295.514 −0.544224
544544 0 0
545545 153.495 + 581.945i 0.281643 + 1.06779i
546546 0 0
547547 84.5215i 0.154518i 0.997011 + 0.0772591i 0.0246169π0.0246169\pi
−0.997011 + 0.0772591i 0.975383π0.975383\pi
548548 0 0
549549 348.095i 0.634053i
550550 0 0
551551 378.991i 0.687824i
552552 0 0
553553 1141.07i 2.06343i
554554 0 0
555555 41.1165 + 155.885i 0.0740838 + 0.280873i
556556 0 0
557557 −293.424 −0.526793 −0.263397 0.964688i 0.584843π-0.584843\pi
−0.263397 + 0.964688i 0.584843π0.584843\pi
558558 0 0
559559 72.0000i 0.128801i
560560 0 0
561561 917.423 1.63533
562562 0 0
563563 67.2324i 0.119418i −0.998216 0.0597091i 0.980983π-0.980983\pi
0.998216 0.0597091i 0.0190173π-0.0190173\pi
564564 0 0
565565 140.582 + 532.987i 0.248818 + 0.943341i
566566 0 0
567567 68.2432 0.120358
568568 0 0
569569 815.945 1.43400 0.717000 0.697074i 0.245515π-0.245515\pi
0.717000 + 0.697074i 0.245515π0.245515\pi
570570 0 0
571571 13.9194 0.0243772 0.0121886 0.999926i 0.496120π-0.496120\pi
0.0121886 + 0.999926i 0.496120π0.496120\pi
572572 0 0
573573 −91.8144 −0.160235
574574 0 0
575575 −521.945 + 295.927i −0.907731 + 0.514656i
576576 0 0
577577 811.405i 1.40625i −0.711068 0.703124i 0.751788π-0.751788\pi
0.711068 0.703124i 0.248212π-0.248212\pi
578578 0 0
579579 472.564 0.816172
580580 0 0
581581 304.237i 0.523644i
582582 0 0
583583 −204.798 −0.351284
584584 0 0
585585 −190.486 + 50.2432i −0.325618 + 0.0858858i
586586 0 0
587587 338.878i 0.577306i −0.957434 0.288653i 0.906793π-0.906793\pi
0.957434 0.288653i 0.0932073π-0.0932073\pi
588588 0 0
589589 654.621i 1.11141i
590590 0 0
591591 577.720i 0.977530i
592592 0 0
593593 932.602i 1.57269i −0.617791 0.786343i 0.711972π-0.711972\pi
0.617791 0.786343i 0.288028π-0.288028\pi
594594 0 0
595595 277.971 + 1053.87i 0.467177 + 1.77120i
596596 0 0
597597 127.266 0.213176
598598 0 0
599599 513.909i 0.857945i 0.903318 + 0.428973i 0.141124π0.141124\pi
−0.903318 + 0.428973i 0.858876π0.858876\pi
600600 0 0
601601 538.450 0.895923 0.447962 0.894053i 0.352150π-0.352150\pi
0.447962 + 0.894053i 0.352150π0.352150\pi
602602 0 0
603603 298.755i 0.495448i
604604 0 0
605605 1056.26 278.602i 1.74589 0.460500i
606606 0 0
607607 −1011.76 −1.66682 −0.833408 0.552659i 0.813613π-0.813613\pi
−0.833408 + 0.552659i 0.813613π0.813613\pi
608608 0 0
609609 −239.477 −0.393230
610610 0 0
611611 407.016 0.666148
612612 0 0
613613 690.350 1.12618 0.563091 0.826395i 0.309612π-0.309612\pi
0.563091 + 0.826395i 0.309612π0.309612\pi
614614 0 0
615615 161.216 + 611.216i 0.262140 + 0.993847i
616616 0 0
617617 1153.09i 1.86886i −0.356143 0.934432i 0.615908π-0.615908\pi
0.356143 0.934432i 0.384092π-0.384092\pi
618618 0 0
619619 −70.1244 −0.113287 −0.0566433 0.998394i 0.518040π-0.518040\pi
−0.0566433 + 0.998394i 0.518040π0.518040\pi
620620 0 0
621621 124.708i 0.200817i
622622 0 0
623623 697.459 1.11952
624624 0 0
625625 320.927 536.312i 0.513484 0.858099i
626626 0 0
627627 663.297i 1.05789i
628628 0 0
629629 535.156i 0.850805i
630630 0 0
631631 445.368i 0.705813i 0.935659 + 0.352907i 0.114807π0.114807\pi
−0.935659 + 0.352907i 0.885193π0.885193\pi
632632 0 0
633633 496.486i 0.784339i
634634 0 0
635635 −824.663 + 217.515i −1.29868 + 0.342544i
636636 0 0
637637 111.574 0.175156
638638 0 0
639639 164.973i 0.258173i
640640 0 0
641641 −410.036 −0.639682 −0.319841 0.947471i 0.603630π-0.603630\pi
−0.319841 + 0.947471i 0.603630π0.603630\pi
642642 0 0
643643 843.971i 1.31255i 0.754521 + 0.656276i 0.227869π0.227869\pi
−0.754521 + 0.656276i 0.772131π0.772131\pi
644644 0 0
645645 45.9072 12.1086i 0.0711740 0.0187730i
646646 0 0
647647 979.927 1.51457 0.757285 0.653084i 0.226525π-0.226525\pi
0.757285 + 0.653084i 0.226525π0.226525\pi
648648 0 0
649649 520.414 0.801870
650650 0 0
651651 −413.643 −0.635396
652652 0 0
653653 −350.899 −0.537365 −0.268682 0.963229i 0.586588π-0.586588\pi
−0.268682 + 0.963229i 0.586588π0.586588\pi
654654 0 0
655655 −519.372 + 136.991i −0.792934 + 0.209146i
656656 0 0
657657 233.009i 0.354656i
658658 0 0
659659 −659.126 −1.00019 −0.500096 0.865970i 0.666702π-0.666702\pi
−0.500096 + 0.865970i 0.666702π0.666702\pi
660660 0 0
661661 988.985i 1.49620i −0.663589 0.748098i 0.730967π-0.730967\pi
0.663589 0.748098i 0.269033π-0.269033\pi
662662 0 0
663663 −653.945 −0.986343
664664 0 0
665665 761.945 200.973i 1.14578 0.302215i
666666 0 0
667667 437.621i 0.656103i
668668 0 0
669669 105.187i 0.157230i
670670 0 0
671671 2137.87i 3.18610i
672672 0 0
673673 981.633i 1.45859i 0.684198 + 0.729297i 0.260153π0.260153\pi
−0.684198 + 0.729297i 0.739847π0.739847\pi
674674 0 0
675675 −64.0701 113.005i −0.0949187 0.167414i
676676 0 0
677677 −204.866 −0.302609 −0.151304 0.988487i 0.548347π-0.548347\pi
−0.151304 + 0.988487i 0.548347π0.548347\pi
678678 0 0
679679 301.982i 0.444745i
680680 0 0
681681 568.486 0.834782
682682 0 0
683683 177.480i 0.259854i 0.991524 + 0.129927i 0.0414743π0.0414743\pi
−0.991524 + 0.129927i 0.958526π0.958526\pi
684684 0 0
685685 −158.412 600.585i −0.231258 0.876766i
686686 0 0
687687 178.432 0.259726
688688 0 0
689689 145.982 0.211875
690690 0 0
691691 1122.18 1.62399 0.811997 0.583662i 0.198380π-0.198380\pi
0.811997 + 0.583662i 0.198380π0.198380\pi
692692 0 0
693693 419.125 0.604798
694694 0 0
695695 −540.000 + 142.432i −0.776978 + 0.204938i
696696 0 0
697697 2098.32i 3.01051i
698698 0 0
699699 −431.686 −0.617577
700700 0 0
701701 159.627i 0.227714i 0.993497 + 0.113857i 0.0363205π0.0363205\pi
−0.993497 + 0.113857i 0.963679π0.963679\pi
702702 0 0
703703 386.918 0.550381
704704 0 0
705705 68.4500 + 259.514i 0.0970922 + 0.368104i
706706 0 0
707707 251.402i 0.355590i
708708 0 0
709709 917.050i 1.29344i −0.762727 0.646721i 0.776140π-0.776140\pi
0.762727 0.646721i 0.223860π-0.223860\pi
710710 0 0
711711 451.459i 0.634964i
712712 0 0
713713 755.891i 1.06016i
714714 0 0
715715 −1169.90 + 308.575i −1.63622 + 0.431574i
716716 0 0
717717 472.803 0.659418
718718 0 0
719719 134.918i 0.187647i 0.995589 + 0.0938235i 0.0299089π0.0299089\pi
−0.995589 + 0.0938235i 0.970091π0.970091\pi
720720 0 0
721721 1006.43 1.39588
722722 0 0
723723 547.234i 0.756893i
724724 0 0
725725 224.833 + 396.553i 0.310115 + 0.546969i
726726 0 0
727727 235.336 0.323708 0.161854 0.986815i 0.448253π-0.448253\pi
0.161854 + 0.986815i 0.448253π0.448253\pi
728728 0 0
729729 −27.0000 −0.0370370
730730 0 0
731731 157.601 0.215596
732732 0 0
733733 −1089.83 −1.48681 −0.743406 0.668840i 0.766791π-0.766791\pi
−0.743406 + 0.668840i 0.766791π0.766791\pi
734734 0 0
735735 18.7640 + 71.1398i 0.0255293 + 0.0967888i
736736 0 0
737737 1834.85i 2.48961i
738738 0 0
739739 −602.754 −0.815634 −0.407817 0.913064i 0.633710π-0.633710\pi
−0.407817 + 0.913064i 0.633710π0.633710\pi
740740 0 0
741741 472.803i 0.638060i
742742 0 0
743743 −93.4955 −0.125835 −0.0629175 0.998019i 0.520041π-0.520041\pi
−0.0629175 + 0.998019i 0.520041π0.520041\pi
744744 0 0
745745 −76.2614 289.129i −0.102364 0.388092i
746746 0 0
747747 120.370i 0.161137i
748748 0 0
749749 700.289i 0.934965i
750750 0 0
751751 658.450i 0.876764i −0.898789 0.438382i 0.855552π-0.855552\pi
0.898789 0.438382i 0.144448π-0.144448\pi
752752 0 0
753753 217.858i 0.289320i
754754 0 0
755755 −82.2562 311.857i −0.108949 0.413056i
756756 0 0
757757 −1135.98 −1.50063 −0.750317 0.661078i 0.770099π-0.770099\pi
−0.750317 + 0.661078i 0.770099π0.770099\pi
758758 0 0
759759 765.909i 1.00910i
760760 0 0
761761 −535.045 −0.703082 −0.351541 0.936172i 0.614342π-0.614342\pi
−0.351541 + 0.936172i 0.614342π0.614342\pi
762762 0 0
763763 912.712i 1.19621i
764764 0 0
765765 −109.977 416.956i −0.143761 0.545040i
766766 0 0
767767 −370.955 −0.483643
768768 0 0
769769 505.441 0.657270 0.328635 0.944457i 0.393411π-0.393411\pi
0.328635 + 0.944457i 0.393411π0.393411\pi
770770 0 0
771771 258.544 0.335336
772772 0 0
773773 280.234 0.362528 0.181264 0.983434i 0.441981π-0.441981\pi
0.181264 + 0.983434i 0.441981π0.441981\pi
774774 0 0
775775 388.348 + 684.955i 0.501095 + 0.883812i
776776 0 0
777777 244.486i 0.314654i
778778 0 0
779779 1517.09 1.94748
780780 0 0
781781 1013.20i 1.29731i
782782 0 0
783783 94.7477 0.121006
784784 0 0
785785 355.045 93.6477i 0.452287 0.119296i
786786 0 0
787787 1235.92i 1.57042i 0.619227 + 0.785212i 0.287446π0.287446\pi
−0.619227 + 0.785212i 0.712554π0.712554\pi
788788 0 0
789789 167.182i 0.211891i
790790 0 0
791791 835.927i 1.05680i
792792 0 0
793793 1523.89i 1.92168i
794794 0 0
795795 24.5505 + 93.0780i 0.0308811 + 0.117079i
796796 0 0
797797 −134.918 −0.169282 −0.0846409 0.996412i 0.526974π-0.526974\pi
−0.0846409 + 0.996412i 0.526974π0.526974\pi
798798 0 0
799799 890.918i 1.11504i
800800 0 0
801801 −275.945 −0.344501
802802 0 0
803803 1431.06i 1.78214i
804804 0 0
805805 −879.819 + 232.063i −1.09294 + 0.288277i
806806 0 0
807807 626.573 0.776423
808808 0 0
809809 −402.936 −0.498067 −0.249034 0.968495i 0.580113π-0.580113\pi
−0.249034 + 0.968495i 0.580113π0.580113\pi
810810 0 0
811811 1263.33 1.55775 0.778874 0.627180i 0.215791π-0.215791\pi
0.778874 + 0.627180i 0.215791π0.215791\pi
812812 0 0
813813 251.974 0.309931
814814 0 0
815815 −202.432 767.477i −0.248383 0.941690i
816816 0 0
817817 113.945i 0.139468i
818818 0 0
819819 −298.755 −0.364780
820820 0 0
821821 1074.82i 1.30916i 0.755995 + 0.654578i 0.227154π0.227154\pi
−0.755995 + 0.654578i 0.772846π0.772846\pi
822822 0 0
823823 −557.078 −0.676887 −0.338444 0.940987i 0.609900π-0.609900\pi
−0.338444 + 0.940987i 0.609900π0.609900\pi
824824 0 0
825825 −393.495 694.033i −0.476964 0.841252i
826826 0 0
827827 1139.53i 1.37791i 0.724804 + 0.688955i 0.241930π0.241930\pi
−0.724804 + 0.688955i 0.758070π0.758070\pi
828828 0 0
829829 201.697i 0.243302i 0.992573 + 0.121651i 0.0388189π0.0388189\pi
−0.992573 + 0.121651i 0.961181π0.961181\pi
830830 0 0
831831 177.811i 0.213973i
832832 0 0
833833 244.225i 0.293187i
834834 0 0
835835 −577.631 + 152.357i −0.691774 + 0.182464i
836836 0 0
837837 163.655 0.195526
838838 0 0
839839 661.873i 0.788883i −0.918921 0.394441i 0.870938π-0.870938\pi
0.918921 0.394441i 0.129062π-0.129062\pi
840840 0 0
841841 508.514 0.604654
842842 0 0
843843 185.345i 0.219864i
844844 0 0
845845 16.8554 4.44581i 0.0199472 0.00526132i
846846 0 0
847847 1656.62 1.95587
848848 0 0
849849 415.405 0.489287
850850 0 0
851851 −446.775 −0.525000
852852 0 0
853853 −1008.56 −1.18236 −0.591182 0.806538i 0.701338π-0.701338\pi
−0.591182 + 0.806538i 0.701338π0.701338\pi
854854 0 0
855855 −301.459 + 79.5136i −0.352584 + 0.0929984i
856856 0 0
857857 197.793i 0.230797i −0.993319 0.115399i 0.963185π-0.963185\pi
0.993319 0.115399i 0.0368145π-0.0368145\pi
858858 0 0
859859 61.4484 0.0715348 0.0357674 0.999360i 0.488612π-0.488612\pi
0.0357674 + 0.999360i 0.488612π0.488612\pi
860860 0 0
861861 958.619i 1.11338i
862862 0 0
863863 −800.450 −0.927520 −0.463760 0.885961i 0.653500π-0.653500\pi
−0.463760 + 0.885961i 0.653500π0.653500\pi
864864 0 0
865865 −226.748 + 59.8076i −0.262136 + 0.0691417i
866866 0 0
867867 930.859i 1.07366i
868868 0 0
869869 2772.70i 3.19068i
870870 0 0
871871 1307.89i 1.50160i
872872 0 0
873873 119.477i 0.136858i
874874 0 0
875875 678.027 662.303i 0.774888 0.756918i
876876 0 0
877877 −463.341 −0.528325 −0.264162 0.964478i 0.585095π-0.585095\pi
−0.264162 + 0.964478i 0.585095π0.585095\pi
878878 0 0
879879 20.1886i 0.0229677i
880880 0 0
881881 −719.009 −0.816128 −0.408064 0.912953i 0.633796π-0.633796\pi
−0.408064 + 0.912953i 0.633796π0.633796\pi
882882 0 0
883883 1014.82i 1.14929i 0.818402 + 0.574646i 0.194860π0.194860\pi
−0.818402 + 0.574646i 0.805140π0.805140\pi
884884 0 0
885885 −62.3853 236.521i −0.0704919 0.267255i
886886 0 0
887887 −284.559 −0.320811 −0.160405 0.987051i 0.551280π-0.551280\pi
−0.160405 + 0.987051i 0.551280π0.551280\pi
888888 0 0
889889 −1293.39 −1.45488
890890 0 0
891891 −165.824 −0.186110
892892 0 0
893893 644.134 0.721315
894894 0 0
895895 697.528 183.982i 0.779361 0.205566i
896896 0 0
897897 545.945i 0.608635i
898898 0 0
899899 −574.295 −0.638815
900900 0 0
901901 319.540i 0.354650i
902902 0 0
903903 72.0000 0.0797342
904904 0 0
905905 217.568 + 824.864i 0.240407 + 0.911452i
906906 0 0
907907 93.1975i 0.102754i −0.998679 0.0513768i 0.983639π-0.983639\pi
0.998679 0.0513768i 0.0163609π-0.0163609\pi
908908 0 0
909909 99.4656i 0.109423i
910910 0 0
911911 932.036i 1.02309i 0.859256 + 0.511546i 0.170927π0.170927\pi
−0.859256 + 0.511546i 0.829073π0.829073\pi
912912 0 0
913913 739.267i 0.809712i
914914 0 0
915915 971.633 256.281i 1.06189 0.280088i
916916 0 0
917917 −814.573 −0.888302
918918 0 0
919919 1249.44i 1.35957i 0.733413 + 0.679783i 0.237926π0.237926\pi
−0.733413 + 0.679783i 0.762074π0.762074\pi
920920 0 0
921921 502.018 0.545079
922922 0 0
923923 722.218i 0.782468i
924924 0 0
925925 404.847 229.536i 0.437673 0.248147i
926926 0 0
927927 −398.189 −0.429545
928928 0 0
929929 1488.88 1.60267 0.801336 0.598215i 0.204123π-0.204123\pi
0.801336 + 0.598215i 0.204123π0.204123\pi
930930 0 0
931931 176.575 0.189661
932932 0 0
933933 65.7864 0.0705106
934934 0 0
935935 −675.441 2560.79i −0.722397 2.73881i
936936 0 0
937937 689.670i 0.736040i −0.929818 0.368020i 0.880036π-0.880036\pi
0.929818 0.368020i 0.119964π-0.119964\pi
938938 0 0
939939 564.856 0.601550
940940 0 0
941941 884.134i 0.939568i 0.882781 + 0.469784i 0.155668π0.155668\pi
−0.882781 + 0.469784i 0.844332π0.844332\pi
942942 0 0
943943 −1751.78 −1.85767
944944 0 0
945945 −50.2432 190.486i −0.0531674 0.201573i
946946 0 0
947947 1716.80i 1.81288i −0.422334 0.906440i 0.638789π-0.638789\pi
0.422334 0.906440i 0.361211π-0.361211\pi
948948 0 0
949949 1020.07i 1.07489i
950950 0 0
951951 458.766i 0.482404i
952952 0 0
953953 980.080i 1.02842i 0.857666 + 0.514208i 0.171914π0.171914\pi
−0.857666 + 0.514208i 0.828086π0.828086\pi
954954 0 0
955955 67.5972 + 256.281i 0.0707824 + 0.268357i
956956 0 0
957957 581.906 0.608052
958958 0 0
959959 941.945i 0.982216i
960960 0 0
961961 −30.9636 −0.0322202
962962 0 0
963963 277.065i 0.287710i
964964 0 0
965965 −347.919 1319.06i −0.360538 1.36690i
966966 0 0
967967 −1573.83 −1.62754 −0.813771 0.581186i 0.802589π-0.802589\pi
−0.813771 + 0.581186i 0.802589π0.802589\pi
968968 0 0
969969 −1034.92 −1.06803
970970 0 0
971971 −1139.13 −1.17315 −0.586573 0.809896i 0.699523π-0.699523\pi
−0.586573 + 0.809896i 0.699523π0.699523\pi
972972 0 0
973973 −846.926 −0.870427
974974 0 0
975975 280.486 + 494.711i 0.287678 + 0.507396i
976976 0 0
977977 474.207i 0.485370i −0.970105 0.242685i 0.921972π-0.921972\pi
0.970105 0.242685i 0.0780282π-0.0780282\pi
978978 0 0
979979 −1694.76 −1.73111
980980 0 0
981981 361.109i 0.368103i
982982 0 0
983983 1625.31 1.65342 0.826711 0.562627i 0.190209π-0.190209\pi
0.826711 + 0.562627i 0.190209π0.190209\pi
984984 0 0
985985 −1612.58 + 425.339i −1.63714 + 0.431817i
986986 0 0
987987 407.016i 0.412377i
988988 0 0
989989 131.573i 0.133036i
990990 0 0
991991 1321.44i 1.33344i −0.745307 0.666721i 0.767697π-0.767697\pi
0.745307 0.666721i 0.232303π-0.232303\pi
992992 0 0
993993 134.918i 0.135869i
994994 0 0
995995 −93.6983 355.237i −0.0941691 0.357022i
996996 0 0
997997 −198.145 −0.198742 −0.0993708 0.995050i 0.531683π-0.531683\pi
−0.0993708 + 0.995050i 0.531683π0.531683\pi
998998 0 0
999999 96.7295i 0.0968264i
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 960.3.p.b.799.8 yes 8
4.3 odd 2 960.3.p.a.799.4 yes 8
5.4 even 2 960.3.p.a.799.1 8
8.3 odd 2 960.3.p.a.799.5 yes 8
8.5 even 2 inner 960.3.p.b.799.1 yes 8
20.19 odd 2 inner 960.3.p.b.799.5 yes 8
40.19 odd 2 inner 960.3.p.b.799.4 yes 8
40.29 even 2 960.3.p.a.799.8 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
960.3.p.a.799.1 8 5.4 even 2
960.3.p.a.799.4 yes 8 4.3 odd 2
960.3.p.a.799.5 yes 8 8.3 odd 2
960.3.p.a.799.8 yes 8 40.29 even 2
960.3.p.b.799.1 yes 8 8.5 even 2 inner
960.3.p.b.799.4 yes 8 40.19 odd 2 inner
960.3.p.b.799.5 yes 8 20.19 odd 2 inner
960.3.p.b.799.8 yes 8 1.1 even 1 trivial