Properties

Label 960.3.p.b.799.8
Level $960$
Weight $3$
Character 960.799
Analytic conductor $26.158$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [960,3,Mod(799,960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(960, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("960.799");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 960 = 2^{6} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 960.p (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.1581053786\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.49787136.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3x^{6} + 5x^{4} + 12x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 799.8
Root \(-0.228425 - 1.39564i\) of defining polynomial
Character \(\chi\) \(=\) 960.799
Dual form 960.3.p.b.799.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.73205i q^{3} +(4.83465 - 1.27520i) q^{5} +7.58258 q^{7} -3.00000 q^{9} +O(q^{10})\) \(q+1.73205i q^{3} +(4.83465 - 1.27520i) q^{5} +7.58258 q^{7} -3.00000 q^{9} -18.4249 q^{11} +13.1334 q^{13} +(2.20871 + 8.37386i) q^{15} +28.7477i q^{17} +20.7846 q^{19} +13.1334i q^{21} -24.0000 q^{23} +(21.7477 - 12.3303i) q^{25} -5.19615i q^{27} +18.2342i q^{29} +31.4955i q^{31} -31.9129i q^{33} +(36.6591 - 9.66930i) q^{35} +18.6156 q^{37} +22.7477i q^{39} +72.9909 q^{41} -5.48220i q^{43} +(-14.5040 + 3.82560i) q^{45} +30.9909 q^{47} +8.49545 q^{49} -49.7925 q^{51} +11.1153 q^{53} +(-89.0780 + 23.4955i) q^{55} +36.0000i q^{57} -28.2451 q^{59} -116.032i q^{61} -22.7477 q^{63} +(63.4955 - 16.7477i) q^{65} -99.5850i q^{67} -41.5692i q^{69} +54.9909i q^{71} +77.6697i q^{73} +(21.3567 + 37.6682i) q^{75} -139.708 q^{77} +150.486i q^{79} +9.00000 q^{81} +40.1232i q^{83} +(36.6591 + 138.985i) q^{85} -31.5826 q^{87} +91.9818 q^{89} +99.5850 q^{91} -54.5517 q^{93} +(100.486 - 26.5045i) q^{95} -39.8258i q^{97} +55.2747 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 24 q^{7} - 24 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 24 q^{7} - 24 q^{9} + 36 q^{15} - 192 q^{23} + 64 q^{25} + 144 q^{41} - 192 q^{47} - 152 q^{49} - 456 q^{55} - 72 q^{63} + 288 q^{65} + 72 q^{81} - 216 q^{87} - 144 q^{89} + 144 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/960\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(577\) \(641\) \(901\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.73205i 0.577350i
\(4\) 0 0
\(5\) 4.83465 1.27520i 0.966930 0.255040i
\(6\) 0 0
\(7\) 7.58258 1.08323 0.541613 0.840628i \(-0.317814\pi\)
0.541613 + 0.840628i \(0.317814\pi\)
\(8\) 0 0
\(9\) −3.00000 −0.333333
\(10\) 0 0
\(11\) −18.4249 −1.67499 −0.837496 0.546444i \(-0.815981\pi\)
−0.837496 + 0.546444i \(0.815981\pi\)
\(12\) 0 0
\(13\) 13.1334 1.01026 0.505131 0.863043i \(-0.331444\pi\)
0.505131 + 0.863043i \(0.331444\pi\)
\(14\) 0 0
\(15\) 2.20871 + 8.37386i 0.147247 + 0.558258i
\(16\) 0 0
\(17\) 28.7477i 1.69104i 0.533942 + 0.845521i \(0.320710\pi\)
−0.533942 + 0.845521i \(0.679290\pi\)
\(18\) 0 0
\(19\) 20.7846 1.09393 0.546963 0.837157i \(-0.315784\pi\)
0.546963 + 0.837157i \(0.315784\pi\)
\(20\) 0 0
\(21\) 13.1334i 0.625400i
\(22\) 0 0
\(23\) −24.0000 −1.04348 −0.521739 0.853105i \(-0.674717\pi\)
−0.521739 + 0.853105i \(0.674717\pi\)
\(24\) 0 0
\(25\) 21.7477 12.3303i 0.869909 0.493212i
\(26\) 0 0
\(27\) 5.19615i 0.192450i
\(28\) 0 0
\(29\) 18.2342i 0.628766i 0.949296 + 0.314383i \(0.101798\pi\)
−0.949296 + 0.314383i \(0.898202\pi\)
\(30\) 0 0
\(31\) 31.4955i 1.01598i 0.861362 + 0.507991i \(0.169612\pi\)
−0.861362 + 0.507991i \(0.830388\pi\)
\(32\) 0 0
\(33\) 31.9129i 0.967057i
\(34\) 0 0
\(35\) 36.6591 9.66930i 1.04740 0.276266i
\(36\) 0 0
\(37\) 18.6156 0.503125 0.251562 0.967841i \(-0.419056\pi\)
0.251562 + 0.967841i \(0.419056\pi\)
\(38\) 0 0
\(39\) 22.7477i 0.583275i
\(40\) 0 0
\(41\) 72.9909 1.78027 0.890133 0.455701i \(-0.150611\pi\)
0.890133 + 0.455701i \(0.150611\pi\)
\(42\) 0 0
\(43\) 5.48220i 0.127493i −0.997966 0.0637465i \(-0.979695\pi\)
0.997966 0.0637465i \(-0.0203049\pi\)
\(44\) 0 0
\(45\) −14.5040 + 3.82560i −0.322310 + 0.0850134i
\(46\) 0 0
\(47\) 30.9909 0.659381 0.329691 0.944089i \(-0.393056\pi\)
0.329691 + 0.944089i \(0.393056\pi\)
\(48\) 0 0
\(49\) 8.49545 0.173377
\(50\) 0 0
\(51\) −49.7925 −0.976324
\(52\) 0 0
\(53\) 11.1153 0.209723 0.104861 0.994487i \(-0.466560\pi\)
0.104861 + 0.994487i \(0.466560\pi\)
\(54\) 0 0
\(55\) −89.0780 + 23.4955i −1.61960 + 0.427190i
\(56\) 0 0
\(57\) 36.0000i 0.631579i
\(58\) 0 0
\(59\) −28.2451 −0.478731 −0.239365 0.970930i \(-0.576939\pi\)
−0.239365 + 0.970930i \(0.576939\pi\)
\(60\) 0 0
\(61\) 116.032i 1.90216i −0.308947 0.951079i \(-0.599977\pi\)
0.308947 0.951079i \(-0.400023\pi\)
\(62\) 0 0
\(63\) −22.7477 −0.361075
\(64\) 0 0
\(65\) 63.4955 16.7477i 0.976853 0.257657i
\(66\) 0 0
\(67\) 99.5850i 1.48634i −0.669100 0.743172i \(-0.733320\pi\)
0.669100 0.743172i \(-0.266680\pi\)
\(68\) 0 0
\(69\) 41.5692i 0.602452i
\(70\) 0 0
\(71\) 54.9909i 0.774520i 0.921971 + 0.387260i \(0.126578\pi\)
−0.921971 + 0.387260i \(0.873422\pi\)
\(72\) 0 0
\(73\) 77.6697i 1.06397i 0.846754 + 0.531984i \(0.178553\pi\)
−0.846754 + 0.531984i \(0.821447\pi\)
\(74\) 0 0
\(75\) 21.3567 + 37.6682i 0.284756 + 0.502242i
\(76\) 0 0
\(77\) −139.708 −1.81439
\(78\) 0 0
\(79\) 150.486i 1.90489i 0.304710 + 0.952445i \(0.401441\pi\)
−0.304710 + 0.952445i \(0.598559\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 0 0
\(83\) 40.1232i 0.483412i 0.970349 + 0.241706i \(0.0777070\pi\)
−0.970349 + 0.241706i \(0.922293\pi\)
\(84\) 0 0
\(85\) 36.6591 + 138.985i 0.431284 + 1.63512i
\(86\) 0 0
\(87\) −31.5826 −0.363018
\(88\) 0 0
\(89\) 91.9818 1.03350 0.516752 0.856135i \(-0.327141\pi\)
0.516752 + 0.856135i \(0.327141\pi\)
\(90\) 0 0
\(91\) 99.5850 1.09434
\(92\) 0 0
\(93\) −54.5517 −0.586578
\(94\) 0 0
\(95\) 100.486 26.5045i 1.05775 0.278995i
\(96\) 0 0
\(97\) 39.8258i 0.410575i −0.978702 0.205287i \(-0.934187\pi\)
0.978702 0.205287i \(-0.0658129\pi\)
\(98\) 0 0
\(99\) 55.2747 0.558331
\(100\) 0 0
\(101\) 33.1552i 0.328269i −0.986438 0.164135i \(-0.947517\pi\)
0.986438 0.164135i \(-0.0524832\pi\)
\(102\) 0 0
\(103\) 132.730 1.28864 0.644318 0.764758i \(-0.277141\pi\)
0.644318 + 0.764758i \(0.277141\pi\)
\(104\) 0 0
\(105\) 16.7477 + 63.4955i 0.159502 + 0.604719i
\(106\) 0 0
\(107\) 92.3550i 0.863131i 0.902082 + 0.431566i \(0.142039\pi\)
−0.902082 + 0.431566i \(0.857961\pi\)
\(108\) 0 0
\(109\) 120.370i 1.10431i 0.833742 + 0.552154i \(0.186194\pi\)
−0.833742 + 0.552154i \(0.813806\pi\)
\(110\) 0 0
\(111\) 32.2432i 0.290479i
\(112\) 0 0
\(113\) 110.243i 0.975603i 0.872954 + 0.487802i \(0.162201\pi\)
−0.872954 + 0.487802i \(0.837799\pi\)
\(114\) 0 0
\(115\) −116.032 + 30.6048i −1.00897 + 0.266129i
\(116\) 0 0
\(117\) −39.4002 −0.336754
\(118\) 0 0
\(119\) 217.982i 1.83178i
\(120\) 0 0
\(121\) 218.477 1.80560
\(122\) 0 0
\(123\) 126.424i 1.02784i
\(124\) 0 0
\(125\) 89.4191 87.3454i 0.715353 0.698764i
\(126\) 0 0
\(127\) −170.573 −1.34310 −0.671549 0.740960i \(-0.734371\pi\)
−0.671549 + 0.740960i \(0.734371\pi\)
\(128\) 0 0
\(129\) 9.49545 0.0736082
\(130\) 0 0
\(131\) −107.427 −0.820053 −0.410027 0.912074i \(-0.634481\pi\)
−0.410027 + 0.912074i \(0.634481\pi\)
\(132\) 0 0
\(133\) 157.601 1.18497
\(134\) 0 0
\(135\) −6.62614 25.1216i −0.0490825 0.186086i
\(136\) 0 0
\(137\) 124.225i 0.906752i −0.891319 0.453376i \(-0.850220\pi\)
0.891319 0.453376i \(-0.149780\pi\)
\(138\) 0 0
\(139\) −111.694 −0.803551 −0.401776 0.915738i \(-0.631607\pi\)
−0.401776 + 0.915738i \(0.631607\pi\)
\(140\) 0 0
\(141\) 53.6778i 0.380694i
\(142\) 0 0
\(143\) −241.982 −1.69218
\(144\) 0 0
\(145\) 23.2523 + 88.1561i 0.160361 + 0.607973i
\(146\) 0 0
\(147\) 14.7146i 0.100099i
\(148\) 0 0
\(149\) 59.8034i 0.401365i −0.979656 0.200683i \(-0.935684\pi\)
0.979656 0.200683i \(-0.0643160\pi\)
\(150\) 0 0
\(151\) 64.5045i 0.427182i −0.976923 0.213591i \(-0.931484\pi\)
0.976923 0.213591i \(-0.0685161\pi\)
\(152\) 0 0
\(153\) 86.2432i 0.563681i
\(154\) 0 0
\(155\) 40.1630 + 152.270i 0.259116 + 0.982384i
\(156\) 0 0
\(157\) 73.4376 0.467756 0.233878 0.972266i \(-0.424858\pi\)
0.233878 + 0.972266i \(0.424858\pi\)
\(158\) 0 0
\(159\) 19.2523i 0.121083i
\(160\) 0 0
\(161\) −181.982 −1.13032
\(162\) 0 0
\(163\) 158.745i 0.973896i −0.873431 0.486948i \(-0.838110\pi\)
0.873431 0.486948i \(-0.161890\pi\)
\(164\) 0 0
\(165\) −40.6953 154.288i −0.246638 0.935077i
\(166\) 0 0
\(167\) −119.477 −0.715433 −0.357716 0.933830i \(-0.616445\pi\)
−0.357716 + 0.933830i \(0.616445\pi\)
\(168\) 0 0
\(169\) 3.48636 0.0206294
\(170\) 0 0
\(171\) −62.3538 −0.364642
\(172\) 0 0
\(173\) −46.9005 −0.271101 −0.135551 0.990770i \(-0.543280\pi\)
−0.135551 + 0.990770i \(0.543280\pi\)
\(174\) 0 0
\(175\) 164.904 93.4955i 0.942307 0.534260i
\(176\) 0 0
\(177\) 48.9220i 0.276395i
\(178\) 0 0
\(179\) 144.277 0.806015 0.403008 0.915197i \(-0.367965\pi\)
0.403008 + 0.915197i \(0.367965\pi\)
\(180\) 0 0
\(181\) 170.615i 0.942624i 0.881967 + 0.471312i \(0.156219\pi\)
−0.881967 + 0.471312i \(0.843781\pi\)
\(182\) 0 0
\(183\) 200.973 1.09821
\(184\) 0 0
\(185\) 90.0000 23.7386i 0.486486 0.128317i
\(186\) 0 0
\(187\) 529.674i 2.83248i
\(188\) 0 0
\(189\) 39.4002i 0.208467i
\(190\) 0 0
\(191\) 53.0091i 0.277535i 0.990325 + 0.138767i \(0.0443140\pi\)
−0.990325 + 0.138767i \(0.955686\pi\)
\(192\) 0 0
\(193\) 272.835i 1.41365i −0.707387 0.706826i \(-0.750126\pi\)
0.707387 0.706826i \(-0.249874\pi\)
\(194\) 0 0
\(195\) 29.0079 + 109.977i 0.148759 + 0.563986i
\(196\) 0 0
\(197\) −333.547 −1.69313 −0.846566 0.532284i \(-0.821334\pi\)
−0.846566 + 0.532284i \(0.821334\pi\)
\(198\) 0 0
\(199\) 73.4773i 0.369233i −0.982811 0.184616i \(-0.940896\pi\)
0.982811 0.184616i \(-0.0591042\pi\)
\(200\) 0 0
\(201\) 172.486 0.858141
\(202\) 0 0
\(203\) 138.262i 0.681095i
\(204\) 0 0
\(205\) 352.886 93.0780i 1.72139 0.454039i
\(206\) 0 0
\(207\) 72.0000 0.347826
\(208\) 0 0
\(209\) −382.955 −1.83232
\(210\) 0 0
\(211\) 286.647 1.35851 0.679257 0.733900i \(-0.262302\pi\)
0.679257 + 0.733900i \(0.262302\pi\)
\(212\) 0 0
\(213\) −95.2470 −0.447169
\(214\) 0 0
\(215\) −6.99091 26.5045i −0.0325159 0.123277i
\(216\) 0 0
\(217\) 238.817i 1.10054i
\(218\) 0 0
\(219\) −134.528 −0.614282
\(220\) 0 0
\(221\) 377.556i 1.70840i
\(222\) 0 0
\(223\) −60.7295 −0.272330 −0.136165 0.990686i \(-0.543478\pi\)
−0.136165 + 0.990686i \(0.543478\pi\)
\(224\) 0 0
\(225\) −65.2432 + 36.9909i −0.289970 + 0.164404i
\(226\) 0 0
\(227\) 328.216i 1.44588i −0.690909 0.722942i \(-0.742789\pi\)
0.690909 0.722942i \(-0.257211\pi\)
\(228\) 0 0
\(229\) 103.018i 0.449859i −0.974375 0.224929i \(-0.927785\pi\)
0.974375 0.224929i \(-0.0722151\pi\)
\(230\) 0 0
\(231\) 241.982i 1.04754i
\(232\) 0 0
\(233\) 249.234i 1.06967i 0.844955 + 0.534837i \(0.179627\pi\)
−0.844955 + 0.534837i \(0.820373\pi\)
\(234\) 0 0
\(235\) 149.830 39.5196i 0.637576 0.168169i
\(236\) 0 0
\(237\) −260.650 −1.09979
\(238\) 0 0
\(239\) 272.973i 1.14215i −0.820900 0.571073i \(-0.806527\pi\)
0.820900 0.571073i \(-0.193473\pi\)
\(240\) 0 0
\(241\) −315.945 −1.31098 −0.655488 0.755205i \(-0.727537\pi\)
−0.655488 + 0.755205i \(0.727537\pi\)
\(242\) 0 0
\(243\) 15.5885i 0.0641500i
\(244\) 0 0
\(245\) 41.0726 10.8334i 0.167643 0.0442180i
\(246\) 0 0
\(247\) 272.973 1.10515
\(248\) 0 0
\(249\) −69.4955 −0.279098
\(250\) 0 0
\(251\) 125.781 0.501118 0.250559 0.968101i \(-0.419386\pi\)
0.250559 + 0.968101i \(0.419386\pi\)
\(252\) 0 0
\(253\) 442.198 1.74782
\(254\) 0 0
\(255\) −240.730 + 63.4955i −0.944037 + 0.249002i
\(256\) 0 0
\(257\) 149.270i 0.580819i −0.956902 0.290409i \(-0.906208\pi\)
0.956902 0.290409i \(-0.0937915\pi\)
\(258\) 0 0
\(259\) 141.154 0.544997
\(260\) 0 0
\(261\) 54.7026i 0.209589i
\(262\) 0 0
\(263\) 96.5227 0.367007 0.183503 0.983019i \(-0.441256\pi\)
0.183503 + 0.983019i \(0.441256\pi\)
\(264\) 0 0
\(265\) 53.7386 14.1742i 0.202787 0.0534877i
\(266\) 0 0
\(267\) 159.317i 0.596694i
\(268\) 0 0
\(269\) 361.752i 1.34480i −0.740186 0.672402i \(-0.765263\pi\)
0.740186 0.672402i \(-0.234737\pi\)
\(270\) 0 0
\(271\) 145.477i 0.536816i −0.963305 0.268408i \(-0.913502\pi\)
0.963305 0.268408i \(-0.0864976\pi\)
\(272\) 0 0
\(273\) 172.486i 0.631818i
\(274\) 0 0
\(275\) −400.700 + 227.185i −1.45709 + 0.826126i
\(276\) 0 0
\(277\) −102.659 −0.370612 −0.185306 0.982681i \(-0.559328\pi\)
−0.185306 + 0.982681i \(0.559328\pi\)
\(278\) 0 0
\(279\) 94.4864i 0.338661i
\(280\) 0 0
\(281\) −107.009 −0.380815 −0.190408 0.981705i \(-0.560981\pi\)
−0.190408 + 0.981705i \(0.560981\pi\)
\(282\) 0 0
\(283\) 239.834i 0.847470i −0.905786 0.423735i \(-0.860719\pi\)
0.905786 0.423735i \(-0.139281\pi\)
\(284\) 0 0
\(285\) 45.9072 + 174.047i 0.161078 + 0.610693i
\(286\) 0 0
\(287\) 553.459 1.92843
\(288\) 0 0
\(289\) −537.432 −1.85963
\(290\) 0 0
\(291\) 68.9802 0.237045
\(292\) 0 0
\(293\) −11.6559 −0.0397813 −0.0198906 0.999802i \(-0.506332\pi\)
−0.0198906 + 0.999802i \(0.506332\pi\)
\(294\) 0 0
\(295\) −136.555 + 36.0182i −0.462899 + 0.122096i
\(296\) 0 0
\(297\) 95.7386i 0.322352i
\(298\) 0 0
\(299\) −315.202 −1.05419
\(300\) 0 0
\(301\) 41.5692i 0.138104i
\(302\) 0 0
\(303\) 57.4265 0.189526
\(304\) 0 0
\(305\) −147.964 560.973i −0.485127 1.83925i
\(306\) 0 0
\(307\) 289.840i 0.944105i −0.881570 0.472053i \(-0.843513\pi\)
0.881570 0.472053i \(-0.156487\pi\)
\(308\) 0 0
\(309\) 229.894i 0.743995i
\(310\) 0 0
\(311\) 37.9818i 0.122128i −0.998134 0.0610640i \(-0.980551\pi\)
0.998134 0.0610640i \(-0.0194494\pi\)
\(312\) 0 0
\(313\) 326.120i 1.04192i −0.853582 0.520958i \(-0.825575\pi\)
0.853582 0.520958i \(-0.174425\pi\)
\(314\) 0 0
\(315\) −109.977 + 29.0079i −0.349134 + 0.0920886i
\(316\) 0 0
\(317\) −264.869 −0.835548 −0.417774 0.908551i \(-0.637190\pi\)
−0.417774 + 0.908551i \(0.637190\pi\)
\(318\) 0 0
\(319\) 335.964i 1.05318i
\(320\) 0 0
\(321\) −159.964 −0.498329
\(322\) 0 0
\(323\) 597.510i 1.84988i
\(324\) 0 0
\(325\) 285.622 161.939i 0.878836 0.498273i
\(326\) 0 0
\(327\) −208.486 −0.637573
\(328\) 0 0
\(329\) 234.991 0.714258
\(330\) 0 0
\(331\) −77.8950 −0.235332 −0.117666 0.993053i \(-0.537541\pi\)
−0.117666 + 0.993053i \(0.537541\pi\)
\(332\) 0 0
\(333\) −55.8468 −0.167708
\(334\) 0 0
\(335\) −126.991 481.459i −0.379077 1.43719i
\(336\) 0 0
\(337\) 77.9455i 0.231292i 0.993290 + 0.115646i \(0.0368938\pi\)
−0.993290 + 0.115646i \(0.963106\pi\)
\(338\) 0 0
\(339\) −190.947 −0.563265
\(340\) 0 0
\(341\) 580.301i 1.70176i
\(342\) 0 0
\(343\) −307.129 −0.895419
\(344\) 0 0
\(345\) −53.0091 200.973i −0.153650 0.582530i
\(346\) 0 0
\(347\) 342.676i 0.987538i −0.869593 0.493769i \(-0.835619\pi\)
0.869593 0.493769i \(-0.164381\pi\)
\(348\) 0 0
\(349\) 365.447i 1.04713i 0.851987 + 0.523563i \(0.175398\pi\)
−0.851987 + 0.523563i \(0.824602\pi\)
\(350\) 0 0
\(351\) 68.2432i 0.194425i
\(352\) 0 0
\(353\) 183.289i 0.519231i −0.965712 0.259616i \(-0.916404\pi\)
0.965712 0.259616i \(-0.0835959\pi\)
\(354\) 0 0
\(355\) 70.1244 + 265.862i 0.197534 + 0.748907i
\(356\) 0 0
\(357\) −377.556 −1.05758
\(358\) 0 0
\(359\) 509.945i 1.42046i −0.703969 0.710230i \(-0.748591\pi\)
0.703969 0.710230i \(-0.251409\pi\)
\(360\) 0 0
\(361\) 71.0000 0.196676
\(362\) 0 0
\(363\) 378.414i 1.04246i
\(364\) 0 0
\(365\) 99.0444 + 375.506i 0.271355 + 1.02878i
\(366\) 0 0
\(367\) 30.1235 0.0820803 0.0410402 0.999157i \(-0.486933\pi\)
0.0410402 + 0.999157i \(0.486933\pi\)
\(368\) 0 0
\(369\) −218.973 −0.593422
\(370\) 0 0
\(371\) 84.2826 0.227177
\(372\) 0 0
\(373\) 602.873 1.61628 0.808141 0.588989i \(-0.200474\pi\)
0.808141 + 0.588989i \(0.200474\pi\)
\(374\) 0 0
\(375\) 151.287 + 154.878i 0.403431 + 0.413009i
\(376\) 0 0
\(377\) 239.477i 0.635218i
\(378\) 0 0
\(379\) 336.892 0.888896 0.444448 0.895805i \(-0.353400\pi\)
0.444448 + 0.895805i \(0.353400\pi\)
\(380\) 0 0
\(381\) 295.442i 0.775438i
\(382\) 0 0
\(383\) 270.468 0.706183 0.353092 0.935589i \(-0.385130\pi\)
0.353092 + 0.935589i \(0.385130\pi\)
\(384\) 0 0
\(385\) −675.441 + 178.156i −1.75439 + 0.462743i
\(386\) 0 0
\(387\) 16.4466i 0.0424977i
\(388\) 0 0
\(389\) 721.956i 1.85593i 0.372670 + 0.927964i \(0.378442\pi\)
−0.372670 + 0.927964i \(0.621558\pi\)
\(390\) 0 0
\(391\) 689.945i 1.76457i
\(392\) 0 0
\(393\) 186.069i 0.473458i
\(394\) 0 0
\(395\) 191.900 + 727.549i 0.485824 + 1.84190i
\(396\) 0 0
\(397\) −486.841 −1.22630 −0.613150 0.789966i \(-0.710098\pi\)
−0.613150 + 0.789966i \(0.710098\pi\)
\(398\) 0 0
\(399\) 272.973i 0.684142i
\(400\) 0 0
\(401\) −688.955 −1.71809 −0.859046 0.511899i \(-0.828942\pi\)
−0.859046 + 0.511899i \(0.828942\pi\)
\(402\) 0 0
\(403\) 413.643i 1.02641i
\(404\) 0 0
\(405\) 43.5119 11.4768i 0.107437 0.0283378i
\(406\) 0 0
\(407\) −342.991 −0.842730
\(408\) 0 0
\(409\) 412.468 1.00848 0.504240 0.863564i \(-0.331773\pi\)
0.504240 + 0.863564i \(0.331773\pi\)
\(410\) 0 0
\(411\) 215.164 0.523513
\(412\) 0 0
\(413\) −214.171 −0.518573
\(414\) 0 0
\(415\) 51.1652 + 193.982i 0.123290 + 0.467426i
\(416\) 0 0
\(417\) 193.459i 0.463931i
\(418\) 0 0
\(419\) 189.279 0.451739 0.225869 0.974158i \(-0.427478\pi\)
0.225869 + 0.974158i \(0.427478\pi\)
\(420\) 0 0
\(421\) 593.172i 1.40896i 0.709724 + 0.704480i \(0.248820\pi\)
−0.709724 + 0.704480i \(0.751180\pi\)
\(422\) 0 0
\(423\) −92.9727 −0.219794
\(424\) 0 0
\(425\) 354.468 + 625.198i 0.834043 + 1.47105i
\(426\) 0 0
\(427\) 879.819i 2.06047i
\(428\) 0 0
\(429\) 419.125i 0.976981i
\(430\) 0 0
\(431\) 411.027i 0.953660i 0.878996 + 0.476830i \(0.158214\pi\)
−0.878996 + 0.476830i \(0.841786\pi\)
\(432\) 0 0
\(433\) 159.303i 0.367905i 0.982935 + 0.183953i \(0.0588893\pi\)
−0.982935 + 0.183953i \(0.941111\pi\)
\(434\) 0 0
\(435\) −152.691 + 40.2741i −0.351013 + 0.0925842i
\(436\) 0 0
\(437\) −498.831 −1.14149
\(438\) 0 0
\(439\) 409.441i 0.932667i 0.884609 + 0.466334i \(0.154425\pi\)
−0.884609 + 0.466334i \(0.845575\pi\)
\(440\) 0 0
\(441\) −25.4864 −0.0577922
\(442\) 0 0
\(443\) 13.0140i 0.0293770i 0.999892 + 0.0146885i \(0.00467566\pi\)
−0.999892 + 0.0146885i \(0.995324\pi\)
\(444\) 0 0
\(445\) 444.700 117.295i 0.999326 0.263585i
\(446\) 0 0
\(447\) 103.583 0.231728
\(448\) 0 0
\(449\) 450.000 1.00223 0.501114 0.865382i \(-0.332924\pi\)
0.501114 + 0.865382i \(0.332924\pi\)
\(450\) 0 0
\(451\) −1344.85 −2.98193
\(452\) 0 0
\(453\) 111.725 0.246634
\(454\) 0 0
\(455\) 481.459 126.991i 1.05815 0.279101i
\(456\) 0 0
\(457\) 642.744i 1.40644i −0.710971 0.703221i \(-0.751744\pi\)
0.710971 0.703221i \(-0.248256\pi\)
\(458\) 0 0
\(459\) 149.378 0.325441
\(460\) 0 0
\(461\) 534.894i 1.16029i −0.814513 0.580146i \(-0.802996\pi\)
0.814513 0.580146i \(-0.197004\pi\)
\(462\) 0 0
\(463\) 455.023 0.982772 0.491386 0.870942i \(-0.336490\pi\)
0.491386 + 0.870942i \(0.336490\pi\)
\(464\) 0 0
\(465\) −263.739 + 69.5644i −0.567180 + 0.149601i
\(466\) 0 0
\(467\) 580.523i 1.24309i −0.783378 0.621545i \(-0.786505\pi\)
0.783378 0.621545i \(-0.213495\pi\)
\(468\) 0 0
\(469\) 755.111i 1.61005i
\(470\) 0 0
\(471\) 127.198i 0.270059i
\(472\) 0 0
\(473\) 101.009i 0.213550i
\(474\) 0 0
\(475\) 452.018 256.281i 0.951617 0.539538i
\(476\) 0 0
\(477\) −33.3459 −0.0699076
\(478\) 0 0
\(479\) 320.036i 0.668134i −0.942549 0.334067i \(-0.891579\pi\)
0.942549 0.334067i \(-0.108421\pi\)
\(480\) 0 0
\(481\) 244.486 0.508288
\(482\) 0 0
\(483\) 315.202i 0.652592i
\(484\) 0 0
\(485\) −50.7858 192.544i −0.104713 0.396997i
\(486\) 0 0
\(487\) 147.757 0.303402 0.151701 0.988426i \(-0.451525\pi\)
0.151701 + 0.988426i \(0.451525\pi\)
\(488\) 0 0
\(489\) 274.955 0.562279
\(490\) 0 0
\(491\) −207.775 −0.423167 −0.211583 0.977360i \(-0.567862\pi\)
−0.211583 + 0.977360i \(0.567862\pi\)
\(492\) 0 0
\(493\) −524.192 −1.06327
\(494\) 0 0
\(495\) 267.234 70.4864i 0.539867 0.142397i
\(496\) 0 0
\(497\) 416.973i 0.838979i
\(498\) 0 0
\(499\) 77.8950 0.156102 0.0780511 0.996949i \(-0.475130\pi\)
0.0780511 + 0.996949i \(0.475130\pi\)
\(500\) 0 0
\(501\) 206.941i 0.413055i
\(502\) 0 0
\(503\) −243.027 −0.483156 −0.241578 0.970381i \(-0.577665\pi\)
−0.241578 + 0.970381i \(0.577665\pi\)
\(504\) 0 0
\(505\) −42.2795 160.294i −0.0837219 0.317414i
\(506\) 0 0
\(507\) 6.03856i 0.0119104i
\(508\) 0 0
\(509\) 411.331i 0.808116i −0.914733 0.404058i \(-0.867599\pi\)
0.914733 0.404058i \(-0.132401\pi\)
\(510\) 0 0
\(511\) 588.936i 1.15252i
\(512\) 0 0
\(513\) 108.000i 0.210526i
\(514\) 0 0
\(515\) 641.701 169.257i 1.24602 0.328654i
\(516\) 0 0
\(517\) −571.005 −1.10446
\(518\) 0 0
\(519\) 81.2341i 0.156520i
\(520\) 0 0
\(521\) −247.045 −0.474176 −0.237088 0.971488i \(-0.576193\pi\)
−0.237088 + 0.971488i \(0.576193\pi\)
\(522\) 0 0
\(523\) 465.271i 0.889619i −0.895625 0.444810i \(-0.853271\pi\)
0.895625 0.444810i \(-0.146729\pi\)
\(524\) 0 0
\(525\) 161.939 + 285.622i 0.308455 + 0.544041i
\(526\) 0 0
\(527\) −905.423 −1.71807
\(528\) 0 0
\(529\) 47.0000 0.0888469
\(530\) 0 0
\(531\) 84.7353 0.159577
\(532\) 0 0
\(533\) 958.619 1.79854
\(534\) 0 0
\(535\) 117.771 + 446.505i 0.220133 + 0.834588i
\(536\) 0 0
\(537\) 249.895i 0.465353i
\(538\) 0 0
\(539\) −156.528 −0.290404
\(540\) 0 0
\(541\) 494.493i 0.914034i 0.889458 + 0.457017i \(0.151082\pi\)
−0.889458 + 0.457017i \(0.848918\pi\)
\(542\) 0 0
\(543\) −295.514 −0.544224
\(544\) 0 0
\(545\) 153.495 + 581.945i 0.281643 + 1.06779i
\(546\) 0 0
\(547\) 84.5215i 0.154518i 0.997011 + 0.0772591i \(0.0246169\pi\)
−0.997011 + 0.0772591i \(0.975383\pi\)
\(548\) 0 0
\(549\) 348.095i 0.634053i
\(550\) 0 0
\(551\) 378.991i 0.687824i
\(552\) 0 0
\(553\) 1141.07i 2.06343i
\(554\) 0 0
\(555\) 41.1165 + 155.885i 0.0740838 + 0.280873i
\(556\) 0 0
\(557\) −293.424 −0.526793 −0.263397 0.964688i \(-0.584843\pi\)
−0.263397 + 0.964688i \(0.584843\pi\)
\(558\) 0 0
\(559\) 72.0000i 0.128801i
\(560\) 0 0
\(561\) 917.423 1.63533
\(562\) 0 0
\(563\) 67.2324i 0.119418i −0.998216 0.0597091i \(-0.980983\pi\)
0.998216 0.0597091i \(-0.0190173\pi\)
\(564\) 0 0
\(565\) 140.582 + 532.987i 0.248818 + 0.943341i
\(566\) 0 0
\(567\) 68.2432 0.120358
\(568\) 0 0
\(569\) 815.945 1.43400 0.717000 0.697074i \(-0.245515\pi\)
0.717000 + 0.697074i \(0.245515\pi\)
\(570\) 0 0
\(571\) 13.9194 0.0243772 0.0121886 0.999926i \(-0.496120\pi\)
0.0121886 + 0.999926i \(0.496120\pi\)
\(572\) 0 0
\(573\) −91.8144 −0.160235
\(574\) 0 0
\(575\) −521.945 + 295.927i −0.907731 + 0.514656i
\(576\) 0 0
\(577\) 811.405i 1.40625i −0.711068 0.703124i \(-0.751788\pi\)
0.711068 0.703124i \(-0.248212\pi\)
\(578\) 0 0
\(579\) 472.564 0.816172
\(580\) 0 0
\(581\) 304.237i 0.523644i
\(582\) 0 0
\(583\) −204.798 −0.351284
\(584\) 0 0
\(585\) −190.486 + 50.2432i −0.325618 + 0.0858858i
\(586\) 0 0
\(587\) 338.878i 0.577306i −0.957434 0.288653i \(-0.906793\pi\)
0.957434 0.288653i \(-0.0932073\pi\)
\(588\) 0 0
\(589\) 654.621i 1.11141i
\(590\) 0 0
\(591\) 577.720i 0.977530i
\(592\) 0 0
\(593\) 932.602i 1.57269i −0.617791 0.786343i \(-0.711972\pi\)
0.617791 0.786343i \(-0.288028\pi\)
\(594\) 0 0
\(595\) 277.971 + 1053.87i 0.467177 + 1.77120i
\(596\) 0 0
\(597\) 127.266 0.213176
\(598\) 0 0
\(599\) 513.909i 0.857945i 0.903318 + 0.428973i \(0.141124\pi\)
−0.903318 + 0.428973i \(0.858876\pi\)
\(600\) 0 0
\(601\) 538.450 0.895923 0.447962 0.894053i \(-0.352150\pi\)
0.447962 + 0.894053i \(0.352150\pi\)
\(602\) 0 0
\(603\) 298.755i 0.495448i
\(604\) 0 0
\(605\) 1056.26 278.602i 1.74589 0.460500i
\(606\) 0 0
\(607\) −1011.76 −1.66682 −0.833408 0.552659i \(-0.813613\pi\)
−0.833408 + 0.552659i \(0.813613\pi\)
\(608\) 0 0
\(609\) −239.477 −0.393230
\(610\) 0 0
\(611\) 407.016 0.666148
\(612\) 0 0
\(613\) 690.350 1.12618 0.563091 0.826395i \(-0.309612\pi\)
0.563091 + 0.826395i \(0.309612\pi\)
\(614\) 0 0
\(615\) 161.216 + 611.216i 0.262140 + 0.993847i
\(616\) 0 0
\(617\) 1153.09i 1.86886i −0.356143 0.934432i \(-0.615908\pi\)
0.356143 0.934432i \(-0.384092\pi\)
\(618\) 0 0
\(619\) −70.1244 −0.113287 −0.0566433 0.998394i \(-0.518040\pi\)
−0.0566433 + 0.998394i \(0.518040\pi\)
\(620\) 0 0
\(621\) 124.708i 0.200817i
\(622\) 0 0
\(623\) 697.459 1.11952
\(624\) 0 0
\(625\) 320.927 536.312i 0.513484 0.858099i
\(626\) 0 0
\(627\) 663.297i 1.05789i
\(628\) 0 0
\(629\) 535.156i 0.850805i
\(630\) 0 0
\(631\) 445.368i 0.705813i 0.935659 + 0.352907i \(0.114807\pi\)
−0.935659 + 0.352907i \(0.885193\pi\)
\(632\) 0 0
\(633\) 496.486i 0.784339i
\(634\) 0 0
\(635\) −824.663 + 217.515i −1.29868 + 0.342544i
\(636\) 0 0
\(637\) 111.574 0.175156
\(638\) 0 0
\(639\) 164.973i 0.258173i
\(640\) 0 0
\(641\) −410.036 −0.639682 −0.319841 0.947471i \(-0.603630\pi\)
−0.319841 + 0.947471i \(0.603630\pi\)
\(642\) 0 0
\(643\) 843.971i 1.31255i 0.754521 + 0.656276i \(0.227869\pi\)
−0.754521 + 0.656276i \(0.772131\pi\)
\(644\) 0 0
\(645\) 45.9072 12.1086i 0.0711740 0.0187730i
\(646\) 0 0
\(647\) 979.927 1.51457 0.757285 0.653084i \(-0.226525\pi\)
0.757285 + 0.653084i \(0.226525\pi\)
\(648\) 0 0
\(649\) 520.414 0.801870
\(650\) 0 0
\(651\) −413.643 −0.635396
\(652\) 0 0
\(653\) −350.899 −0.537365 −0.268682 0.963229i \(-0.586588\pi\)
−0.268682 + 0.963229i \(0.586588\pi\)
\(654\) 0 0
\(655\) −519.372 + 136.991i −0.792934 + 0.209146i
\(656\) 0 0
\(657\) 233.009i 0.354656i
\(658\) 0 0
\(659\) −659.126 −1.00019 −0.500096 0.865970i \(-0.666702\pi\)
−0.500096 + 0.865970i \(0.666702\pi\)
\(660\) 0 0
\(661\) 988.985i 1.49620i −0.663589 0.748098i \(-0.730967\pi\)
0.663589 0.748098i \(-0.269033\pi\)
\(662\) 0 0
\(663\) −653.945 −0.986343
\(664\) 0 0
\(665\) 761.945 200.973i 1.14578 0.302215i
\(666\) 0 0
\(667\) 437.621i 0.656103i
\(668\) 0 0
\(669\) 105.187i 0.157230i
\(670\) 0 0
\(671\) 2137.87i 3.18610i
\(672\) 0 0
\(673\) 981.633i 1.45859i 0.684198 + 0.729297i \(0.260153\pi\)
−0.684198 + 0.729297i \(0.739847\pi\)
\(674\) 0 0
\(675\) −64.0701 113.005i −0.0949187 0.167414i
\(676\) 0 0
\(677\) −204.866 −0.302609 −0.151304 0.988487i \(-0.548347\pi\)
−0.151304 + 0.988487i \(0.548347\pi\)
\(678\) 0 0
\(679\) 301.982i 0.444745i
\(680\) 0 0
\(681\) 568.486 0.834782
\(682\) 0 0
\(683\) 177.480i 0.259854i 0.991524 + 0.129927i \(0.0414743\pi\)
−0.991524 + 0.129927i \(0.958526\pi\)
\(684\) 0 0
\(685\) −158.412 600.585i −0.231258 0.876766i
\(686\) 0 0
\(687\) 178.432 0.259726
\(688\) 0 0
\(689\) 145.982 0.211875
\(690\) 0 0
\(691\) 1122.18 1.62399 0.811997 0.583662i \(-0.198380\pi\)
0.811997 + 0.583662i \(0.198380\pi\)
\(692\) 0 0
\(693\) 419.125 0.604798
\(694\) 0 0
\(695\) −540.000 + 142.432i −0.776978 + 0.204938i
\(696\) 0 0
\(697\) 2098.32i 3.01051i
\(698\) 0 0
\(699\) −431.686 −0.617577
\(700\) 0 0
\(701\) 159.627i 0.227714i 0.993497 + 0.113857i \(0.0363205\pi\)
−0.993497 + 0.113857i \(0.963679\pi\)
\(702\) 0 0
\(703\) 386.918 0.550381
\(704\) 0 0
\(705\) 68.4500 + 259.514i 0.0970922 + 0.368104i
\(706\) 0 0
\(707\) 251.402i 0.355590i
\(708\) 0 0
\(709\) 917.050i 1.29344i −0.762727 0.646721i \(-0.776140\pi\)
0.762727 0.646721i \(-0.223860\pi\)
\(710\) 0 0
\(711\) 451.459i 0.634964i
\(712\) 0 0
\(713\) 755.891i 1.06016i
\(714\) 0 0
\(715\) −1169.90 + 308.575i −1.63622 + 0.431574i
\(716\) 0 0
\(717\) 472.803 0.659418
\(718\) 0 0
\(719\) 134.918i 0.187647i 0.995589 + 0.0938235i \(0.0299089\pi\)
−0.995589 + 0.0938235i \(0.970091\pi\)
\(720\) 0 0
\(721\) 1006.43 1.39588
\(722\) 0 0
\(723\) 547.234i 0.756893i
\(724\) 0 0
\(725\) 224.833 + 396.553i 0.310115 + 0.546969i
\(726\) 0 0
\(727\) 235.336 0.323708 0.161854 0.986815i \(-0.448253\pi\)
0.161854 + 0.986815i \(0.448253\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) 157.601 0.215596
\(732\) 0 0
\(733\) −1089.83 −1.48681 −0.743406 0.668840i \(-0.766791\pi\)
−0.743406 + 0.668840i \(0.766791\pi\)
\(734\) 0 0
\(735\) 18.7640 + 71.1398i 0.0255293 + 0.0967888i
\(736\) 0 0
\(737\) 1834.85i 2.48961i
\(738\) 0 0
\(739\) −602.754 −0.815634 −0.407817 0.913064i \(-0.633710\pi\)
−0.407817 + 0.913064i \(0.633710\pi\)
\(740\) 0 0
\(741\) 472.803i 0.638060i
\(742\) 0 0
\(743\) −93.4955 −0.125835 −0.0629175 0.998019i \(-0.520041\pi\)
−0.0629175 + 0.998019i \(0.520041\pi\)
\(744\) 0 0
\(745\) −76.2614 289.129i −0.102364 0.388092i
\(746\) 0 0
\(747\) 120.370i 0.161137i
\(748\) 0 0
\(749\) 700.289i 0.934965i
\(750\) 0 0
\(751\) 658.450i 0.876764i −0.898789 0.438382i \(-0.855552\pi\)
0.898789 0.438382i \(-0.144448\pi\)
\(752\) 0 0
\(753\) 217.858i 0.289320i
\(754\) 0 0
\(755\) −82.2562 311.857i −0.108949 0.413056i
\(756\) 0 0
\(757\) −1135.98 −1.50063 −0.750317 0.661078i \(-0.770099\pi\)
−0.750317 + 0.661078i \(0.770099\pi\)
\(758\) 0 0
\(759\) 765.909i 1.00910i
\(760\) 0 0
\(761\) −535.045 −0.703082 −0.351541 0.936172i \(-0.614342\pi\)
−0.351541 + 0.936172i \(0.614342\pi\)
\(762\) 0 0
\(763\) 912.712i 1.19621i
\(764\) 0 0
\(765\) −109.977 416.956i −0.143761 0.545040i
\(766\) 0 0
\(767\) −370.955 −0.483643
\(768\) 0 0
\(769\) 505.441 0.657270 0.328635 0.944457i \(-0.393411\pi\)
0.328635 + 0.944457i \(0.393411\pi\)
\(770\) 0 0
\(771\) 258.544 0.335336
\(772\) 0 0
\(773\) 280.234 0.362528 0.181264 0.983434i \(-0.441981\pi\)
0.181264 + 0.983434i \(0.441981\pi\)
\(774\) 0 0
\(775\) 388.348 + 684.955i 0.501095 + 0.883812i
\(776\) 0 0
\(777\) 244.486i 0.314654i
\(778\) 0 0
\(779\) 1517.09 1.94748
\(780\) 0 0
\(781\) 1013.20i 1.29731i
\(782\) 0 0
\(783\) 94.7477 0.121006
\(784\) 0 0
\(785\) 355.045 93.6477i 0.452287 0.119296i
\(786\) 0 0
\(787\) 1235.92i 1.57042i 0.619227 + 0.785212i \(0.287446\pi\)
−0.619227 + 0.785212i \(0.712554\pi\)
\(788\) 0 0
\(789\) 167.182i 0.211891i
\(790\) 0 0
\(791\) 835.927i 1.05680i
\(792\) 0 0
\(793\) 1523.89i 1.92168i
\(794\) 0 0
\(795\) 24.5505 + 93.0780i 0.0308811 + 0.117079i
\(796\) 0 0
\(797\) −134.918 −0.169282 −0.0846409 0.996412i \(-0.526974\pi\)
−0.0846409 + 0.996412i \(0.526974\pi\)
\(798\) 0 0
\(799\) 890.918i 1.11504i
\(800\) 0 0
\(801\) −275.945 −0.344501
\(802\) 0 0
\(803\) 1431.06i 1.78214i
\(804\) 0 0
\(805\) −879.819 + 232.063i −1.09294 + 0.288277i
\(806\) 0 0
\(807\) 626.573 0.776423
\(808\) 0 0
\(809\) −402.936 −0.498067 −0.249034 0.968495i \(-0.580113\pi\)
−0.249034 + 0.968495i \(0.580113\pi\)
\(810\) 0 0
\(811\) 1263.33 1.55775 0.778874 0.627180i \(-0.215791\pi\)
0.778874 + 0.627180i \(0.215791\pi\)
\(812\) 0 0
\(813\) 251.974 0.309931
\(814\) 0 0
\(815\) −202.432 767.477i −0.248383 0.941690i
\(816\) 0 0
\(817\) 113.945i 0.139468i
\(818\) 0 0
\(819\) −298.755 −0.364780
\(820\) 0 0
\(821\) 1074.82i 1.30916i 0.755995 + 0.654578i \(0.227154\pi\)
−0.755995 + 0.654578i \(0.772846\pi\)
\(822\) 0 0
\(823\) −557.078 −0.676887 −0.338444 0.940987i \(-0.609900\pi\)
−0.338444 + 0.940987i \(0.609900\pi\)
\(824\) 0 0
\(825\) −393.495 694.033i −0.476964 0.841252i
\(826\) 0 0
\(827\) 1139.53i 1.37791i 0.724804 + 0.688955i \(0.241930\pi\)
−0.724804 + 0.688955i \(0.758070\pi\)
\(828\) 0 0
\(829\) 201.697i 0.243302i 0.992573 + 0.121651i \(0.0388189\pi\)
−0.992573 + 0.121651i \(0.961181\pi\)
\(830\) 0 0
\(831\) 177.811i 0.213973i
\(832\) 0 0
\(833\) 244.225i 0.293187i
\(834\) 0 0
\(835\) −577.631 + 152.357i −0.691774 + 0.182464i
\(836\) 0 0
\(837\) 163.655 0.195526
\(838\) 0 0
\(839\) 661.873i 0.788883i −0.918921 0.394441i \(-0.870938\pi\)
0.918921 0.394441i \(-0.129062\pi\)
\(840\) 0 0
\(841\) 508.514 0.604654
\(842\) 0 0
\(843\) 185.345i 0.219864i
\(844\) 0 0
\(845\) 16.8554 4.44581i 0.0199472 0.00526132i
\(846\) 0 0
\(847\) 1656.62 1.95587
\(848\) 0 0
\(849\) 415.405 0.489287
\(850\) 0 0
\(851\) −446.775 −0.525000
\(852\) 0 0
\(853\) −1008.56 −1.18236 −0.591182 0.806538i \(-0.701338\pi\)
−0.591182 + 0.806538i \(0.701338\pi\)
\(854\) 0 0
\(855\) −301.459 + 79.5136i −0.352584 + 0.0929984i
\(856\) 0 0
\(857\) 197.793i 0.230797i −0.993319 0.115399i \(-0.963185\pi\)
0.993319 0.115399i \(-0.0368145\pi\)
\(858\) 0 0
\(859\) 61.4484 0.0715348 0.0357674 0.999360i \(-0.488612\pi\)
0.0357674 + 0.999360i \(0.488612\pi\)
\(860\) 0 0
\(861\) 958.619i 1.11338i
\(862\) 0 0
\(863\) −800.450 −0.927520 −0.463760 0.885961i \(-0.653500\pi\)
−0.463760 + 0.885961i \(0.653500\pi\)
\(864\) 0 0
\(865\) −226.748 + 59.8076i −0.262136 + 0.0691417i
\(866\) 0 0
\(867\) 930.859i 1.07366i
\(868\) 0 0
\(869\) 2772.70i 3.19068i
\(870\) 0 0
\(871\) 1307.89i 1.50160i
\(872\) 0 0
\(873\) 119.477i 0.136858i
\(874\) 0 0
\(875\) 678.027 662.303i 0.774888 0.756918i
\(876\) 0 0
\(877\) −463.341 −0.528325 −0.264162 0.964478i \(-0.585095\pi\)
−0.264162 + 0.964478i \(0.585095\pi\)
\(878\) 0 0
\(879\) 20.1886i 0.0229677i
\(880\) 0 0
\(881\) −719.009 −0.816128 −0.408064 0.912953i \(-0.633796\pi\)
−0.408064 + 0.912953i \(0.633796\pi\)
\(882\) 0 0
\(883\) 1014.82i 1.14929i 0.818402 + 0.574646i \(0.194860\pi\)
−0.818402 + 0.574646i \(0.805140\pi\)
\(884\) 0 0
\(885\) −62.3853 236.521i −0.0704919 0.267255i
\(886\) 0 0
\(887\) −284.559 −0.320811 −0.160405 0.987051i \(-0.551280\pi\)
−0.160405 + 0.987051i \(0.551280\pi\)
\(888\) 0 0
\(889\) −1293.39 −1.45488
\(890\) 0 0
\(891\) −165.824 −0.186110
\(892\) 0 0
\(893\) 644.134 0.721315
\(894\) 0 0
\(895\) 697.528 183.982i 0.779361 0.205566i
\(896\) 0 0
\(897\) 545.945i 0.608635i
\(898\) 0 0
\(899\) −574.295 −0.638815
\(900\) 0 0
\(901\) 319.540i 0.354650i
\(902\) 0 0
\(903\) 72.0000 0.0797342
\(904\) 0 0
\(905\) 217.568 + 824.864i 0.240407 + 0.911452i
\(906\) 0 0
\(907\) 93.1975i 0.102754i −0.998679 0.0513768i \(-0.983639\pi\)
0.998679 0.0513768i \(-0.0163609\pi\)
\(908\) 0 0
\(909\) 99.4656i 0.109423i
\(910\) 0 0
\(911\) 932.036i 1.02309i 0.859256 + 0.511546i \(0.170927\pi\)
−0.859256 + 0.511546i \(0.829073\pi\)
\(912\) 0 0
\(913\) 739.267i 0.809712i
\(914\) 0 0
\(915\) 971.633 256.281i 1.06189 0.280088i
\(916\) 0 0
\(917\) −814.573 −0.888302
\(918\) 0 0
\(919\) 1249.44i 1.35957i 0.733413 + 0.679783i \(0.237926\pi\)
−0.733413 + 0.679783i \(0.762074\pi\)
\(920\) 0 0
\(921\) 502.018 0.545079
\(922\) 0 0
\(923\) 722.218i 0.782468i
\(924\) 0 0
\(925\) 404.847 229.536i 0.437673 0.248147i
\(926\) 0 0
\(927\) −398.189 −0.429545
\(928\) 0 0
\(929\) 1488.88 1.60267 0.801336 0.598215i \(-0.204123\pi\)
0.801336 + 0.598215i \(0.204123\pi\)
\(930\) 0 0
\(931\) 176.575 0.189661
\(932\) 0 0
\(933\) 65.7864 0.0705106
\(934\) 0 0
\(935\) −675.441 2560.79i −0.722397 2.73881i
\(936\) 0 0
\(937\) 689.670i 0.736040i −0.929818 0.368020i \(-0.880036\pi\)
0.929818 0.368020i \(-0.119964\pi\)
\(938\) 0 0
\(939\) 564.856 0.601550
\(940\) 0 0
\(941\) 884.134i 0.939568i 0.882781 + 0.469784i \(0.155668\pi\)
−0.882781 + 0.469784i \(0.844332\pi\)
\(942\) 0 0
\(943\) −1751.78 −1.85767
\(944\) 0 0
\(945\) −50.2432 190.486i −0.0531674 0.201573i
\(946\) 0 0
\(947\) 1716.80i 1.81288i −0.422334 0.906440i \(-0.638789\pi\)
0.422334 0.906440i \(-0.361211\pi\)
\(948\) 0 0
\(949\) 1020.07i 1.07489i
\(950\) 0 0
\(951\) 458.766i 0.482404i
\(952\) 0 0
\(953\) 980.080i 1.02842i 0.857666 + 0.514208i \(0.171914\pi\)
−0.857666 + 0.514208i \(0.828086\pi\)
\(954\) 0 0
\(955\) 67.5972 + 256.281i 0.0707824 + 0.268357i
\(956\) 0 0
\(957\) 581.906 0.608052
\(958\) 0 0
\(959\) 941.945i 0.982216i
\(960\) 0 0
\(961\) −30.9636 −0.0322202
\(962\) 0 0
\(963\) 277.065i 0.287710i
\(964\) 0 0
\(965\) −347.919 1319.06i −0.360538 1.36690i
\(966\) 0 0
\(967\) −1573.83 −1.62754 −0.813771 0.581186i \(-0.802589\pi\)
−0.813771 + 0.581186i \(0.802589\pi\)
\(968\) 0 0
\(969\) −1034.92 −1.06803
\(970\) 0 0
\(971\) −1139.13 −1.17315 −0.586573 0.809896i \(-0.699523\pi\)
−0.586573 + 0.809896i \(0.699523\pi\)
\(972\) 0 0
\(973\) −846.926 −0.870427
\(974\) 0 0
\(975\) 280.486 + 494.711i 0.287678 + 0.507396i
\(976\) 0 0
\(977\) 474.207i 0.485370i −0.970105 0.242685i \(-0.921972\pi\)
0.970105 0.242685i \(-0.0780282\pi\)
\(978\) 0 0
\(979\) −1694.76 −1.73111
\(980\) 0 0
\(981\) 361.109i 0.368103i
\(982\) 0 0
\(983\) 1625.31 1.65342 0.826711 0.562627i \(-0.190209\pi\)
0.826711 + 0.562627i \(0.190209\pi\)
\(984\) 0 0
\(985\) −1612.58 + 425.339i −1.63714 + 0.431817i
\(986\) 0 0
\(987\) 407.016i 0.412377i
\(988\) 0 0
\(989\) 131.573i 0.133036i
\(990\) 0 0
\(991\) 1321.44i 1.33344i −0.745307 0.666721i \(-0.767697\pi\)
0.745307 0.666721i \(-0.232303\pi\)
\(992\) 0 0
\(993\) 134.918i 0.135869i
\(994\) 0 0
\(995\) −93.6983 355.237i −0.0941691 0.357022i
\(996\) 0 0
\(997\) −198.145 −0.198742 −0.0993708 0.995050i \(-0.531683\pi\)
−0.0993708 + 0.995050i \(0.531683\pi\)
\(998\) 0 0
\(999\) 96.7295i 0.0968264i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 960.3.p.b.799.8 yes 8
4.3 odd 2 960.3.p.a.799.4 yes 8
5.4 even 2 960.3.p.a.799.1 8
8.3 odd 2 960.3.p.a.799.5 yes 8
8.5 even 2 inner 960.3.p.b.799.1 yes 8
20.19 odd 2 inner 960.3.p.b.799.5 yes 8
40.19 odd 2 inner 960.3.p.b.799.4 yes 8
40.29 even 2 960.3.p.a.799.8 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
960.3.p.a.799.1 8 5.4 even 2
960.3.p.a.799.4 yes 8 4.3 odd 2
960.3.p.a.799.5 yes 8 8.3 odd 2
960.3.p.a.799.8 yes 8 40.29 even 2
960.3.p.b.799.1 yes 8 8.5 even 2 inner
960.3.p.b.799.4 yes 8 40.19 odd 2 inner
960.3.p.b.799.5 yes 8 20.19 odd 2 inner
960.3.p.b.799.8 yes 8 1.1 even 1 trivial