Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [960,4,Mod(1,960)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(960, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("960.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 960.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 60) |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 960.4.a.r | 1 | |
4.b | odd | 2 | 1 | 960.4.a.bc | 1 | ||
8.b | even | 2 | 1 | 240.4.a.i | 1 | ||
8.d | odd | 2 | 1 | 60.4.a.a | ✓ | 1 | |
24.f | even | 2 | 1 | 180.4.a.d | 1 | ||
24.h | odd | 2 | 1 | 720.4.a.bb | 1 | ||
40.e | odd | 2 | 1 | 300.4.a.i | 1 | ||
40.f | even | 2 | 1 | 1200.4.a.a | 1 | ||
40.i | odd | 4 | 2 | 1200.4.f.n | 2 | ||
40.k | even | 4 | 2 | 300.4.d.b | 2 | ||
72.l | even | 6 | 2 | 1620.4.i.f | 2 | ||
72.p | odd | 6 | 2 | 1620.4.i.l | 2 | ||
120.m | even | 2 | 1 | 900.4.a.q | 1 | ||
120.q | odd | 4 | 2 | 900.4.d.h | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
60.4.a.a | ✓ | 1 | 8.d | odd | 2 | 1 | |
180.4.a.d | 1 | 24.f | even | 2 | 1 | ||
240.4.a.i | 1 | 8.b | even | 2 | 1 | ||
300.4.a.i | 1 | 40.e | odd | 2 | 1 | ||
300.4.d.b | 2 | 40.k | even | 4 | 2 | ||
720.4.a.bb | 1 | 24.h | odd | 2 | 1 | ||
900.4.a.q | 1 | 120.m | even | 2 | 1 | ||
900.4.d.h | 2 | 120.q | odd | 4 | 2 | ||
960.4.a.r | 1 | 1.a | even | 1 | 1 | trivial | |
960.4.a.bc | 1 | 4.b | odd | 2 | 1 | ||
1200.4.a.a | 1 | 40.f | even | 2 | 1 | ||
1200.4.f.n | 2 | 40.i | odd | 4 | 2 | ||
1620.4.i.f | 2 | 72.l | even | 6 | 2 | ||
1620.4.i.l | 2 | 72.p | odd | 6 | 2 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|