Properties

Label 960.4.d.a.289.8
Level $960$
Weight $4$
Character 960.289
Analytic conductor $56.642$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [960,4,Mod(289,960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(960, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("960.289");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 960 = 2^{6} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 960.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(56.6418336055\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 18 x^{10} + 300 x^{9} + 14598 x^{8} - 60928 x^{7} + 147804 x^{6} + 1450180 x^{5} + \cdots + 2737382400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{20} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 289.8
Root \(-2.21647 - 2.21647i\) of defining polynomial
Character \(\chi\) \(=\) 960.289
Dual form 960.4.d.a.289.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} +(4.70786 + 10.1408i) q^{5} -21.3630i q^{7} +9.00000 q^{9} +62.3850i q^{11} +61.9262 q^{13} +(-14.1236 - 30.4224i) q^{15} -97.6721i q^{17} +77.4831i q^{19} +64.0890i q^{21} +127.834i q^{23} +(-80.6721 + 95.4831i) q^{25} -27.0000 q^{27} -294.782i q^{29} -45.2846 q^{31} -187.155i q^{33} +(216.638 - 100.574i) q^{35} -50.3207 q^{37} -185.779 q^{39} +326.114 q^{41} +112.378 q^{43} +(42.3708 + 91.2673i) q^{45} +61.9512i q^{47} -113.378 q^{49} +293.016i q^{51} +287.558 q^{53} +(-632.635 + 293.700i) q^{55} -232.449i q^{57} -387.661i q^{59} +472.891i q^{61} -192.267i q^{63} +(291.540 + 627.982i) q^{65} -1050.93 q^{67} -383.503i q^{69} +115.039 q^{71} +756.343i q^{73} +(242.016 - 286.449i) q^{75} +1332.73 q^{77} +579.824 q^{79} +81.0000 q^{81} +604.520 q^{83} +(990.474 - 459.827i) q^{85} +884.345i q^{87} -560.602 q^{89} -1322.93i q^{91} +135.854 q^{93} +(-785.741 + 364.780i) q^{95} -1183.96i q^{97} +561.465i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 36 q^{3} + 108 q^{9} - 44 q^{25} - 324 q^{27} - 296 q^{35} + 792 q^{41} + 1472 q^{43} - 1484 q^{49} + 952 q^{65} - 1152 q^{67} + 132 q^{75} + 972 q^{81} + 1216 q^{83} - 3112 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/960\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(577\) \(641\) \(901\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) 4.70786 + 10.1408i 0.421084 + 0.907022i
\(6\) 0 0
\(7\) 21.3630i 1.15349i −0.816923 0.576747i \(-0.804322\pi\)
0.816923 0.576747i \(-0.195678\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 62.3850i 1.70998i 0.518643 + 0.854991i \(0.326437\pi\)
−0.518643 + 0.854991i \(0.673563\pi\)
\(12\) 0 0
\(13\) 61.9262 1.32117 0.660587 0.750750i \(-0.270308\pi\)
0.660587 + 0.750750i \(0.270308\pi\)
\(14\) 0 0
\(15\) −14.1236 30.4224i −0.243113 0.523669i
\(16\) 0 0
\(17\) 97.6721i 1.39347i −0.717329 0.696734i \(-0.754636\pi\)
0.717329 0.696734i \(-0.245364\pi\)
\(18\) 0 0
\(19\) 77.4831i 0.935570i 0.883842 + 0.467785i \(0.154948\pi\)
−0.883842 + 0.467785i \(0.845052\pi\)
\(20\) 0 0
\(21\) 64.0890i 0.665970i
\(22\) 0 0
\(23\) 127.834i 1.15893i 0.814999 + 0.579463i \(0.196738\pi\)
−0.814999 + 0.579463i \(0.803262\pi\)
\(24\) 0 0
\(25\) −80.6721 + 95.4831i −0.645377 + 0.763864i
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 294.782i 1.88757i −0.330559 0.943785i \(-0.607237\pi\)
0.330559 0.943785i \(-0.392763\pi\)
\(30\) 0 0
\(31\) −45.2846 −0.262366 −0.131183 0.991358i \(-0.541878\pi\)
−0.131183 + 0.991358i \(0.541878\pi\)
\(32\) 0 0
\(33\) 187.155i 0.987258i
\(34\) 0 0
\(35\) 216.638 100.574i 1.04624 0.485718i
\(36\) 0 0
\(37\) −50.3207 −0.223586 −0.111793 0.993732i \(-0.535659\pi\)
−0.111793 + 0.993732i \(0.535659\pi\)
\(38\) 0 0
\(39\) −185.779 −0.762780
\(40\) 0 0
\(41\) 326.114 1.24221 0.621104 0.783729i \(-0.286685\pi\)
0.621104 + 0.783729i \(0.286685\pi\)
\(42\) 0 0
\(43\) 112.378 0.398546 0.199273 0.979944i \(-0.436142\pi\)
0.199273 + 0.979944i \(0.436142\pi\)
\(44\) 0 0
\(45\) 42.3708 + 91.2673i 0.140361 + 0.302341i
\(46\) 0 0
\(47\) 61.9512i 0.192266i 0.995368 + 0.0961332i \(0.0306475\pi\)
−0.995368 + 0.0961332i \(0.969353\pi\)
\(48\) 0 0
\(49\) −113.378 −0.330548
\(50\) 0 0
\(51\) 293.016i 0.804519i
\(52\) 0 0
\(53\) 287.558 0.745266 0.372633 0.927979i \(-0.378455\pi\)
0.372633 + 0.927979i \(0.378455\pi\)
\(54\) 0 0
\(55\) −632.635 + 293.700i −1.55099 + 0.720046i
\(56\) 0 0
\(57\) 232.449i 0.540152i
\(58\) 0 0
\(59\) 387.661i 0.855411i −0.903918 0.427705i \(-0.859322\pi\)
0.903918 0.427705i \(-0.140678\pi\)
\(60\) 0 0
\(61\) 472.891i 0.992581i 0.868157 + 0.496291i \(0.165305\pi\)
−0.868157 + 0.496291i \(0.834695\pi\)
\(62\) 0 0
\(63\) 192.267i 0.384498i
\(64\) 0 0
\(65\) 291.540 + 627.982i 0.556325 + 1.19833i
\(66\) 0 0
\(67\) −1050.93 −1.91629 −0.958147 0.286278i \(-0.907582\pi\)
−0.958147 + 0.286278i \(0.907582\pi\)
\(68\) 0 0
\(69\) 383.503i 0.669106i
\(70\) 0 0
\(71\) 115.039 0.192290 0.0961452 0.995367i \(-0.469349\pi\)
0.0961452 + 0.995367i \(0.469349\pi\)
\(72\) 0 0
\(73\) 756.343i 1.21265i 0.795218 + 0.606323i \(0.207356\pi\)
−0.795218 + 0.606323i \(0.792644\pi\)
\(74\) 0 0
\(75\) 242.016 286.449i 0.372608 0.441017i
\(76\) 0 0
\(77\) 1332.73 1.97245
\(78\) 0 0
\(79\) 579.824 0.825764 0.412882 0.910785i \(-0.364522\pi\)
0.412882 + 0.910785i \(0.364522\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 604.520 0.799455 0.399727 0.916634i \(-0.369105\pi\)
0.399727 + 0.916634i \(0.369105\pi\)
\(84\) 0 0
\(85\) 990.474 459.827i 1.26391 0.586767i
\(86\) 0 0
\(87\) 884.345i 1.08979i
\(88\) 0 0
\(89\) −560.602 −0.667682 −0.333841 0.942629i \(-0.608345\pi\)
−0.333841 + 0.942629i \(0.608345\pi\)
\(90\) 0 0
\(91\) 1322.93i 1.52397i
\(92\) 0 0
\(93\) 135.854 0.151477
\(94\) 0 0
\(95\) −785.741 + 364.780i −0.848582 + 0.393954i
\(96\) 0 0
\(97\) 1183.96i 1.23931i −0.784873 0.619657i \(-0.787272\pi\)
0.784873 0.619657i \(-0.212728\pi\)
\(98\) 0 0
\(99\) 561.465i 0.569994i
\(100\) 0 0
\(101\) 1772.90i 1.74664i 0.487149 + 0.873319i \(0.338037\pi\)
−0.487149 + 0.873319i \(0.661963\pi\)
\(102\) 0 0
\(103\) 1092.73i 1.04534i 0.852535 + 0.522669i \(0.175064\pi\)
−0.852535 + 0.522669i \(0.824936\pi\)
\(104\) 0 0
\(105\) −649.915 + 301.722i −0.604049 + 0.280429i
\(106\) 0 0
\(107\) 561.932 0.507701 0.253851 0.967243i \(-0.418303\pi\)
0.253851 + 0.967243i \(0.418303\pi\)
\(108\) 0 0
\(109\) 1443.62i 1.26856i 0.773102 + 0.634282i \(0.218704\pi\)
−0.773102 + 0.634282i \(0.781296\pi\)
\(110\) 0 0
\(111\) 150.962 0.129087
\(112\) 0 0
\(113\) 8.15990i 0.00679308i 0.999994 + 0.00339654i \(0.00108116\pi\)
−0.999994 + 0.00339654i \(0.998919\pi\)
\(114\) 0 0
\(115\) −1296.34 + 601.826i −1.05117 + 0.488005i
\(116\) 0 0
\(117\) 557.336 0.440391
\(118\) 0 0
\(119\) −2086.57 −1.60736
\(120\) 0 0
\(121\) −2560.89 −1.92404
\(122\) 0 0
\(123\) −978.343 −0.717189
\(124\) 0 0
\(125\) −1348.07 368.559i −0.964599 0.263720i
\(126\) 0 0
\(127\) 2522.43i 1.76244i 0.472711 + 0.881218i \(0.343276\pi\)
−0.472711 + 0.881218i \(0.656724\pi\)
\(128\) 0 0
\(129\) −337.134 −0.230101
\(130\) 0 0
\(131\) 71.1832i 0.0474756i 0.999718 + 0.0237378i \(0.00755668\pi\)
−0.999718 + 0.0237378i \(0.992443\pi\)
\(132\) 0 0
\(133\) 1655.27 1.07917
\(134\) 0 0
\(135\) −127.112 273.802i −0.0810376 0.174556i
\(136\) 0 0
\(137\) 705.637i 0.440048i 0.975494 + 0.220024i \(0.0706136\pi\)
−0.975494 + 0.220024i \(0.929386\pi\)
\(138\) 0 0
\(139\) 2738.07i 1.67079i 0.549649 + 0.835395i \(0.314761\pi\)
−0.549649 + 0.835395i \(0.685239\pi\)
\(140\) 0 0
\(141\) 185.854i 0.111005i
\(142\) 0 0
\(143\) 3863.27i 2.25918i
\(144\) 0 0
\(145\) 2989.32 1387.79i 1.71207 0.794826i
\(146\) 0 0
\(147\) 340.134 0.190842
\(148\) 0 0
\(149\) 1330.57i 0.731571i 0.930699 + 0.365786i \(0.119200\pi\)
−0.930699 + 0.365786i \(0.880800\pi\)
\(150\) 0 0
\(151\) 2504.12 1.34955 0.674775 0.738023i \(-0.264241\pi\)
0.674775 + 0.738023i \(0.264241\pi\)
\(152\) 0 0
\(153\) 879.049i 0.464489i
\(154\) 0 0
\(155\) −213.194 459.223i −0.110478 0.237972i
\(156\) 0 0
\(157\) −444.260 −0.225833 −0.112917 0.993604i \(-0.536019\pi\)
−0.112917 + 0.993604i \(0.536019\pi\)
\(158\) 0 0
\(159\) −862.673 −0.430279
\(160\) 0 0
\(161\) 2730.92 1.33681
\(162\) 0 0
\(163\) 2351.99 1.13020 0.565099 0.825023i \(-0.308838\pi\)
0.565099 + 0.825023i \(0.308838\pi\)
\(164\) 0 0
\(165\) 1897.90 881.100i 0.895465 0.415719i
\(166\) 0 0
\(167\) 1293.63i 0.599426i −0.954029 0.299713i \(-0.903109\pi\)
0.954029 0.299713i \(-0.0968909\pi\)
\(168\) 0 0
\(169\) 1637.86 0.745499
\(170\) 0 0
\(171\) 697.348i 0.311857i
\(172\) 0 0
\(173\) 3599.40 1.58183 0.790917 0.611923i \(-0.209604\pi\)
0.790917 + 0.611923i \(0.209604\pi\)
\(174\) 0 0
\(175\) 2039.81 + 1723.40i 0.881113 + 0.744438i
\(176\) 0 0
\(177\) 1162.98i 0.493872i
\(178\) 0 0
\(179\) 177.522i 0.0741263i 0.999313 + 0.0370632i \(0.0118003\pi\)
−0.999313 + 0.0370632i \(0.988200\pi\)
\(180\) 0 0
\(181\) 4532.03i 1.86112i 0.366136 + 0.930562i \(0.380681\pi\)
−0.366136 + 0.930562i \(0.619319\pi\)
\(182\) 0 0
\(183\) 1418.67i 0.573067i
\(184\) 0 0
\(185\) −236.903 510.293i −0.0941484 0.202797i
\(186\) 0 0
\(187\) 6093.28 2.38281
\(188\) 0 0
\(189\) 576.801i 0.221990i
\(190\) 0 0
\(191\) −1060.25 −0.401661 −0.200830 0.979626i \(-0.564364\pi\)
−0.200830 + 0.979626i \(0.564364\pi\)
\(192\) 0 0
\(193\) 38.7168i 0.0144399i 0.999974 + 0.00721994i \(0.00229820\pi\)
−0.999974 + 0.00721994i \(0.997702\pi\)
\(194\) 0 0
\(195\) −874.621 1883.95i −0.321194 0.691858i
\(196\) 0 0
\(197\) 3836.30 1.38744 0.693718 0.720247i \(-0.255972\pi\)
0.693718 + 0.720247i \(0.255972\pi\)
\(198\) 0 0
\(199\) −3402.71 −1.21212 −0.606059 0.795419i \(-0.707251\pi\)
−0.606059 + 0.795419i \(0.707251\pi\)
\(200\) 0 0
\(201\) 3152.79 1.10637
\(202\) 0 0
\(203\) −6297.42 −2.17730
\(204\) 0 0
\(205\) 1535.30 + 3307.06i 0.523073 + 1.12671i
\(206\) 0 0
\(207\) 1150.51i 0.386308i
\(208\) 0 0
\(209\) −4833.78 −1.59981
\(210\) 0 0
\(211\) 2878.08i 0.939028i −0.882925 0.469514i \(-0.844429\pi\)
0.882925 0.469514i \(-0.155571\pi\)
\(212\) 0 0
\(213\) −345.117 −0.111019
\(214\) 0 0
\(215\) 529.060 + 1139.60i 0.167821 + 0.361490i
\(216\) 0 0
\(217\) 967.416i 0.302638i
\(218\) 0 0
\(219\) 2269.03i 0.700122i
\(220\) 0 0
\(221\) 6048.47i 1.84101i
\(222\) 0 0
\(223\) 430.971i 0.129417i −0.997904 0.0647085i \(-0.979388\pi\)
0.997904 0.0647085i \(-0.0206117\pi\)
\(224\) 0 0
\(225\) −726.049 + 859.348i −0.215126 + 0.254621i
\(226\) 0 0
\(227\) 3613.48 1.05654 0.528271 0.849076i \(-0.322841\pi\)
0.528271 + 0.849076i \(0.322841\pi\)
\(228\) 0 0
\(229\) 1668.14i 0.481369i 0.970603 + 0.240684i \(0.0773719\pi\)
−0.970603 + 0.240684i \(0.922628\pi\)
\(230\) 0 0
\(231\) −3998.20 −1.13880
\(232\) 0 0
\(233\) 1373.79i 0.386265i −0.981173 0.193132i \(-0.938135\pi\)
0.981173 0.193132i \(-0.0618647\pi\)
\(234\) 0 0
\(235\) −628.236 + 291.658i −0.174390 + 0.0809603i
\(236\) 0 0
\(237\) −1739.47 −0.476755
\(238\) 0 0
\(239\) 1969.40 0.533011 0.266506 0.963833i \(-0.414131\pi\)
0.266506 + 0.963833i \(0.414131\pi\)
\(240\) 0 0
\(241\) −491.738 −0.131434 −0.0657171 0.997838i \(-0.520934\pi\)
−0.0657171 + 0.997838i \(0.520934\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) −533.768 1149.75i −0.139189 0.299814i
\(246\) 0 0
\(247\) 4798.24i 1.23605i
\(248\) 0 0
\(249\) −1813.56 −0.461565
\(250\) 0 0
\(251\) 3517.30i 0.884502i 0.896891 + 0.442251i \(0.145820\pi\)
−0.896891 + 0.442251i \(0.854180\pi\)
\(252\) 0 0
\(253\) −7974.94 −1.98174
\(254\) 0 0
\(255\) −2971.42 + 1379.48i −0.729716 + 0.338770i
\(256\) 0 0
\(257\) 3461.61i 0.840191i −0.907480 0.420096i \(-0.861997\pi\)
0.907480 0.420096i \(-0.138003\pi\)
\(258\) 0 0
\(259\) 1075.00i 0.257905i
\(260\) 0 0
\(261\) 2653.03i 0.629190i
\(262\) 0 0
\(263\) 2684.50i 0.629405i 0.949190 + 0.314703i \(0.101905\pi\)
−0.949190 + 0.314703i \(0.898095\pi\)
\(264\) 0 0
\(265\) 1353.78 + 2916.07i 0.313819 + 0.675972i
\(266\) 0 0
\(267\) 1681.81 0.385486
\(268\) 0 0
\(269\) 2944.72i 0.667445i −0.942671 0.333722i \(-0.891695\pi\)
0.942671 0.333722i \(-0.108305\pi\)
\(270\) 0 0
\(271\) −1668.02 −0.373894 −0.186947 0.982370i \(-0.559859\pi\)
−0.186947 + 0.982370i \(0.559859\pi\)
\(272\) 0 0
\(273\) 3968.79i 0.879862i
\(274\) 0 0
\(275\) −5956.72 5032.73i −1.30619 1.10358i
\(276\) 0 0
\(277\) 3299.29 0.715651 0.357826 0.933788i \(-0.383518\pi\)
0.357826 + 0.933788i \(0.383518\pi\)
\(278\) 0 0
\(279\) −407.562 −0.0874555
\(280\) 0 0
\(281\) 22.9341 0.00486881 0.00243440 0.999997i \(-0.499225\pi\)
0.00243440 + 0.999997i \(0.499225\pi\)
\(282\) 0 0
\(283\) −8073.88 −1.69591 −0.847955 0.530069i \(-0.822166\pi\)
−0.847955 + 0.530069i \(0.822166\pi\)
\(284\) 0 0
\(285\) 2357.22 1094.34i 0.489929 0.227449i
\(286\) 0 0
\(287\) 6966.78i 1.43288i
\(288\) 0 0
\(289\) −4626.84 −0.941754
\(290\) 0 0
\(291\) 3551.89i 0.715518i
\(292\) 0 0
\(293\) 7144.38 1.42450 0.712251 0.701925i \(-0.247676\pi\)
0.712251 + 0.701925i \(0.247676\pi\)
\(294\) 0 0
\(295\) 3931.20 1825.06i 0.775876 0.360200i
\(296\) 0 0
\(297\) 1684.40i 0.329086i
\(298\) 0 0
\(299\) 7916.29i 1.53114i
\(300\) 0 0
\(301\) 2400.73i 0.459721i
\(302\) 0 0
\(303\) 5318.71i 1.00842i
\(304\) 0 0
\(305\) −4795.49 + 2226.30i −0.900293 + 0.417960i
\(306\) 0 0
\(307\) −2285.79 −0.424940 −0.212470 0.977168i \(-0.568151\pi\)
−0.212470 + 0.977168i \(0.568151\pi\)
\(308\) 0 0
\(309\) 3278.19i 0.603527i
\(310\) 0 0
\(311\) −9333.00 −1.70169 −0.850845 0.525416i \(-0.823910\pi\)
−0.850845 + 0.525416i \(0.823910\pi\)
\(312\) 0 0
\(313\) 2557.79i 0.461900i 0.972966 + 0.230950i \(0.0741834\pi\)
−0.972966 + 0.230950i \(0.925817\pi\)
\(314\) 0 0
\(315\) 1949.74 905.167i 0.348748 0.161906i
\(316\) 0 0
\(317\) −8465.99 −1.49999 −0.749995 0.661443i \(-0.769944\pi\)
−0.749995 + 0.661443i \(0.769944\pi\)
\(318\) 0 0
\(319\) 18390.0 3.22771
\(320\) 0 0
\(321\) −1685.80 −0.293121
\(322\) 0 0
\(323\) 7567.93 1.30369
\(324\) 0 0
\(325\) −4995.72 + 5912.91i −0.852654 + 1.00920i
\(326\) 0 0
\(327\) 4330.85i 0.732405i
\(328\) 0 0
\(329\) 1323.46 0.221778
\(330\) 0 0
\(331\) 7456.35i 1.23818i −0.785319 0.619091i \(-0.787501\pi\)
0.785319 0.619091i \(-0.212499\pi\)
\(332\) 0 0
\(333\) −452.886 −0.0745286
\(334\) 0 0
\(335\) −4947.64 10657.3i −0.806920 1.73812i
\(336\) 0 0
\(337\) 8621.94i 1.39367i −0.717231 0.696835i \(-0.754591\pi\)
0.717231 0.696835i \(-0.245409\pi\)
\(338\) 0 0
\(339\) 24.4797i 0.00392199i
\(340\) 0 0
\(341\) 2825.08i 0.448642i
\(342\) 0 0
\(343\) 4905.42i 0.772209i
\(344\) 0 0
\(345\) 3889.03 1805.48i 0.606893 0.281750i
\(346\) 0 0
\(347\) −2049.21 −0.317025 −0.158512 0.987357i \(-0.550670\pi\)
−0.158512 + 0.987357i \(0.550670\pi\)
\(348\) 0 0
\(349\) 3697.81i 0.567161i 0.958948 + 0.283580i \(0.0915222\pi\)
−0.958948 + 0.283580i \(0.908478\pi\)
\(350\) 0 0
\(351\) −1672.01 −0.254260
\(352\) 0 0
\(353\) 7804.32i 1.17672i 0.808599 + 0.588360i \(0.200226\pi\)
−0.808599 + 0.588360i \(0.799774\pi\)
\(354\) 0 0
\(355\) 541.588 + 1166.59i 0.0809704 + 0.174412i
\(356\) 0 0
\(357\) 6259.71 0.928008
\(358\) 0 0
\(359\) −3008.97 −0.442360 −0.221180 0.975233i \(-0.570991\pi\)
−0.221180 + 0.975233i \(0.570991\pi\)
\(360\) 0 0
\(361\) 855.375 0.124708
\(362\) 0 0
\(363\) 7682.68 1.11084
\(364\) 0 0
\(365\) −7669.93 + 3560.76i −1.09990 + 0.510626i
\(366\) 0 0
\(367\) 1103.47i 0.156951i 0.996916 + 0.0784753i \(0.0250052\pi\)
−0.996916 + 0.0784753i \(0.974995\pi\)
\(368\) 0 0
\(369\) 2935.03 0.414069
\(370\) 0 0
\(371\) 6143.10i 0.859660i
\(372\) 0 0
\(373\) −2803.77 −0.389206 −0.194603 0.980882i \(-0.562342\pi\)
−0.194603 + 0.980882i \(0.562342\pi\)
\(374\) 0 0
\(375\) 4044.21 + 1105.68i 0.556912 + 0.152259i
\(376\) 0 0
\(377\) 18254.7i 2.49381i
\(378\) 0 0
\(379\) 3063.52i 0.415204i −0.978213 0.207602i \(-0.933434\pi\)
0.978213 0.207602i \(-0.0665659\pi\)
\(380\) 0 0
\(381\) 7567.28i 1.01754i
\(382\) 0 0
\(383\) 679.079i 0.0905987i −0.998973 0.0452993i \(-0.985576\pi\)
0.998973 0.0452993i \(-0.0144242\pi\)
\(384\) 0 0
\(385\) 6274.32 + 13515.0i 0.830568 + 1.78906i
\(386\) 0 0
\(387\) 1011.40 0.132849
\(388\) 0 0
\(389\) 7916.81i 1.03187i −0.856627 0.515936i \(-0.827444\pi\)
0.856627 0.515936i \(-0.172556\pi\)
\(390\) 0 0
\(391\) 12485.8 1.61493
\(392\) 0 0
\(393\) 213.549i 0.0274100i
\(394\) 0 0
\(395\) 2729.73 + 5879.89i 0.347716 + 0.748986i
\(396\) 0 0
\(397\) −13539.1 −1.71161 −0.855803 0.517302i \(-0.826937\pi\)
−0.855803 + 0.517302i \(0.826937\pi\)
\(398\) 0 0
\(399\) −4965.81 −0.623062
\(400\) 0 0
\(401\) 243.973 0.0303826 0.0151913 0.999885i \(-0.495164\pi\)
0.0151913 + 0.999885i \(0.495164\pi\)
\(402\) 0 0
\(403\) −2804.31 −0.346632
\(404\) 0 0
\(405\) 381.337 + 821.406i 0.0467871 + 0.100780i
\(406\) 0 0
\(407\) 3139.26i 0.382328i
\(408\) 0 0
\(409\) −244.569 −0.0295676 −0.0147838 0.999891i \(-0.504706\pi\)
−0.0147838 + 0.999891i \(0.504706\pi\)
\(410\) 0 0
\(411\) 2116.91i 0.254062i
\(412\) 0 0
\(413\) −8281.61 −0.986711
\(414\) 0 0
\(415\) 2846.00 + 6130.33i 0.336637 + 0.725123i
\(416\) 0 0
\(417\) 8214.21i 0.964632i
\(418\) 0 0
\(419\) 835.764i 0.0974457i 0.998812 + 0.0487229i \(0.0155151\pi\)
−0.998812 + 0.0487229i \(0.984485\pi\)
\(420\) 0 0
\(421\) 6457.84i 0.747591i 0.927511 + 0.373796i \(0.121944\pi\)
−0.927511 + 0.373796i \(0.878056\pi\)
\(422\) 0 0
\(423\) 557.561i 0.0640888i
\(424\) 0 0
\(425\) 9326.03 + 7879.41i 1.06442 + 0.899312i
\(426\) 0 0
\(427\) 10102.4 1.14494
\(428\) 0 0
\(429\) 11589.8i 1.30434i
\(430\) 0 0
\(431\) 913.052 0.102042 0.0510211 0.998698i \(-0.483752\pi\)
0.0510211 + 0.998698i \(0.483752\pi\)
\(432\) 0 0
\(433\) 193.572i 0.0214837i −0.999942 0.0107419i \(-0.996581\pi\)
0.999942 0.0107419i \(-0.00341931\pi\)
\(434\) 0 0
\(435\) −8967.97 + 4163.37i −0.988463 + 0.458893i
\(436\) 0 0
\(437\) −9904.99 −1.08426
\(438\) 0 0
\(439\) 8320.59 0.904602 0.452301 0.891865i \(-0.350603\pi\)
0.452301 + 0.891865i \(0.350603\pi\)
\(440\) 0 0
\(441\) −1020.40 −0.110183
\(442\) 0 0
\(443\) 555.054 0.0595292 0.0297646 0.999557i \(-0.490524\pi\)
0.0297646 + 0.999557i \(0.490524\pi\)
\(444\) 0 0
\(445\) −2639.24 5684.96i −0.281150 0.605602i
\(446\) 0 0
\(447\) 3991.70i 0.422373i
\(448\) 0 0
\(449\) 12300.2 1.29283 0.646416 0.762985i \(-0.276267\pi\)
0.646416 + 0.762985i \(0.276267\pi\)
\(450\) 0 0
\(451\) 20344.7i 2.12415i
\(452\) 0 0
\(453\) −7512.35 −0.779163
\(454\) 0 0
\(455\) 13415.6 6228.18i 1.38227 0.641717i
\(456\) 0 0
\(457\) 6858.10i 0.701988i −0.936378 0.350994i \(-0.885844\pi\)
0.936378 0.350994i \(-0.114156\pi\)
\(458\) 0 0
\(459\) 2637.15i 0.268173i
\(460\) 0 0
\(461\) 2076.92i 0.209831i −0.994481 0.104915i \(-0.966543\pi\)
0.994481 0.104915i \(-0.0334571\pi\)
\(462\) 0 0
\(463\) 1184.82i 0.118927i −0.998230 0.0594636i \(-0.981061\pi\)
0.998230 0.0594636i \(-0.0189390\pi\)
\(464\) 0 0
\(465\) 639.581 + 1377.67i 0.0637847 + 0.137393i
\(466\) 0 0
\(467\) 16649.7 1.64980 0.824901 0.565277i \(-0.191231\pi\)
0.824901 + 0.565277i \(0.191231\pi\)
\(468\) 0 0
\(469\) 22451.0i 2.21043i
\(470\) 0 0
\(471\) 1332.78 0.130385
\(472\) 0 0
\(473\) 7010.71i 0.681507i
\(474\) 0 0
\(475\) −7398.32 6250.72i −0.714649 0.603795i
\(476\) 0 0
\(477\) 2588.02 0.248422
\(478\) 0 0
\(479\) −7169.47 −0.683886 −0.341943 0.939721i \(-0.611085\pi\)
−0.341943 + 0.939721i \(0.611085\pi\)
\(480\) 0 0
\(481\) −3116.17 −0.295395
\(482\) 0 0
\(483\) −8192.77 −0.771809
\(484\) 0 0
\(485\) 12006.4 5573.94i 1.12408 0.521855i
\(486\) 0 0
\(487\) 15806.7i 1.47078i −0.677645 0.735389i \(-0.736999\pi\)
0.677645 0.735389i \(-0.263001\pi\)
\(488\) 0 0
\(489\) −7055.98 −0.652521
\(490\) 0 0
\(491\) 19581.5i 1.79979i −0.436103 0.899897i \(-0.643642\pi\)
0.436103 0.899897i \(-0.356358\pi\)
\(492\) 0 0
\(493\) −28791.9 −2.63027
\(494\) 0 0
\(495\) −5693.71 + 2643.30i −0.516997 + 0.240015i
\(496\) 0 0
\(497\) 2457.58i 0.221806i
\(498\) 0 0
\(499\) 156.561i 0.0140454i 0.999975 + 0.00702270i \(0.00223541\pi\)
−0.999975 + 0.00702270i \(0.997765\pi\)
\(500\) 0 0
\(501\) 3880.89i 0.346079i
\(502\) 0 0
\(503\) 19995.3i 1.77246i −0.463244 0.886231i \(-0.653315\pi\)
0.463244 0.886231i \(-0.346685\pi\)
\(504\) 0 0
\(505\) −17978.7 + 8346.58i −1.58424 + 0.735481i
\(506\) 0 0
\(507\) −4913.58 −0.430414
\(508\) 0 0
\(509\) 7200.81i 0.627054i −0.949579 0.313527i \(-0.898489\pi\)
0.949579 0.313527i \(-0.101511\pi\)
\(510\) 0 0
\(511\) 16157.8 1.39878
\(512\) 0 0
\(513\) 2092.04i 0.180051i
\(514\) 0 0
\(515\) −11081.2 + 5144.42i −0.948145 + 0.440175i
\(516\) 0 0
\(517\) −3864.83 −0.328772
\(518\) 0 0
\(519\) −10798.2 −0.913273
\(520\) 0 0
\(521\) 4435.42 0.372974 0.186487 0.982457i \(-0.440290\pi\)
0.186487 + 0.982457i \(0.440290\pi\)
\(522\) 0 0
\(523\) −6398.95 −0.535003 −0.267502 0.963557i \(-0.586198\pi\)
−0.267502 + 0.963557i \(0.586198\pi\)
\(524\) 0 0
\(525\) −6119.42 5170.19i −0.508711 0.429802i
\(526\) 0 0
\(527\) 4423.04i 0.365599i
\(528\) 0 0
\(529\) −4174.59 −0.343108
\(530\) 0 0
\(531\) 3488.95i 0.285137i
\(532\) 0 0
\(533\) 20195.0 1.64117
\(534\) 0 0
\(535\) 2645.50 + 5698.45i 0.213785 + 0.460496i
\(536\) 0 0
\(537\) 532.566i 0.0427969i
\(538\) 0 0
\(539\) 7073.09i 0.565231i
\(540\) 0 0
\(541\) 13296.1i 1.05664i 0.849044 + 0.528321i \(0.177178\pi\)
−0.849044 + 0.528321i \(0.822822\pi\)
\(542\) 0 0
\(543\) 13596.1i 1.07452i
\(544\) 0 0
\(545\) −14639.4 + 6796.35i −1.15061 + 0.534171i
\(546\) 0 0
\(547\) 16352.8 1.27824 0.639120 0.769107i \(-0.279299\pi\)
0.639120 + 0.769107i \(0.279299\pi\)
\(548\) 0 0
\(549\) 4256.02i 0.330860i
\(550\) 0 0
\(551\) 22840.6 1.76596
\(552\) 0 0
\(553\) 12386.8i 0.952514i
\(554\) 0 0
\(555\) 710.709 + 1530.88i 0.0543566 + 0.117085i
\(556\) 0 0
\(557\) −6507.85 −0.495057 −0.247528 0.968881i \(-0.579618\pi\)
−0.247528 + 0.968881i \(0.579618\pi\)
\(558\) 0 0
\(559\) 6959.15 0.526549
\(560\) 0 0
\(561\) −18279.8 −1.37571
\(562\) 0 0
\(563\) −17211.3 −1.28840 −0.644201 0.764856i \(-0.722810\pi\)
−0.644201 + 0.764856i \(0.722810\pi\)
\(564\) 0 0
\(565\) −82.7480 + 38.4157i −0.00616148 + 0.00286046i
\(566\) 0 0
\(567\) 1730.40i 0.128166i
\(568\) 0 0
\(569\) −20548.4 −1.51394 −0.756972 0.653447i \(-0.773322\pi\)
−0.756972 + 0.653447i \(0.773322\pi\)
\(570\) 0 0
\(571\) 23344.0i 1.71089i 0.517896 + 0.855443i \(0.326715\pi\)
−0.517896 + 0.855443i \(0.673285\pi\)
\(572\) 0 0
\(573\) 3180.76 0.231899
\(574\) 0 0
\(575\) −12206.0 10312.7i −0.885262 0.747943i
\(576\) 0 0
\(577\) 15538.9i 1.12113i −0.828111 0.560565i \(-0.810584\pi\)
0.828111 0.560565i \(-0.189416\pi\)
\(578\) 0 0
\(579\) 116.151i 0.00833687i
\(580\) 0 0
\(581\) 12914.4i 0.922166i
\(582\) 0 0
\(583\) 17939.3i 1.27439i
\(584\) 0 0
\(585\) 2623.86 + 5651.84i 0.185442 + 0.399444i
\(586\) 0 0
\(587\) 19057.9 1.34004 0.670019 0.742344i \(-0.266286\pi\)
0.670019 + 0.742344i \(0.266286\pi\)
\(588\) 0 0
\(589\) 3508.79i 0.245462i
\(590\) 0 0
\(591\) −11508.9 −0.801036
\(592\) 0 0
\(593\) 2882.70i 0.199626i 0.995006 + 0.0998130i \(0.0318244\pi\)
−0.995006 + 0.0998130i \(0.968176\pi\)
\(594\) 0 0
\(595\) −9823.28 21159.5i −0.676832 1.45791i
\(596\) 0 0
\(597\) 10208.1 0.699817
\(598\) 0 0
\(599\) −2793.66 −0.190560 −0.0952802 0.995450i \(-0.530375\pi\)
−0.0952802 + 0.995450i \(0.530375\pi\)
\(600\) 0 0
\(601\) 16728.9 1.13542 0.567708 0.823230i \(-0.307830\pi\)
0.567708 + 0.823230i \(0.307830\pi\)
\(602\) 0 0
\(603\) −9458.38 −0.638764
\(604\) 0 0
\(605\) −12056.3 25969.5i −0.810181 1.74514i
\(606\) 0 0
\(607\) 4085.51i 0.273189i −0.990627 0.136595i \(-0.956384\pi\)
0.990627 0.136595i \(-0.0436158\pi\)
\(608\) 0 0
\(609\) 18892.3 1.25707
\(610\) 0 0
\(611\) 3836.41i 0.254017i
\(612\) 0 0
\(613\) 21091.0 1.38965 0.694827 0.719177i \(-0.255481\pi\)
0.694827 + 0.719177i \(0.255481\pi\)
\(614\) 0 0
\(615\) −4605.90 9921.19i −0.301997 0.650506i
\(616\) 0 0
\(617\) 21775.6i 1.42083i 0.703784 + 0.710414i \(0.251492\pi\)
−0.703784 + 0.710414i \(0.748508\pi\)
\(618\) 0 0
\(619\) 14992.4i 0.973497i −0.873542 0.486748i \(-0.838183\pi\)
0.873542 0.486748i \(-0.161817\pi\)
\(620\) 0 0
\(621\) 3451.52i 0.223035i
\(622\) 0 0
\(623\) 11976.1i 0.770167i
\(624\) 0 0
\(625\) −2609.03 15405.6i −0.166978 0.985961i
\(626\) 0 0
\(627\) 14501.4 0.923650
\(628\) 0 0
\(629\) 4914.93i 0.311560i
\(630\) 0 0
\(631\) 5547.82 0.350008 0.175004 0.984568i \(-0.444006\pi\)
0.175004 + 0.984568i \(0.444006\pi\)
\(632\) 0 0
\(633\) 8634.23i 0.542148i
\(634\) 0 0
\(635\) −25579.5 + 11875.2i −1.59857 + 0.742133i
\(636\) 0 0
\(637\) −7021.08 −0.436711
\(638\) 0 0
\(639\) 1035.35 0.0640968
\(640\) 0 0
\(641\) 9758.42 0.601302 0.300651 0.953734i \(-0.402796\pi\)
0.300651 + 0.953734i \(0.402796\pi\)
\(642\) 0 0
\(643\) −8281.64 −0.507925 −0.253963 0.967214i \(-0.581734\pi\)
−0.253963 + 0.967214i \(0.581734\pi\)
\(644\) 0 0
\(645\) −1587.18 3418.81i −0.0968918 0.208706i
\(646\) 0 0
\(647\) 25179.4i 1.52999i 0.644035 + 0.764996i \(0.277259\pi\)
−0.644035 + 0.764996i \(0.722741\pi\)
\(648\) 0 0
\(649\) 24184.3 1.46274
\(650\) 0 0
\(651\) 2902.25i 0.174728i
\(652\) 0 0
\(653\) −16406.4 −0.983203 −0.491601 0.870820i \(-0.663588\pi\)
−0.491601 + 0.870820i \(0.663588\pi\)
\(654\) 0 0
\(655\) −721.855 + 335.120i −0.0430614 + 0.0199912i
\(656\) 0 0
\(657\) 6807.09i 0.404216i
\(658\) 0 0
\(659\) 17109.3i 1.01136i −0.862722 0.505678i \(-0.831242\pi\)
0.862722 0.505678i \(-0.168758\pi\)
\(660\) 0 0
\(661\) 16545.4i 0.973588i 0.873517 + 0.486794i \(0.161834\pi\)
−0.873517 + 0.486794i \(0.838166\pi\)
\(662\) 0 0
\(663\) 18145.4i 1.06291i
\(664\) 0 0
\(665\) 7792.79 + 16785.8i 0.454423 + 0.978835i
\(666\) 0 0
\(667\) 37683.2 2.18755
\(668\) 0 0
\(669\) 1292.91i 0.0747189i
\(670\) 0 0
\(671\) −29501.3 −1.69730
\(672\) 0 0
\(673\) 30667.2i 1.75651i 0.478189 + 0.878257i \(0.341293\pi\)
−0.478189 + 0.878257i \(0.658707\pi\)
\(674\) 0 0
\(675\) 2178.15 2578.04i 0.124203 0.147006i
\(676\) 0 0
\(677\) 15668.9 0.889522 0.444761 0.895649i \(-0.353289\pi\)
0.444761 + 0.895649i \(0.353289\pi\)
\(678\) 0 0
\(679\) −25293.0 −1.42954
\(680\) 0 0
\(681\) −10840.4 −0.609994
\(682\) 0 0
\(683\) 2979.28 0.166909 0.0834547 0.996512i \(-0.473405\pi\)
0.0834547 + 0.996512i \(0.473405\pi\)
\(684\) 0 0
\(685\) −7155.73 + 3322.04i −0.399133 + 0.185297i
\(686\) 0 0
\(687\) 5004.41i 0.277918i
\(688\) 0 0
\(689\) 17807.4 0.984625
\(690\) 0 0
\(691\) 10017.1i 0.551475i 0.961233 + 0.275737i \(0.0889220\pi\)
−0.961233 + 0.275737i \(0.911078\pi\)
\(692\) 0 0
\(693\) 11994.6 0.657485
\(694\) 0 0
\(695\) −27766.2 + 12890.4i −1.51544 + 0.703543i
\(696\) 0 0
\(697\) 31852.3i 1.73098i
\(698\) 0 0
\(699\) 4121.36i 0.223010i
\(700\) 0 0
\(701\) 19134.6i 1.03096i 0.856901 + 0.515481i \(0.172387\pi\)
−0.856901 + 0.515481i \(0.827613\pi\)
\(702\) 0 0
\(703\) 3899.00i 0.209180i
\(704\) 0 0
\(705\) 1884.71 874.974i 0.100684 0.0467424i
\(706\) 0 0
\(707\) 37874.5 2.01474
\(708\) 0 0
\(709\) 17862.1i 0.946159i −0.881020 0.473079i \(-0.843142\pi\)
0.881020 0.473079i \(-0.156858\pi\)
\(710\) 0 0
\(711\) 5218.42 0.275255
\(712\) 0 0
\(713\) 5788.93i 0.304063i
\(714\) 0 0
\(715\) −39176.7 + 18187.7i −2.04913 + 0.951305i
\(716\) 0 0
\(717\) −5908.19 −0.307734
\(718\) 0 0
\(719\) −2464.40 −0.127826 −0.0639129 0.997955i \(-0.520358\pi\)
−0.0639129 + 0.997955i \(0.520358\pi\)
\(720\) 0 0
\(721\) 23344.0 1.20579
\(722\) 0 0
\(723\) 1475.22 0.0758836
\(724\) 0 0
\(725\) 28146.6 + 23780.6i 1.44185 + 1.21819i
\(726\) 0 0
\(727\) 17483.6i 0.891929i 0.895051 + 0.445964i \(0.147139\pi\)
−0.895051 + 0.445964i \(0.852861\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 10976.2i 0.555362i
\(732\) 0 0
\(733\) 21187.2 1.06762 0.533811 0.845604i \(-0.320759\pi\)
0.533811 + 0.845604i \(0.320759\pi\)
\(734\) 0 0
\(735\) 1601.30 + 3449.24i 0.0803605 + 0.173098i
\(736\) 0 0
\(737\) 65562.4i 3.27683i
\(738\) 0 0
\(739\) 15519.8i 0.772535i −0.922387 0.386267i \(-0.873764\pi\)
0.922387 0.386267i \(-0.126236\pi\)
\(740\) 0 0
\(741\) 14394.7i 0.713634i
\(742\) 0 0
\(743\) 14837.1i 0.732599i −0.930497 0.366300i \(-0.880625\pi\)
0.930497 0.366300i \(-0.119375\pi\)
\(744\) 0 0
\(745\) −13493.0 + 6264.12i −0.663551 + 0.308053i
\(746\) 0 0
\(747\) 5440.68 0.266485
\(748\) 0 0
\(749\) 12004.6i 0.585630i
\(750\) 0 0
\(751\) 13643.9 0.662945 0.331473 0.943465i \(-0.392455\pi\)
0.331473 + 0.943465i \(0.392455\pi\)
\(752\) 0 0
\(753\) 10551.9i 0.510667i
\(754\) 0 0
\(755\) 11789.0 + 25393.8i 0.568274 + 1.22407i
\(756\) 0 0
\(757\) 34745.6 1.66823 0.834114 0.551592i \(-0.185979\pi\)
0.834114 + 0.551592i \(0.185979\pi\)
\(758\) 0 0
\(759\) 23924.8 1.14416
\(760\) 0 0
\(761\) −17980.2 −0.856481 −0.428241 0.903665i \(-0.640866\pi\)
−0.428241 + 0.903665i \(0.640866\pi\)
\(762\) 0 0
\(763\) 30840.0 1.46328
\(764\) 0 0
\(765\) 8914.27 4138.44i 0.421302 0.195589i
\(766\) 0 0
\(767\) 24006.4i 1.13015i
\(768\) 0 0
\(769\) −21791.9 −1.02189 −0.510947 0.859612i \(-0.670705\pi\)
−0.510947 + 0.859612i \(0.670705\pi\)
\(770\) 0 0
\(771\) 10384.8i 0.485085i
\(772\) 0 0
\(773\) −5416.23 −0.252016 −0.126008 0.992029i \(-0.540216\pi\)
−0.126008 + 0.992029i \(0.540216\pi\)
\(774\) 0 0
\(775\) 3653.21 4323.92i 0.169325 0.200412i
\(776\) 0 0
\(777\) 3225.00i 0.148901i
\(778\) 0 0
\(779\) 25268.3i 1.16217i
\(780\) 0 0
\(781\) 7176.72i 0.328813i
\(782\) 0 0
\(783\) 7959.10i 0.363263i
\(784\) 0 0
\(785\) −2091.51 4505.16i −0.0950947 0.204836i
\(786\) 0 0
\(787\) −9727.86 −0.440611 −0.220305 0.975431i \(-0.570705\pi\)
−0.220305 + 0.975431i \(0.570705\pi\)
\(788\) 0 0
\(789\) 8053.51i 0.363387i
\(790\) 0 0
\(791\) 174.320 0.00783578
\(792\) 0 0
\(793\) 29284.3i 1.31137i
\(794\) 0 0
\(795\) −4061.35 8748.21i −0.181184 0.390273i
\(796\) 0 0
\(797\) 36030.9 1.60136 0.800678 0.599095i \(-0.204473\pi\)
0.800678 + 0.599095i \(0.204473\pi\)
\(798\) 0 0
\(799\) 6050.91 0.267917
\(800\) 0 0
\(801\) −5045.42 −0.222561
\(802\) 0 0
\(803\) −47184.5 −2.07360
\(804\) 0 0
\(805\) 12856.8 + 27693.8i 0.562911 + 1.21252i
\(806\) 0 0
\(807\) 8834.16i 0.385349i
\(808\) 0 0
\(809\) −6298.55 −0.273727 −0.136864 0.990590i \(-0.543702\pi\)
−0.136864 + 0.990590i \(0.543702\pi\)
\(810\) 0 0
\(811\) 10654.2i 0.461306i −0.973036 0.230653i \(-0.925914\pi\)
0.973036 0.230653i \(-0.0740863\pi\)
\(812\) 0 0
\(813\) 5004.07 0.215868
\(814\) 0 0
\(815\) 11072.9 + 23851.1i 0.475909 + 1.02511i
\(816\) 0 0
\(817\) 8707.40i 0.372868i
\(818\) 0 0
\(819\) 11906.4i 0.507988i
\(820\) 0 0
\(821\) 25369.3i 1.07844i 0.842166 + 0.539218i \(0.181280\pi\)
−0.842166 + 0.539218i \(0.818720\pi\)
\(822\) 0 0
\(823\) 17794.8i 0.753692i 0.926276 + 0.376846i \(0.122991\pi\)
−0.926276 + 0.376846i \(0.877009\pi\)
\(824\) 0 0
\(825\) 17870.1 + 15098.2i 0.754132 + 0.637154i
\(826\) 0 0
\(827\) −14614.5 −0.614506 −0.307253 0.951628i \(-0.599410\pi\)
−0.307253 + 0.951628i \(0.599410\pi\)
\(828\) 0 0
\(829\) 19898.4i 0.833654i −0.908986 0.416827i \(-0.863142\pi\)
0.908986 0.416827i \(-0.136858\pi\)
\(830\) 0 0
\(831\) −9897.88 −0.413181
\(832\) 0 0
\(833\) 11073.9i 0.460608i
\(834\) 0 0
\(835\) 13118.5 6090.23i 0.543692 0.252408i
\(836\) 0 0
\(837\) 1222.69 0.0504924
\(838\) 0 0
\(839\) −1164.17 −0.0479043 −0.0239522 0.999713i \(-0.507625\pi\)
−0.0239522 + 0.999713i \(0.507625\pi\)
\(840\) 0 0
\(841\) −62507.2 −2.56292
\(842\) 0 0
\(843\) −68.8023 −0.00281101
\(844\) 0 0
\(845\) 7710.82 + 16609.2i 0.313917 + 0.676183i
\(846\) 0 0
\(847\) 54708.4i 2.21937i
\(848\) 0 0
\(849\) 24221.6 0.979134
\(850\) 0 0
\(851\) 6432.71i 0.259119i
\(852\) 0 0
\(853\) −3513.03 −0.141013 −0.0705063 0.997511i \(-0.522461\pi\)
−0.0705063 + 0.997511i \(0.522461\pi\)
\(854\) 0 0
\(855\) −7071.67 + 3283.02i −0.282861 + 0.131318i
\(856\) 0 0
\(857\) 45814.0i 1.82611i −0.407837 0.913055i \(-0.633717\pi\)
0.407837 0.913055i \(-0.366283\pi\)
\(858\) 0 0
\(859\) 15334.5i 0.609087i 0.952499 + 0.304543i \(0.0985038\pi\)
−0.952499 + 0.304543i \(0.901496\pi\)
\(860\) 0 0
\(861\) 20900.3i 0.827273i
\(862\) 0 0
\(863\) 5461.91i 0.215441i 0.994181 + 0.107721i \(0.0343552\pi\)
−0.994181 + 0.107721i \(0.965645\pi\)
\(864\) 0 0
\(865\) 16945.5 + 36500.8i 0.666085 + 1.43476i
\(866\) 0 0
\(867\) 13880.5 0.543722
\(868\) 0 0
\(869\) 36172.4i 1.41204i
\(870\) 0 0
\(871\) −65080.2 −2.53176
\(872\) 0 0
\(873\) 10655.7i 0.413104i
\(874\) 0 0
\(875\) −7873.54 + 28798.8i −0.304199 + 1.11266i
\(876\) 0 0
\(877\) −27282.4 −1.05047 −0.525235 0.850957i \(-0.676022\pi\)
−0.525235 + 0.850957i \(0.676022\pi\)
\(878\) 0 0
\(879\) −21433.1 −0.822437
\(880\) 0 0
\(881\) 10368.4 0.396505 0.198252 0.980151i \(-0.436473\pi\)
0.198252 + 0.980151i \(0.436473\pi\)
\(882\) 0 0
\(883\) −15902.8 −0.606084 −0.303042 0.952977i \(-0.598002\pi\)
−0.303042 + 0.952977i \(0.598002\pi\)
\(884\) 0 0
\(885\) −11793.6 + 5475.17i −0.447952 + 0.207961i
\(886\) 0 0
\(887\) 9899.94i 0.374755i 0.982288 + 0.187377i \(0.0599987\pi\)
−0.982288 + 0.187377i \(0.940001\pi\)
\(888\) 0 0
\(889\) 53886.7 2.03296
\(890\) 0 0
\(891\) 5053.19i 0.189998i
\(892\) 0 0
\(893\) −4800.17 −0.179879
\(894\) 0 0
\(895\) −1800.22 + 835.749i −0.0672342 + 0.0312134i
\(896\) 0 0
\(897\) 23748.9i 0.884005i
\(898\) 0 0
\(899\) 13349.1i 0.495235i
\(900\) 0 0
\(901\) 28086.4i 1.03850i
\(902\) 0 0
\(903\) 7202.20i 0.265420i
\(904\) 0 0
\(905\) −45958.5 + 21336.2i −1.68808 + 0.783689i
\(906\) 0 0
\(907\) −7186.49 −0.263091 −0.131545 0.991310i \(-0.541994\pi\)
−0.131545 + 0.991310i \(0.541994\pi\)
\(908\) 0 0
\(909\) 15956.1i 0.582212i
\(910\) 0 0
\(911\) −17888.6 −0.650578 −0.325289 0.945615i \(-0.605462\pi\)
−0.325289 + 0.945615i \(0.605462\pi\)
\(912\) 0 0
\(913\) 37713.0i 1.36705i
\(914\) 0 0
\(915\) 14386.5 6678.91i 0.519784 0.241309i
\(916\) 0 0
\(917\) 1520.69 0.0547628
\(918\) 0 0
\(919\) 10224.4 0.366997 0.183499 0.983020i \(-0.441258\pi\)
0.183499 + 0.983020i \(0.441258\pi\)
\(920\) 0 0
\(921\) 6857.36 0.245339
\(922\) 0 0
\(923\) 7123.94 0.254049
\(924\) 0 0
\(925\) 4059.48 4804.77i 0.144297 0.170789i
\(926\) 0 0
\(927\) 9834.57i 0.348446i
\(928\) 0 0
\(929\) −22646.4 −0.799790 −0.399895 0.916561i \(-0.630953\pi\)
−0.399895 + 0.916561i \(0.630953\pi\)
\(930\) 0 0
\(931\) 8784.88i 0.309251i
\(932\) 0 0
\(933\) 27999.0 0.982471
\(934\) 0 0
\(935\) 28686.3 + 61790.8i 1.00336 + 2.16126i
\(936\) 0 0
\(937\) 32230.8i 1.12373i −0.827229 0.561865i \(-0.810084\pi\)
0.827229 0.561865i \(-0.189916\pi\)
\(938\) 0 0
\(939\) 7673.36i 0.266678i
\(940\) 0 0
\(941\) 46578.3i 1.61361i −0.590817 0.806805i \(-0.701195\pi\)
0.590817 0.806805i \(-0.298805\pi\)
\(942\) 0 0
\(943\) 41688.6i 1.43963i
\(944\) 0 0
\(945\) −5849.23 + 2715.50i −0.201350 + 0.0934764i
\(946\) 0 0
\(947\) −13542.9 −0.464715 −0.232358 0.972630i \(-0.574644\pi\)
−0.232358 + 0.972630i \(0.574644\pi\)
\(948\) 0 0
\(949\) 46837.5i 1.60212i
\(950\) 0 0
\(951\) 25398.0 0.866020
\(952\) 0 0
\(953\) 7754.57i 0.263583i −0.991277 0.131792i \(-0.957927\pi\)
0.991277 0.131792i \(-0.0420730\pi\)
\(954\) 0 0
\(955\) −4991.53 10751.8i −0.169133 0.364315i
\(956\) 0 0
\(957\) −55169.9 −1.86352
\(958\) 0 0
\(959\) 15074.5 0.507593
\(960\) 0 0
\(961\) −27740.3 −0.931164
\(962\) 0 0
\(963\) 5057.39 0.169234
\(964\) 0 0
\(965\) −392.620 + 182.273i −0.0130973 + 0.00608041i
\(966\) 0 0
\(967\) 30390.3i 1.01064i −0.862933 0.505318i \(-0.831375\pi\)
0.862933 0.505318i \(-0.168625\pi\)
\(968\) 0 0
\(969\) −22703.8 −0.752684
\(970\) 0 0
\(971\) 34151.1i 1.12869i −0.825538 0.564347i \(-0.809128\pi\)
0.825538 0.564347i \(-0.190872\pi\)
\(972\) 0 0
\(973\) 58493.4 1.92725
\(974\) 0 0
\(975\) 14987.2 17738.7i 0.492280 0.582660i
\(976\) 0 0
\(977\) 19542.1i 0.639926i 0.947430 + 0.319963i \(0.103670\pi\)
−0.947430 + 0.319963i \(0.896330\pi\)
\(978\) 0 0
\(979\) 34973.2i 1.14172i
\(980\) 0 0
\(981\) 12992.5i 0.422854i
\(982\) 0 0
\(983\) 25296.5i 0.820787i 0.911909 + 0.410394i \(0.134609\pi\)
−0.911909 + 0.410394i \(0.865391\pi\)
\(984\) 0 0
\(985\) 18060.7 + 38903.1i 0.584227 + 1.25843i
\(986\) 0 0
\(987\) −3970.39 −0.128044
\(988\) 0 0
\(989\) 14365.8i 0.461885i
\(990\) 0 0
\(991\) 21175.5 0.678772 0.339386 0.940647i \(-0.389781\pi\)
0.339386 + 0.940647i \(0.389781\pi\)
\(992\) 0 0
\(993\) 22369.1i 0.714865i
\(994\) 0 0
\(995\) −16019.5 34506.2i −0.510404 1.09942i
\(996\) 0 0
\(997\) 53310.9 1.69345 0.846727 0.532028i \(-0.178570\pi\)
0.846727 + 0.532028i \(0.178570\pi\)
\(998\) 0 0
\(999\) 1358.66 0.0430291
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 960.4.d.a.289.8 yes 12
4.3 odd 2 960.4.d.b.289.8 yes 12
5.4 even 2 960.4.d.b.289.6 yes 12
8.3 odd 2 inner 960.4.d.a.289.5 12
8.5 even 2 960.4.d.b.289.5 yes 12
20.19 odd 2 inner 960.4.d.a.289.6 yes 12
40.19 odd 2 960.4.d.b.289.7 yes 12
40.29 even 2 inner 960.4.d.a.289.7 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
960.4.d.a.289.5 12 8.3 odd 2 inner
960.4.d.a.289.6 yes 12 20.19 odd 2 inner
960.4.d.a.289.7 yes 12 40.29 even 2 inner
960.4.d.a.289.8 yes 12 1.1 even 1 trivial
960.4.d.b.289.5 yes 12 8.5 even 2
960.4.d.b.289.6 yes 12 5.4 even 2
960.4.d.b.289.7 yes 12 40.19 odd 2
960.4.d.b.289.8 yes 12 4.3 odd 2