Properties

Label 960.6.a.a
Level $960$
Weight $6$
Character orbit 960.a
Self dual yes
Analytic conductor $153.968$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [960,6,Mod(1,960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(960, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("960.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 960 = 2^{6} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 960.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(153.968467020\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 120)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 9 q^{3} - 25 q^{5} - 160 q^{7} + 81 q^{9} + 596 q^{11} + 122 q^{13} + 225 q^{15} - 1078 q^{17} - 796 q^{19} + 1440 q^{21} - 1088 q^{23} + 625 q^{25} - 729 q^{27} - 46 q^{29} - 4952 q^{31} - 5364 q^{33}+ \cdots + 48276 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −9.00000 0 −25.0000 0 −160.000 0 81.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 960.6.a.a 1
4.b odd 2 1 960.6.a.t 1
8.b even 2 1 120.6.a.f 1
8.d odd 2 1 240.6.a.g 1
24.f even 2 1 720.6.a.i 1
24.h odd 2 1 360.6.a.a 1
40.f even 2 1 600.6.a.c 1
40.i odd 4 2 600.6.f.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
120.6.a.f 1 8.b even 2 1
240.6.a.g 1 8.d odd 2 1
360.6.a.a 1 24.h odd 2 1
600.6.a.c 1 40.f even 2 1
600.6.f.a 2 40.i odd 4 2
720.6.a.i 1 24.f even 2 1
960.6.a.a 1 1.a even 1 1 trivial
960.6.a.t 1 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7} + 160 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(960))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 9 \) Copy content Toggle raw display
$5$ \( T + 25 \) Copy content Toggle raw display
$7$ \( T + 160 \) Copy content Toggle raw display
$11$ \( T - 596 \) Copy content Toggle raw display
$13$ \( T - 122 \) Copy content Toggle raw display
$17$ \( T + 1078 \) Copy content Toggle raw display
$19$ \( T + 796 \) Copy content Toggle raw display
$23$ \( T + 1088 \) Copy content Toggle raw display
$29$ \( T + 46 \) Copy content Toggle raw display
$31$ \( T + 4952 \) Copy content Toggle raw display
$37$ \( T - 6114 \) Copy content Toggle raw display
$41$ \( T + 6 \) Copy content Toggle raw display
$43$ \( T - 24116 \) Copy content Toggle raw display
$47$ \( T - 13480 \) Copy content Toggle raw display
$53$ \( T + 20598 \) Copy content Toggle raw display
$59$ \( T - 46756 \) Copy content Toggle raw display
$61$ \( T - 9602 \) Copy content Toggle raw display
$67$ \( T - 17404 \) Copy content Toggle raw display
$71$ \( T - 26568 \) Copy content Toggle raw display
$73$ \( T - 75450 \) Copy content Toggle raw display
$79$ \( T - 50472 \) Copy content Toggle raw display
$83$ \( T + 33236 \) Copy content Toggle raw display
$89$ \( T - 133194 \) Copy content Toggle raw display
$97$ \( T + 42878 \) Copy content Toggle raw display
show more
show less