Properties

Label 961.1.h.a.414.1
Level 961961
Weight 11
Character 961.414
Analytic conductor 0.4800.480
Analytic rank 00
Dimension 88
Projective image D3D_{3}
CM discriminant -31
Inner twists 1616

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [961,1,Mod(115,961)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(961, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([17]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("961.115");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 961=312 961 = 31^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 961.h (of order 3030, degree 88, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.4796014771400.479601477140
Analytic rank: 00
Dimension: 88
Coefficient field: Q(ζ15)\Q(\zeta_{15})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x7+x5x4+x3x+1 x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 31)
Projective image: D3D_{3}
Projective field: Galois closure of 3.1.31.1
Artin image: S3×C15S_3\times C_{15}
Artin field: Galois closure of Q[x]/(x45)\mathbb{Q}[x]/(x^{45} - \cdots)

Embedding invariants

Embedding label 414.1
Root 0.913545+0.406737i0.913545 + 0.406737i of defining polynomial
Character χ\chi == 961.414
Dual form 961.1.h.a.513.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.3090170.951057i)q2+(0.500000+0.866025i)q5+(0.104528+0.994522i)q7+(0.8090170.587785i)q8+(0.104528+0.994522i)q9+(0.6691310.743145i)q10+(0.9135450.406737i)q14+(0.309017+0.951057i)q16+(0.9781480.207912i)q18+(0.978148+0.207912i)q19+(0.809017+0.587785i)q35+(0.1045280.994522i)q38+(0.1045280.994522i)q40+(0.669131+0.743145i)q41+(0.913545+0.406737i)q45+(0.6180341.90211i)q47+(0.5000000.866025i)q56+(0.6691310.743145i)q591.00000q63+(0.309017+0.951057i)q64+(1.000001.73205i)q67+(0.809017+0.587785i)q70+(0.1045280.994522i)q71+(0.6691310.743145i)q72+(0.978148+0.207912i)q80+(0.9781480.207912i)q81+(0.913545+0.406737i)q82+(0.669131+0.743145i)q902.00000q94+(0.309017+0.951057i)q95+(0.8090170.587785i)q97+O(q100)q+(-0.309017 - 0.951057i) q^{2} +(0.500000 + 0.866025i) q^{5} +(0.104528 + 0.994522i) q^{7} +(-0.809017 - 0.587785i) q^{8} +(-0.104528 + 0.994522i) q^{9} +(0.669131 - 0.743145i) q^{10} +(0.913545 - 0.406737i) q^{14} +(-0.309017 + 0.951057i) q^{16} +(0.978148 - 0.207912i) q^{18} +(0.978148 + 0.207912i) q^{19} +(-0.809017 + 0.587785i) q^{35} +(-0.104528 - 0.994522i) q^{38} +(0.104528 - 0.994522i) q^{40} +(-0.669131 + 0.743145i) q^{41} +(-0.913545 + 0.406737i) q^{45} +(0.618034 - 1.90211i) q^{47} +(0.500000 - 0.866025i) q^{56} +(-0.669131 - 0.743145i) q^{59} -1.00000 q^{63} +(0.309017 + 0.951057i) q^{64} +(-1.00000 - 1.73205i) q^{67} +(0.809017 + 0.587785i) q^{70} +(0.104528 - 0.994522i) q^{71} +(0.669131 - 0.743145i) q^{72} +(-0.978148 + 0.207912i) q^{80} +(-0.978148 - 0.207912i) q^{81} +(0.913545 + 0.406737i) q^{82} +(0.669131 + 0.743145i) q^{90} -2.00000 q^{94} +(0.309017 + 0.951057i) q^{95} +(0.809017 - 0.587785i) q^{97} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+2q2+4q5q72q8+q9+q10+q14+2q16q18q192q35+q38q40q41q454q47+4q56q598q632q64++2q97+O(q100) 8 q + 2 q^{2} + 4 q^{5} - q^{7} - 2 q^{8} + q^{9} + q^{10} + q^{14} + 2 q^{16} - q^{18} - q^{19} - 2 q^{35} + q^{38} - q^{40} - q^{41} - q^{45} - 4 q^{47} + 4 q^{56} - q^{59} - 8 q^{63} - 2 q^{64}+ \cdots + 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/961Z)×\left(\mathbb{Z}/961\mathbb{Z}\right)^\times.

nn 33
χ(n)\chi(n) e(2330)e\left(\frac{23}{30}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.309017 0.951057i −0.309017 0.951057i −0.978148 0.207912i 0.933333π-0.933333\pi
0.669131 0.743145i 0.266667π-0.266667\pi
33 0 0 −0.669131 0.743145i 0.733333π-0.733333\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
44 0 0
55 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
66 0 0
77 0.104528 + 0.994522i 0.104528 + 0.994522i 0.913545 + 0.406737i 0.133333π0.133333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
88 −0.809017 0.587785i −0.809017 0.587785i
99 −0.104528 + 0.994522i −0.104528 + 0.994522i
1010 0.669131 0.743145i 0.669131 0.743145i
1111 0 0 −0.913545 0.406737i 0.866667π-0.866667\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
1212 0 0
1313 0 0 0.978148 0.207912i 0.0666667π-0.0666667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
1414 0.913545 0.406737i 0.913545 0.406737i
1515 0 0
1616 −0.309017 + 0.951057i −0.309017 + 0.951057i
1717 0 0 0.913545 0.406737i 0.133333π-0.133333\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
1818 0.978148 0.207912i 0.978148 0.207912i
1919 0.978148 + 0.207912i 0.978148 + 0.207912i 0.669131 0.743145i 0.266667π-0.266667\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
2020 0 0
2121 0 0
2222 0 0
2323 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
2424 0 0
2525 0 0
2626 0 0
2727 0 0
2828 0 0
2929 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
3030 0 0
3131 0 0
3232 0 0
3333 0 0
3434 0 0
3535 −0.809017 + 0.587785i −0.809017 + 0.587785i
3636 0 0
3737 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
3838 −0.104528 0.994522i −0.104528 0.994522i
3939 0 0
4040 0.104528 0.994522i 0.104528 0.994522i
4141 −0.669131 + 0.743145i −0.669131 + 0.743145i −0.978148 0.207912i 0.933333π-0.933333\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
4242 0 0
4343 0 0 −0.978148 0.207912i 0.933333π-0.933333\pi
0.978148 + 0.207912i 0.0666667π0.0666667\pi
4444 0 0
4545 −0.913545 + 0.406737i −0.913545 + 0.406737i
4646 0 0
4747 0.618034 1.90211i 0.618034 1.90211i 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
4848 0 0
4949 0 0
5050 0 0
5151 0 0
5252 0 0
5353 0 0 0.104528 0.994522i 0.466667π-0.466667\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
5454 0 0
5555 0 0
5656 0.500000 0.866025i 0.500000 0.866025i
5757 0 0
5858 0 0
5959 −0.669131 0.743145i −0.669131 0.743145i 0.309017 0.951057i 0.400000π-0.400000\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
6060 0 0
6161 0 0 1.00000 00
−1.00000 π\pi
6262 0 0
6363 −1.00000 −1.00000
6464 0.309017 + 0.951057i 0.309017 + 0.951057i
6565 0 0
6666 0 0
6767 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
6868 0 0
6969 0 0
7070 0.809017 + 0.587785i 0.809017 + 0.587785i
7171 0.104528 0.994522i 0.104528 0.994522i −0.809017 0.587785i 0.800000π-0.800000\pi
0.913545 0.406737i 0.133333π-0.133333\pi
7272 0.669131 0.743145i 0.669131 0.743145i
7373 0 0 −0.913545 0.406737i 0.866667π-0.866667\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
7474 0 0
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 0 0 0.913545 0.406737i 0.133333π-0.133333\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
8080 −0.978148 + 0.207912i −0.978148 + 0.207912i
8181 −0.978148 0.207912i −0.978148 0.207912i
8282 0.913545 + 0.406737i 0.913545 + 0.406737i
8383 0 0 0.669131 0.743145i 0.266667π-0.266667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
9090 0.669131 + 0.743145i 0.669131 + 0.743145i
9191 0 0
9292 0 0
9393 0 0
9494 −2.00000 −2.00000
9595 0.309017 + 0.951057i 0.309017 + 0.951057i
9696 0 0
9797 0.809017 0.587785i 0.809017 0.587785i −0.104528 0.994522i 0.533333π-0.533333\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
9898 0 0
9999 0 0
100100 0 0
101101 0.809017 + 0.587785i 0.809017 + 0.587785i 0.913545 0.406737i 0.133333π-0.133333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
102102 0 0
103103 −0.669131 + 0.743145i −0.669131 + 0.743145i −0.978148 0.207912i 0.933333π-0.933333\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
104104 0 0
105105 0 0
106106 0 0
107107 −0.913545 + 0.406737i −0.913545 + 0.406737i −0.809017 0.587785i 0.800000π-0.800000\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
108108 0 0
109109 −0.309017 + 0.951057i −0.309017 + 0.951057i 0.669131 + 0.743145i 0.266667π0.266667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
110110 0 0
111111 0 0
112112 −0.978148 0.207912i −0.978148 0.207912i
113113 −0.913545 0.406737i −0.913545 0.406737i −0.104528 0.994522i 0.533333π-0.533333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
114114 0 0
115115 0 0
116116 0 0
117117 0 0
118118 −0.500000 + 0.866025i −0.500000 + 0.866025i
119119 0 0
120120 0 0
121121 0.669131 + 0.743145i 0.669131 + 0.743145i
122122 0 0
123123 0 0
124124 0 0
125125 1.00000 1.00000
126126 0.309017 + 0.951057i 0.309017 + 0.951057i
127127 0 0 −0.669131 0.743145i 0.733333π-0.733333\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
128128 0.809017 0.587785i 0.809017 0.587785i
129129 0 0
130130 0 0
131131 −0.209057 1.98904i −0.209057 1.98904i −0.104528 0.994522i 0.533333π-0.533333\pi
−0.104528 0.994522i 0.533333π-0.533333\pi
132132 0 0
133133 −0.104528 + 0.994522i −0.104528 + 0.994522i
134134 −1.33826 + 1.48629i −1.33826 + 1.48629i
135135 0 0
136136 0 0
137137 0 0 0.978148 0.207912i 0.0666667π-0.0666667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
138138 0 0
139139 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
140140 0 0
141141 0 0
142142 −0.978148 + 0.207912i −0.978148 + 0.207912i
143143 0 0
144144 −0.913545 0.406737i −0.913545 0.406737i
145145 0 0
146146 0 0
147147 0 0
148148 0 0
149149 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
150150 0 0
151151 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
152152 −0.669131 0.743145i −0.669131 0.743145i
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 −0.309017 0.951057i −0.309017 0.951057i −0.978148 0.207912i 0.933333π-0.933333\pi
0.669131 0.743145i 0.266667π-0.266667\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 0.104528 + 0.994522i 0.104528 + 0.994522i
163163 0.809017 + 0.587785i 0.809017 + 0.587785i 0.913545 0.406737i 0.133333π-0.133333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 −0.978148 0.207912i 0.933333π-0.933333\pi
0.978148 + 0.207912i 0.0666667π0.0666667\pi
168168 0 0
169169 0.913545 0.406737i 0.913545 0.406737i
170170 0 0
171171 −0.309017 + 0.951057i −0.309017 + 0.951057i
172172 0 0
173173 −1.95630 + 0.415823i −1.95630 + 0.415823i −0.978148 + 0.207912i 0.933333π0.933333\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 0 0
179179 0 0 −0.104528 0.994522i 0.533333π-0.533333\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
180180 0 0
181181 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
182182 0 0
183183 0 0
184184 0 0
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0.809017 0.587785i 0.809017 0.587785i
191191 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
192192 0 0
193193 0.104528 + 0.994522i 0.104528 + 0.994522i 0.913545 + 0.406737i 0.133333π0.133333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
194194 −0.809017 0.587785i −0.809017 0.587785i
195195 0 0
196196 0 0
197197 0 0 −0.913545 0.406737i 0.866667π-0.866667\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
198198 0 0
199199 0 0 0.978148 0.207912i 0.0666667π-0.0666667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
200200 0 0
201201 0 0
202202 0.309017 0.951057i 0.309017 0.951057i
203203 0 0
204204 0 0
205205 −0.978148 0.207912i −0.978148 0.207912i
206206 0.913545 + 0.406737i 0.913545 + 0.406737i
207207 0 0
208208 0 0
209209 0 0
210210 0 0
211211 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
212212 0 0
213213 0 0
214214 0.669131 + 0.743145i 0.669131 + 0.743145i
215215 0 0
216216 0 0
217217 0 0
218218 1.00000 1.00000
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
224224 0 0
225225 0 0
226226 −0.104528 + 0.994522i −0.104528 + 0.994522i
227227 1.33826 1.48629i 1.33826 1.48629i 0.669131 0.743145i 0.266667π-0.266667\pi
0.669131 0.743145i 0.266667π-0.266667\pi
228228 0 0
229229 0 0 −0.978148 0.207912i 0.933333π-0.933333\pi
0.978148 + 0.207912i 0.0666667π0.0666667\pi
230230 0 0
231231 0 0
232232 0 0
233233 −0.309017 + 0.951057i −0.309017 + 0.951057i 0.669131 + 0.743145i 0.266667π0.266667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
234234 0 0
235235 1.95630 0.415823i 1.95630 0.415823i
236236 0 0
237237 0 0
238238 0 0
239239 0 0 0.104528 0.994522i 0.466667π-0.466667\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
240240 0 0
241241 0 0 −0.104528 0.994522i 0.533333π-0.533333\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
242242 0.500000 0.866025i 0.500000 0.866025i
243243 0 0
244244 0 0
245245 0 0
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 −0.309017 0.951057i −0.309017 0.951057i
251251 0 0 −0.669131 0.743145i 0.733333π-0.733333\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 0 0
257257 0.104528 0.994522i 0.104528 0.994522i −0.809017 0.587785i 0.800000π-0.800000\pi
0.913545 0.406737i 0.133333π-0.133333\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 −1.82709 + 0.813473i −1.82709 + 0.813473i
263263 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
264264 0 0
265265 0 0
266266 0.978148 0.207912i 0.978148 0.207912i
267267 0 0
268268 0 0
269269 0 0 0.669131 0.743145i 0.266667π-0.266667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
270270 0 0
271271 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
272272 0 0
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
278278 0 0
279279 0 0
280280 1.00000 1.00000
281281 −0.309017 0.951057i −0.309017 0.951057i −0.978148 0.207912i 0.933333π-0.933333\pi
0.669131 0.743145i 0.266667π-0.266667\pi
282282 0 0
283283 −1.61803 + 1.17557i −1.61803 + 1.17557i −0.809017 + 0.587785i 0.800000π0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
284284 0 0
285285 0 0
286286 0 0
287287 −0.809017 0.587785i −0.809017 0.587785i
288288 0 0
289289 0.669131 0.743145i 0.669131 0.743145i
290290 0 0
291291 0 0
292292 0 0
293293 1.82709 0.813473i 1.82709 0.813473i 0.913545 0.406737i 0.133333π-0.133333\pi
0.913545 0.406737i 0.133333π-0.133333\pi
294294 0 0
295295 0.309017 0.951057i 0.309017 0.951057i
296296 0 0
297297 0 0
298298 1.95630 + 0.415823i 1.95630 + 0.415823i
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 −0.500000 + 0.866025i −0.500000 + 0.866025i
305305 0 0
306306 0 0
307307 −0.669131 0.743145i −0.669131 0.743145i 0.309017 0.951057i 0.400000π-0.400000\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
308308 0 0
309309 0 0
310310 0 0
311311 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
312312 0 0
313313 0 0 −0.669131 0.743145i 0.733333π-0.733333\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
314314 −0.809017 + 0.587785i −0.809017 + 0.587785i
315315 −0.500000 0.866025i −0.500000 0.866025i
316316 0 0
317317 0.104528 + 0.994522i 0.104528 + 0.994522i 0.913545 + 0.406737i 0.133333π0.133333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
318318 0 0
319319 0 0
320320 −0.669131 + 0.743145i −0.669131 + 0.743145i
321321 0 0
322322 0 0
323323 0 0
324324 0 0
325325 0 0
326326 0.309017 0.951057i 0.309017 0.951057i
327327 0 0
328328 0.978148 0.207912i 0.978148 0.207912i
329329 1.95630 + 0.415823i 1.95630 + 0.415823i
330330 0 0
331331 0 0 0.669131 0.743145i 0.266667π-0.266667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
332332 0 0
333333 0 0
334334 0 0
335335 1.00000 1.73205i 1.00000 1.73205i
336336 0 0
337337 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
338338 −0.669131 0.743145i −0.669131 0.743145i
339339 0 0
340340 0 0
341341 0 0
342342 1.00000 1.00000
343343 0.309017 + 0.951057i 0.309017 + 0.951057i
344344 0 0
345345 0 0
346346 1.00000 + 1.73205i 1.00000 + 1.73205i
347347 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
348348 0 0
349349 −1.61803 1.17557i −1.61803 1.17557i −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 0.587785i 0.800000π-0.800000\pi
350350 0 0
351351 0 0
352352 0 0
353353 0 0 −0.978148 0.207912i 0.933333π-0.933333\pi
0.978148 + 0.207912i 0.0666667π0.0666667\pi
354354 0 0
355355 0.913545 0.406737i 0.913545 0.406737i
356356 0 0
357357 0 0
358358 0 0
359359 0.978148 0.207912i 0.978148 0.207912i 0.309017 0.951057i 0.400000π-0.400000\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
360360 0.978148 + 0.207912i 0.978148 + 0.207912i
361361 0 0
362362 0 0
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
368368 0 0
369369 −0.669131 0.743145i −0.669131 0.743145i
370370 0 0
371371 0 0
372372 0 0
373373 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
374374 0 0
375375 0 0
376376 −1.61803 + 1.17557i −1.61803 + 1.17557i
377377 0 0
378378 0 0
379379 −0.209057 1.98904i −0.209057 1.98904i −0.104528 0.994522i 0.533333π-0.533333\pi
−0.104528 0.994522i 0.533333π-0.533333\pi
380380 0 0
381381 0 0
382382 0.669131 0.743145i 0.669131 0.743145i
383383 0 0 −0.913545 0.406737i 0.866667π-0.866667\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
384384 0 0
385385 0 0
386386 0.913545 0.406737i 0.913545 0.406737i
387387 0 0
388388 0 0
389389 0 0 0.913545 0.406737i 0.133333π-0.133333\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
390390 0 0
391391 0 0
392392 0 0
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
398398 0 0
399399 0 0
400400 0 0
401401 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
402402 0 0
403403 0 0
404404 0 0
405405 −0.309017 0.951057i −0.309017 0.951057i
406406 0 0
407407 0 0
408408 0 0
409409 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
410410 0.104528 + 0.994522i 0.104528 + 0.994522i
411411 0 0
412412 0 0
413413 0.669131 0.743145i 0.669131 0.743145i
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 −0.309017 + 0.951057i −0.309017 + 0.951057i 0.669131 + 0.743145i 0.266667π0.266667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
420420 0 0
421421 0.978148 0.207912i 0.978148 0.207912i 0.309017 0.951057i 0.400000π-0.400000\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
422422 −0.978148 0.207912i −0.978148 0.207912i
423423 1.82709 + 0.813473i 1.82709 + 0.813473i
424424 0 0
425425 0 0
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 1.33826 + 1.48629i 1.33826 + 1.48629i 0.669131 + 0.743145i 0.266667π0.266667\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
432432 0 0
433433 0 0 1.00000 00
−1.00000 π\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
440440 0 0
441441 0 0
442442 0 0
443443 0.104528 0.994522i 0.104528 0.994522i −0.809017 0.587785i 0.800000π-0.800000\pi
0.913545 0.406737i 0.133333π-0.133333\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 −0.913545 + 0.406737i −0.913545 + 0.406737i
449449 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
450450 0 0
451451 0 0
452452 0 0
453453 0 0
454454 −1.82709 0.813473i −1.82709 0.813473i
455455 0 0
456456 0 0
457457 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
458458 0 0
459459 0 0
460460 0 0
461461 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
462462 0 0
463463 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
464464 0 0
465465 0 0
466466 1.00000 1.00000
467467 −0.309017 0.951057i −0.309017 0.951057i −0.978148 0.207912i 0.933333π-0.933333\pi
0.669131 0.743145i 0.266667π-0.266667\pi
468468 0 0
469469 1.61803 1.17557i 1.61803 1.17557i
470470 −1.00000 1.73205i −1.00000 1.73205i
471471 0 0
472472 0.104528 + 0.994522i 0.104528 + 0.994522i
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 0 0
478478 0 0
479479 −0.913545 + 0.406737i −0.913545 + 0.406737i −0.809017 0.587785i 0.800000π-0.800000\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 0 0
485485 0.913545 + 0.406737i 0.913545 + 0.406737i
486486 0 0
487487 0 0 0.104528 0.994522i 0.466667π-0.466667\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
488488 0 0
489489 0 0
490490 0 0
491491 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 1.00000 1.00000
498498 0 0
499499 0 0 −0.669131 0.743145i 0.733333π-0.733333\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
500500 0 0
501501 0 0
502502 0 0
503503 0.104528 + 0.994522i 0.104528 + 0.994522i 0.913545 + 0.406737i 0.133333π0.133333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
504504 0.809017 + 0.587785i 0.809017 + 0.587785i
505505 −0.104528 + 0.994522i −0.104528 + 0.994522i
506506 0 0
507507 0 0
508508 0 0
509509 0 0 0.978148 0.207912i 0.0666667π-0.0666667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
510510 0 0
511511 0 0
512512 0.309017 0.951057i 0.309017 0.951057i
513513 0 0
514514 −0.978148 + 0.207912i −0.978148 + 0.207912i
515515 −0.978148 0.207912i −0.978148 0.207912i
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
522522 0 0
523523 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 0.309017 + 0.951057i 0.309017 + 0.951057i
530530 0 0
531531 0.809017 0.587785i 0.809017 0.587785i
532532 0 0
533533 0 0
534534 0 0
535535 −0.809017 0.587785i −0.809017 0.587785i
536536 −0.209057 + 1.98904i −0.209057 + 1.98904i
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 −0.913545 + 0.406737i −0.913545 + 0.406737i −0.809017 0.587785i 0.800000π-0.800000\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
542542 0 0
543543 0 0
544544 0 0
545545 −0.978148 + 0.207912i −0.978148 + 0.207912i
546546 0 0
547547 −0.913545 0.406737i −0.913545 0.406737i −0.104528 0.994522i 0.533333π-0.533333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
548548 0 0
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 0 0
557557 0 0 1.00000 00
−1.00000 π\pi
558558 0 0
559559 0 0
560560 −0.309017 0.951057i −0.309017 0.951057i
561561 0 0
562562 −0.809017 + 0.587785i −0.809017 + 0.587785i
563563 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
564564 0 0
565565 −0.104528 0.994522i −0.104528 0.994522i
566566 1.61803 + 1.17557i 1.61803 + 1.17557i
567567 0.104528 0.994522i 0.104528 0.994522i
568568 −0.669131 + 0.743145i −0.669131 + 0.743145i
569569 0 0 −0.913545 0.406737i 0.866667π-0.866667\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
570570 0 0
571571 0 0 0.978148 0.207912i 0.0666667π-0.0666667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
572572 0 0
573573 0 0
574574 −0.309017 + 0.951057i −0.309017 + 0.951057i
575575 0 0
576576 −0.978148 + 0.207912i −0.978148 + 0.207912i
577577 −1.95630 0.415823i −1.95630 0.415823i −0.978148 0.207912i 0.933333π-0.933333\pi
−0.978148 0.207912i 0.933333π-0.933333\pi
578578 −0.913545 0.406737i −0.913545 0.406737i
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 −1.33826 1.48629i −1.33826 1.48629i
587587 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
588588 0 0
589589 0 0
590590 −1.00000 −1.00000
591591 0 0
592592 0 0
593593 0.809017 0.587785i 0.809017 0.587785i −0.104528 0.994522i 0.533333π-0.533333\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 −0.669131 + 0.743145i −0.669131 + 0.743145i −0.978148 0.207912i 0.933333π-0.933333\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
600600 0 0
601601 0 0 −0.978148 0.207912i 0.933333π-0.933333\pi
0.978148 + 0.207912i 0.0666667π0.0666667\pi
602602 0 0
603603 1.82709 0.813473i 1.82709 0.813473i
604604 0 0
605605 −0.309017 + 0.951057i −0.309017 + 0.951057i
606606 0 0
607607 −1.95630 + 0.415823i −1.95630 + 0.415823i −0.978148 + 0.207912i 0.933333π0.933333\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 0 0 −0.104528 0.994522i 0.533333π-0.533333\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
614614 −0.500000 + 0.866025i −0.500000 + 0.866025i
615615 0 0
616616 0 0
617617 1.33826 + 1.48629i 1.33826 + 1.48629i 0.669131 + 0.743145i 0.266667π0.266667\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
618618 0 0
619619 0 0 1.00000 00
−1.00000 π\pi
620620 0 0
621621 0 0
622622 0.309017 + 0.951057i 0.309017 + 0.951057i
623623 0 0
624624 0 0
625625 0.500000 + 0.866025i 0.500000 + 0.866025i
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 −0.669131 + 0.743145i −0.669131 + 0.743145i
631631 0 0 −0.913545 0.406737i 0.866667π-0.866667\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
632632 0 0
633633 0 0
634634 0.913545 0.406737i 0.913545 0.406737i
635635 0 0
636636 0 0
637637 0 0
638638 0 0
639639 0.978148 + 0.207912i 0.978148 + 0.207912i
640640 0.913545 + 0.406737i 0.913545 + 0.406737i
641641 0 0 0.669131 0.743145i 0.266667π-0.266667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
642642 0 0
643643 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
648648 0.669131 + 0.743145i 0.669131 + 0.743145i
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 0.618034 + 1.90211i 0.618034 + 1.90211i 0.309017 + 0.951057i 0.400000π0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
654654 0 0
655655 1.61803 1.17557i 1.61803 1.17557i
656656 −0.500000 0.866025i −0.500000 0.866025i
657657 0 0
658658 −0.209057 1.98904i −0.209057 1.98904i
659659 0.809017 + 0.587785i 0.809017 + 0.587785i 0.913545 0.406737i 0.133333π-0.133333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
660660 0 0
661661 −0.669131 + 0.743145i −0.669131 + 0.743145i −0.978148 0.207912i 0.933333π-0.933333\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
662662 0 0
663663 0 0
664664 0 0
665665 −0.913545 + 0.406737i −0.913545 + 0.406737i
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 −1.95630 0.415823i −1.95630 0.415823i
671671 0 0
672672 0 0
673673 0 0 0.104528 0.994522i 0.466667π-0.466667\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
674674 0 0
675675 0 0
676676 0 0
677677 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
678678 0 0
679679 0.669131 + 0.743145i 0.669131 + 0.743145i
680680 0 0
681681 0 0
682682 0 0
683683 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
684684 0 0
685685 0 0
686686 0.809017 0.587785i 0.809017 0.587785i
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 0.104528 0.994522i 0.104528 0.994522i −0.809017 0.587785i 0.800000π-0.800000\pi
0.913545 0.406737i 0.133333π-0.133333\pi
692692 0 0
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 0 0
698698 −0.618034 + 1.90211i −0.618034 + 1.90211i
699699 0 0
700700 0 0
701701 0.978148 + 0.207912i 0.978148 + 0.207912i 0.669131 0.743145i 0.266667π-0.266667\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 0 0
707707 −0.500000 + 0.866025i −0.500000 + 0.866025i
708708 0 0
709709 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
710710 −0.669131 0.743145i −0.669131 0.743145i
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 −0.500000 0.866025i −0.500000 0.866025i
719719 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
720720 −0.104528 0.994522i −0.104528 0.994522i
721721 −0.809017 0.587785i −0.809017 0.587785i
722722 0 0
723723 0 0
724724 0 0
725725 0 0
726726 0 0
727727 −0.913545 + 0.406737i −0.913545 + 0.406737i −0.809017 0.587785i 0.800000π-0.800000\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
728728 0 0
729729 0.309017 0.951057i 0.309017 0.951057i
730730 0 0
731731 0 0
732732 0 0
733733 −0.913545 0.406737i −0.913545 0.406737i −0.104528 0.994522i 0.533333π-0.533333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 −0.500000 + 0.866025i −0.500000 + 0.866025i
739739 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 1.00000 00
−1.00000 π\pi
744744 0 0
745745 −2.00000 −2.00000
746746 0.309017 + 0.951057i 0.309017 + 0.951057i
747747 0 0
748748 0 0
749749 −0.500000 0.866025i −0.500000 0.866025i
750750 0 0
751751 0.104528 + 0.994522i 0.104528 + 0.994522i 0.913545 + 0.406737i 0.133333π0.133333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
752752 1.61803 + 1.17557i 1.61803 + 1.17557i
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 0 0 0.978148 0.207912i 0.0666667π-0.0666667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
758758 −1.82709 + 0.813473i −1.82709 + 0.813473i
759759 0 0
760760 0.309017 0.951057i 0.309017 0.951057i
761761 0 0 0.913545 0.406737i 0.133333π-0.133333\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
762762 0 0
763763 −0.978148 0.207912i −0.978148 0.207912i
764764 0 0
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
770770 0 0
771771 0 0
772772 0 0
773773 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
774774 0 0
775775 0 0
776776 −1.00000 −1.00000
777777 0 0
778778 0 0
779779 −0.809017 + 0.587785i −0.809017 + 0.587785i
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 0 0
785785 0.669131 0.743145i 0.669131 0.743145i
786786 0 0
787787 0 0 −0.978148 0.207912i 0.933333π-0.933333\pi
0.978148 + 0.207912i 0.0666667π0.0666667\pi
788788 0 0
789789 0 0
790790 0 0
791791 0.309017 0.951057i 0.309017 0.951057i
792792 0 0
793793 0 0
794794 −0.978148 0.207912i −0.978148 0.207912i
795795 0 0
796796 0 0
797797 0 0 0.104528 0.994522i 0.466667π-0.466667\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
798798 0 0
799799 0 0
800800 0 0
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 −0.309017 0.951057i −0.309017 0.951057i
809809 0 0 −0.669131 0.743145i 0.733333π-0.733333\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
810810 −0.809017 + 0.587785i −0.809017 + 0.587785i
811811 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
812812 0 0
813813 0 0
814814 0 0
815815 −0.104528 + 0.994522i −0.104528 + 0.994522i
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
822822 0 0
823823 0 0 0.913545 0.406737i 0.133333π-0.133333\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
824824 0.978148 0.207912i 0.978148 0.207912i
825825 0 0
826826 −0.913545 0.406737i −0.913545 0.406737i
827827 0 0 0.669131 0.743145i 0.266667π-0.266667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
828828 0 0
829829 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
830830 0 0
831831 0 0
832832 0 0
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 1.00000 1.00000
839839 0.618034 + 1.90211i 0.618034 + 1.90211i 0.309017 + 0.951057i 0.400000π0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
840840 0 0
841841 −0.809017 + 0.587785i −0.809017 + 0.587785i
842842 −0.500000 0.866025i −0.500000 0.866025i
843843 0 0
844844 0 0
845845 0.809017 + 0.587785i 0.809017 + 0.587785i
846846 0.209057 1.98904i 0.209057 1.98904i
847847 −0.669131 + 0.743145i −0.669131 + 0.743145i
848848 0 0
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 0.618034 1.90211i 0.618034 1.90211i 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
854854 0 0
855855 −0.978148 + 0.207912i −0.978148 + 0.207912i
856856 0.978148 + 0.207912i 0.978148 + 0.207912i
857857 1.82709 + 0.813473i 1.82709 + 0.813473i 0.913545 + 0.406737i 0.133333π0.133333\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
858858 0 0
859859 0 0 0.104528 0.994522i 0.466667π-0.466667\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
860860 0 0
861861 0 0
862862 1.00000 1.73205i 1.00000 1.73205i
863863 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
864864 0 0
865865 −1.33826 1.48629i −1.33826 1.48629i
866866 0 0
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0.809017 0.587785i 0.809017 0.587785i
873873 0.500000 + 0.866025i 0.500000 + 0.866025i
874874 0 0
875875 0.104528 + 0.994522i 0.104528 + 0.994522i
876876 0 0
877877 0.104528 0.994522i 0.104528 0.994522i −0.809017 0.587785i 0.800000π-0.800000\pi
0.913545 0.406737i 0.133333π-0.133333\pi
878878 0.669131 0.743145i 0.669131 0.743145i
879879 0 0
880880 0 0
881881 0 0 0.978148 0.207912i 0.0666667π-0.0666667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
882882 0 0
883883 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
884884 0 0
885885 0 0
886886 −0.978148 + 0.207912i −0.978148 + 0.207912i
887887 0.978148 + 0.207912i 0.978148 + 0.207912i 0.669131 0.743145i 0.266667π-0.266667\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 1.00000 1.73205i 1.00000 1.73205i
894894 0 0
895895 0 0
896896 0.669131 + 0.743145i 0.669131 + 0.743145i
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 0 0
902902 0 0
903903 0 0
904904 0.500000 + 0.866025i 0.500000 + 0.866025i
905905 0 0
906906 0 0
907907 0.809017 + 0.587785i 0.809017 + 0.587785i 0.913545 0.406737i 0.133333π-0.133333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
908908 0 0
909909 −0.669131 + 0.743145i −0.669131 + 0.743145i
910910 0 0
911911 0 0 −0.978148 0.207912i 0.933333π-0.933333\pi
0.978148 + 0.207912i 0.0666667π0.0666667\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 0 0
917917 1.95630 0.415823i 1.95630 0.415823i
918918 0 0
919919 1.82709 + 0.813473i 1.82709 + 0.813473i 0.913545 + 0.406737i 0.133333π0.133333\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 −0.669131 0.743145i −0.669131 0.743145i
928928 0 0
929929 0 0 1.00000 00
−1.00000 π\pi
930930 0 0
931931 0 0
932932 0 0
933933 0 0
934934 −0.809017 + 0.587785i −0.809017 + 0.587785i
935935 0 0
936936 0 0
937937 −0.209057 1.98904i −0.209057 1.98904i −0.104528 0.994522i 0.533333π-0.533333\pi
−0.104528 0.994522i 0.533333π-0.533333\pi
938938 −1.61803 1.17557i −1.61803 1.17557i
939939 0 0
940940 0 0
941941 0 0 −0.913545 0.406737i 0.866667π-0.866667\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
942942 0 0
943943 0 0
944944 0.913545 0.406737i 0.913545 0.406737i
945945 0 0
946946 0 0
947947 0 0 0.913545 0.406737i 0.133333π-0.133333\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
954954 0 0
955955 −0.500000 + 0.866025i −0.500000 + 0.866025i
956956 0 0
957957 0 0
958958 0.669131 + 0.743145i 0.669131 + 0.743145i
959959 0 0
960960 0 0
961961 0 0
962962 0 0
963963 −0.309017 0.951057i −0.309017 0.951057i
964964 0 0
965965 −0.809017 + 0.587785i −0.809017 + 0.587785i
966966 0 0
967967 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
968968 −0.104528 0.994522i −0.104528 0.994522i
969969 0 0
970970 0.104528 0.994522i 0.104528 0.994522i
971971 1.33826 1.48629i 1.33826 1.48629i 0.669131 0.743145i 0.266667π-0.266667\pi
0.669131 0.743145i 0.266667π-0.266667\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 0 0
977977 −0.309017 + 0.951057i −0.309017 + 0.951057i 0.669131 + 0.743145i 0.266667π0.266667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
978978 0 0
979979 0 0
980980 0 0
981981 −0.913545 0.406737i −0.913545 0.406737i
982982 0 0
983983 0 0 0.104528 0.994522i 0.466667π-0.466667\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0 0 1.00000 00
−1.00000 π\pi
992992 0 0
993993 0 0
994994 −0.309017 0.951057i −0.309017 0.951057i
995995 0 0
996996 0 0
997997 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.1.h.a.414.1 8
31.2 even 5 inner 961.1.h.a.726.1 8
31.3 odd 30 961.1.e.a.440.1 2
31.4 even 5 inner 961.1.h.a.145.1 8
31.5 even 3 961.1.f.a.430.1 4
31.6 odd 6 inner 961.1.h.a.117.1 8
31.7 even 15 inner 961.1.h.a.229.1 8
31.8 even 5 inner 961.1.h.a.115.1 8
31.9 even 15 961.1.f.a.333.1 4
31.10 even 15 961.1.f.a.573.1 4
31.11 odd 30 961.1.f.a.587.1 4
31.12 odd 30 inner 961.1.h.a.623.1 8
31.13 odd 30 31.1.b.a.30.1 1
31.14 even 15 inner 961.1.h.a.513.1 8
31.15 odd 10 961.1.e.a.522.1 2
31.16 even 5 961.1.e.a.522.1 2
31.17 odd 30 inner 961.1.h.a.513.1 8
31.18 even 15 31.1.b.a.30.1 1
31.19 even 15 inner 961.1.h.a.623.1 8
31.20 even 15 961.1.f.a.587.1 4
31.21 odd 30 961.1.f.a.573.1 4
31.22 odd 30 961.1.f.a.333.1 4
31.23 odd 10 inner 961.1.h.a.115.1 8
31.24 odd 30 inner 961.1.h.a.229.1 8
31.25 even 3 inner 961.1.h.a.117.1 8
31.26 odd 6 961.1.f.a.430.1 4
31.27 odd 10 inner 961.1.h.a.145.1 8
31.28 even 15 961.1.e.a.440.1 2
31.29 odd 10 inner 961.1.h.a.726.1 8
31.30 odd 2 CM 961.1.h.a.414.1 8
93.44 even 30 279.1.d.b.154.1 1
93.80 odd 30 279.1.d.b.154.1 1
124.75 even 30 496.1.e.a.433.1 1
124.111 odd 30 496.1.e.a.433.1 1
155.13 even 60 775.1.c.a.774.2 2
155.18 odd 60 775.1.c.a.774.2 2
155.44 odd 30 775.1.d.b.526.1 1
155.49 even 30 775.1.d.b.526.1 1
155.137 even 60 775.1.c.a.774.1 2
155.142 odd 60 775.1.c.a.774.1 2
217.13 even 30 1519.1.c.a.1177.1 1
217.18 even 15 1519.1.n.b.30.1 2
217.44 odd 30 1519.1.n.b.557.1 2
217.75 even 30 1519.1.n.a.557.1 2
217.80 odd 30 1519.1.n.a.30.1 2
217.111 odd 30 1519.1.c.a.1177.1 1
217.137 odd 30 1519.1.n.b.30.1 2
217.142 even 15 1519.1.n.b.557.1 2
217.173 odd 30 1519.1.n.a.557.1 2
217.199 even 30 1519.1.n.a.30.1 2
248.13 odd 30 1984.1.e.a.1921.1 1
248.75 even 30 1984.1.e.b.1921.1 1
248.173 even 30 1984.1.e.a.1921.1 1
248.235 odd 30 1984.1.e.b.1921.1 1
279.13 odd 30 2511.1.m.e.1270.1 2
279.49 even 15 2511.1.m.e.1270.1 2
279.106 odd 30 2511.1.m.e.433.1 2
279.137 even 30 2511.1.m.a.433.1 2
279.142 even 15 2511.1.m.e.433.1 2
279.173 odd 30 2511.1.m.a.433.1 2
279.230 even 30 2511.1.m.a.1270.1 2
279.266 odd 30 2511.1.m.a.1270.1 2
341.13 even 30 3751.1.t.a.2138.1 4
341.18 odd 30 3751.1.t.a.3657.1 4
341.49 even 15 3751.1.t.c.2665.1 4
341.75 odd 30 3751.1.t.c.2138.1 4
341.80 even 15 3751.1.t.c.2913.1 4
341.106 even 30 3751.1.t.a.3657.1 4
341.137 odd 30 3751.1.t.c.2665.1 4
341.142 odd 30 3751.1.d.b.1332.1 1
341.168 odd 30 3751.1.t.c.2913.1 4
341.173 odd 30 3751.1.t.a.2913.1 4
341.204 odd 30 3751.1.t.a.2665.1 4
341.230 even 30 3751.1.d.b.1332.1 1
341.235 even 15 3751.1.t.c.3657.1 4
341.261 even 30 3751.1.t.a.2913.1 4
341.266 odd 30 3751.1.t.a.2138.1 4
341.292 even 30 3751.1.t.a.2665.1 4
341.323 odd 30 3751.1.t.c.3657.1 4
341.328 even 15 3751.1.t.c.2138.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.1.b.a.30.1 1 31.13 odd 30
31.1.b.a.30.1 1 31.18 even 15
279.1.d.b.154.1 1 93.44 even 30
279.1.d.b.154.1 1 93.80 odd 30
496.1.e.a.433.1 1 124.75 even 30
496.1.e.a.433.1 1 124.111 odd 30
775.1.c.a.774.1 2 155.137 even 60
775.1.c.a.774.1 2 155.142 odd 60
775.1.c.a.774.2 2 155.13 even 60
775.1.c.a.774.2 2 155.18 odd 60
775.1.d.b.526.1 1 155.44 odd 30
775.1.d.b.526.1 1 155.49 even 30
961.1.e.a.440.1 2 31.3 odd 30
961.1.e.a.440.1 2 31.28 even 15
961.1.e.a.522.1 2 31.15 odd 10
961.1.e.a.522.1 2 31.16 even 5
961.1.f.a.333.1 4 31.9 even 15
961.1.f.a.333.1 4 31.22 odd 30
961.1.f.a.430.1 4 31.5 even 3
961.1.f.a.430.1 4 31.26 odd 6
961.1.f.a.573.1 4 31.10 even 15
961.1.f.a.573.1 4 31.21 odd 30
961.1.f.a.587.1 4 31.11 odd 30
961.1.f.a.587.1 4 31.20 even 15
961.1.h.a.115.1 8 31.8 even 5 inner
961.1.h.a.115.1 8 31.23 odd 10 inner
961.1.h.a.117.1 8 31.6 odd 6 inner
961.1.h.a.117.1 8 31.25 even 3 inner
961.1.h.a.145.1 8 31.4 even 5 inner
961.1.h.a.145.1 8 31.27 odd 10 inner
961.1.h.a.229.1 8 31.7 even 15 inner
961.1.h.a.229.1 8 31.24 odd 30 inner
961.1.h.a.414.1 8 1.1 even 1 trivial
961.1.h.a.414.1 8 31.30 odd 2 CM
961.1.h.a.513.1 8 31.14 even 15 inner
961.1.h.a.513.1 8 31.17 odd 30 inner
961.1.h.a.623.1 8 31.12 odd 30 inner
961.1.h.a.623.1 8 31.19 even 15 inner
961.1.h.a.726.1 8 31.2 even 5 inner
961.1.h.a.726.1 8 31.29 odd 10 inner
1519.1.c.a.1177.1 1 217.13 even 30
1519.1.c.a.1177.1 1 217.111 odd 30
1519.1.n.a.30.1 2 217.80 odd 30
1519.1.n.a.30.1 2 217.199 even 30
1519.1.n.a.557.1 2 217.75 even 30
1519.1.n.a.557.1 2 217.173 odd 30
1519.1.n.b.30.1 2 217.18 even 15
1519.1.n.b.30.1 2 217.137 odd 30
1519.1.n.b.557.1 2 217.44 odd 30
1519.1.n.b.557.1 2 217.142 even 15
1984.1.e.a.1921.1 1 248.13 odd 30
1984.1.e.a.1921.1 1 248.173 even 30
1984.1.e.b.1921.1 1 248.75 even 30
1984.1.e.b.1921.1 1 248.235 odd 30
2511.1.m.a.433.1 2 279.137 even 30
2511.1.m.a.433.1 2 279.173 odd 30
2511.1.m.a.1270.1 2 279.230 even 30
2511.1.m.a.1270.1 2 279.266 odd 30
2511.1.m.e.433.1 2 279.106 odd 30
2511.1.m.e.433.1 2 279.142 even 15
2511.1.m.e.1270.1 2 279.13 odd 30
2511.1.m.e.1270.1 2 279.49 even 15
3751.1.d.b.1332.1 1 341.142 odd 30
3751.1.d.b.1332.1 1 341.230 even 30
3751.1.t.a.2138.1 4 341.13 even 30
3751.1.t.a.2138.1 4 341.266 odd 30
3751.1.t.a.2665.1 4 341.204 odd 30
3751.1.t.a.2665.1 4 341.292 even 30
3751.1.t.a.2913.1 4 341.173 odd 30
3751.1.t.a.2913.1 4 341.261 even 30
3751.1.t.a.3657.1 4 341.18 odd 30
3751.1.t.a.3657.1 4 341.106 even 30
3751.1.t.c.2138.1 4 341.75 odd 30
3751.1.t.c.2138.1 4 341.328 even 15
3751.1.t.c.2665.1 4 341.49 even 15
3751.1.t.c.2665.1 4 341.137 odd 30
3751.1.t.c.2913.1 4 341.80 even 15
3751.1.t.c.2913.1 4 341.168 odd 30
3751.1.t.c.3657.1 4 341.235 even 15
3751.1.t.c.3657.1 4 341.323 odd 30