Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [961,2,Mod(439,961)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(961, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([4]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("961.439");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 961 = 31^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 961.c (of order \(3\), degree \(2\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(7.67362363425\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{3})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
439.1 | −2.13825 | −1.45242 | + | 2.51567i | 2.57209 | 0.648062 | + | 1.12248i | 3.10564 | − | 5.37913i | 1.35517 | − | 2.34722i | −1.22328 | −2.71907 | − | 4.70958i | −1.38572 | − | 2.40013i | ||||||
439.2 | −2.13825 | 1.45242 | − | 2.51567i | 2.57209 | 0.648062 | + | 1.12248i | −3.10564 | + | 5.37913i | 1.35517 | − | 2.34722i | −1.22328 | −2.71907 | − | 4.70958i | −1.38572 | − | 2.40013i | ||||||
439.3 | −1.80264 | −0.0954837 | + | 0.165383i | 1.24951 | 1.23318 | + | 2.13593i | 0.172123 | − | 0.298125i | 0.526075 | − | 0.911189i | 1.35286 | 1.48177 | + | 2.56649i | −2.22298 | − | 3.85032i | ||||||
439.4 | −1.80264 | 0.0954837 | − | 0.165383i | 1.24951 | 1.23318 | + | 2.13593i | −0.172123 | + | 0.298125i | 0.526075 | − | 0.911189i | 1.35286 | 1.48177 | + | 2.56649i | −2.22298 | − | 3.85032i | ||||||
439.5 | −1.24512 | −1.33932 | + | 2.31977i | −0.449667 | −1.30938 | − | 2.26791i | 1.66762 | − | 2.88840i | −0.602271 | + | 1.04316i | 3.05014 | −2.08754 | − | 3.61573i | 1.63034 | + | 2.82383i | ||||||
439.6 | −1.24512 | 1.33932 | − | 2.31977i | −0.449667 | −1.30938 | − | 2.26791i | −1.66762 | + | 2.88840i | −0.602271 | + | 1.04316i | 3.05014 | −2.08754 | − | 3.61573i | 1.63034 | + | 2.82383i | ||||||
439.7 | 0.720616 | −0.949328 | + | 1.64428i | −1.48071 | −1.39356 | − | 2.41371i | −0.684101 | + | 1.18490i | −2.10066 | + | 3.63846i | −2.50826 | −0.302446 | − | 0.523851i | −1.00422 | − | 1.73936i | ||||||
439.8 | 0.720616 | 0.949328 | − | 1.64428i | −1.48071 | −1.39356 | − | 2.41371i | 0.684101 | − | 1.18490i | −2.10066 | + | 3.63846i | −2.50826 | −0.302446 | − | 0.523851i | −1.00422 | − | 1.73936i | ||||||
439.9 | 1.96916 | −0.810772 | + | 1.40430i | 1.87757 | −1.75290 | − | 3.03611i | −1.59654 | + | 2.76528i | −1.04579 | + | 1.81136i | −0.241077 | 0.185296 | + | 0.320943i | −3.45173 | − | 5.97857i | ||||||
439.10 | 1.96916 | 0.810772 | − | 1.40430i | 1.87757 | −1.75290 | − | 3.03611i | 1.59654 | − | 2.76528i | −1.04579 | + | 1.81136i | −0.241077 | 0.185296 | + | 0.320943i | −3.45173 | − | 5.97857i | ||||||
439.11 | 2.49624 | −1.23653 | + | 2.14173i | 4.23120 | 0.574589 | + | 0.995217i | −3.08667 | + | 5.34626i | −0.132518 | + | 0.229528i | 5.56961 | −1.55800 | − | 2.69853i | 1.43431 | + | 2.48430i | ||||||
439.12 | 2.49624 | 1.23653 | − | 2.14173i | 4.23120 | 0.574589 | + | 0.995217i | 3.08667 | − | 5.34626i | −0.132518 | + | 0.229528i | 5.56961 | −1.55800 | − | 2.69853i | 1.43431 | + | 2.48430i | ||||||
521.1 | −2.13825 | −1.45242 | − | 2.51567i | 2.57209 | 0.648062 | − | 1.12248i | 3.10564 | + | 5.37913i | 1.35517 | + | 2.34722i | −1.22328 | −2.71907 | + | 4.70958i | −1.38572 | + | 2.40013i | ||||||
521.2 | −2.13825 | 1.45242 | + | 2.51567i | 2.57209 | 0.648062 | − | 1.12248i | −3.10564 | − | 5.37913i | 1.35517 | + | 2.34722i | −1.22328 | −2.71907 | + | 4.70958i | −1.38572 | + | 2.40013i | ||||||
521.3 | −1.80264 | −0.0954837 | − | 0.165383i | 1.24951 | 1.23318 | − | 2.13593i | 0.172123 | + | 0.298125i | 0.526075 | + | 0.911189i | 1.35286 | 1.48177 | − | 2.56649i | −2.22298 | + | 3.85032i | ||||||
521.4 | −1.80264 | 0.0954837 | + | 0.165383i | 1.24951 | 1.23318 | − | 2.13593i | −0.172123 | − | 0.298125i | 0.526075 | + | 0.911189i | 1.35286 | 1.48177 | − | 2.56649i | −2.22298 | + | 3.85032i | ||||||
521.5 | −1.24512 | −1.33932 | − | 2.31977i | −0.449667 | −1.30938 | + | 2.26791i | 1.66762 | + | 2.88840i | −0.602271 | − | 1.04316i | 3.05014 | −2.08754 | + | 3.61573i | 1.63034 | − | 2.82383i | ||||||
521.6 | −1.24512 | 1.33932 | + | 2.31977i | −0.449667 | −1.30938 | + | 2.26791i | −1.66762 | − | 2.88840i | −0.602271 | − | 1.04316i | 3.05014 | −2.08754 | + | 3.61573i | 1.63034 | − | 2.82383i | ||||||
521.7 | 0.720616 | −0.949328 | − | 1.64428i | −1.48071 | −1.39356 | + | 2.41371i | −0.684101 | − | 1.18490i | −2.10066 | − | 3.63846i | −2.50826 | −0.302446 | + | 0.523851i | −1.00422 | + | 1.73936i | ||||||
521.8 | 0.720616 | 0.949328 | + | 1.64428i | −1.48071 | −1.39356 | + | 2.41371i | 0.684101 | + | 1.18490i | −2.10066 | − | 3.63846i | −2.50826 | −0.302446 | + | 0.523851i | −1.00422 | + | 1.73936i | ||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
31.b | odd | 2 | 1 | inner |
31.c | even | 3 | 1 | inner |
31.e | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 961.2.c.k | 24 | |
31.b | odd | 2 | 1 | inner | 961.2.c.k | 24 | |
31.c | even | 3 | 1 | 961.2.a.k | ✓ | 12 | |
31.c | even | 3 | 1 | inner | 961.2.c.k | 24 | |
31.d | even | 5 | 4 | 961.2.g.v | 96 | ||
31.e | odd | 6 | 1 | 961.2.a.k | ✓ | 12 | |
31.e | odd | 6 | 1 | inner | 961.2.c.k | 24 | |
31.f | odd | 10 | 4 | 961.2.g.v | 96 | ||
31.g | even | 15 | 4 | 961.2.d.r | 48 | ||
31.g | even | 15 | 4 | 961.2.g.v | 96 | ||
31.h | odd | 30 | 4 | 961.2.d.r | 48 | ||
31.h | odd | 30 | 4 | 961.2.g.v | 96 | ||
93.g | even | 6 | 1 | 8649.2.a.bp | 12 | ||
93.h | odd | 6 | 1 | 8649.2.a.bp | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
961.2.a.k | ✓ | 12 | 31.c | even | 3 | 1 | |
961.2.a.k | ✓ | 12 | 31.e | odd | 6 | 1 | |
961.2.c.k | 24 | 1.a | even | 1 | 1 | trivial | |
961.2.c.k | 24 | 31.b | odd | 2 | 1 | inner | |
961.2.c.k | 24 | 31.c | even | 3 | 1 | inner | |
961.2.c.k | 24 | 31.e | odd | 6 | 1 | inner | |
961.2.d.r | 48 | 31.g | even | 15 | 4 | ||
961.2.d.r | 48 | 31.h | odd | 30 | 4 | ||
961.2.g.v | 96 | 31.d | even | 5 | 4 | ||
961.2.g.v | 96 | 31.f | odd | 10 | 4 | ||
961.2.g.v | 96 | 31.g | even | 15 | 4 | ||
961.2.g.v | 96 | 31.h | odd | 30 | 4 | ||
8649.2.a.bp | 12 | 93.g | even | 6 | 1 | ||
8649.2.a.bp | 12 | 93.h | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(961, [\chi])\):
\( T_{2}^{6} - 10T_{2}^{4} - 2T_{2}^{3} + 28T_{2}^{2} + 8T_{2} - 17 \)
|
\( T_{3}^{24} + 28 T_{3}^{22} + 482 T_{3}^{20} + 5336 T_{3}^{18} + 43680 T_{3}^{16} + 259504 T_{3}^{14} + \cdots + 16384 \)
|