Properties

Label 961.2.d.o.531.2
Level $961$
Weight $2$
Character 961.531
Analytic conductor $7.674$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [961,2,Mod(374,961)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(961, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("961.374");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.d (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 19x^{14} + 140x^{12} + 511x^{10} + 979x^{8} + 956x^{6} + 410x^{4} + 44x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 5^{2} \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 531.2
Root \(-2.16544i\) of defining polynomial
Character \(\chi\) \(=\) 961.531
Dual form 961.2.d.o.628.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.571745 - 1.75965i) q^{2} +(0.154309 - 0.474914i) q^{3} +(-1.15144 + 0.836573i) q^{4} +1.20736 q^{5} -0.923909 q^{6} +(-3.02009 + 2.19423i) q^{7} +(-0.863288 - 0.627215i) q^{8} +(2.22532 + 1.61679i) q^{9} +(-0.690303 - 2.12453i) q^{10} +(1.50195 - 1.09123i) q^{11} +(0.219622 + 0.675928i) q^{12} +(-1.60209 + 4.93072i) q^{13} +(5.58780 + 4.05977i) q^{14} +(0.186307 - 0.573393i) q^{15} +(-1.48972 + 4.58490i) q^{16} +(4.58508 + 3.33126i) q^{17} +(1.57267 - 4.84017i) q^{18} +(-0.444517 - 1.36808i) q^{19} +(-1.39021 + 1.01005i) q^{20} +(0.576042 + 1.77288i) q^{21} +(-2.77891 - 2.01900i) q^{22} +(2.86762 + 2.08345i) q^{23} +(-0.431086 + 0.313203i) q^{24} -3.54228 q^{25} +9.59234 q^{26} +(2.32318 - 1.68789i) q^{27} +(1.64184 - 5.05306i) q^{28} +(0.424157 + 1.30542i) q^{29} -1.11549 q^{30} +6.78540 q^{32} +(-0.286476 - 0.881683i) q^{33} +(3.24035 - 9.97278i) q^{34} +(-3.64635 + 2.64923i) q^{35} -3.91489 q^{36} +4.50281 q^{37} +(-2.15320 + 1.56439i) q^{38} +(2.09445 + 1.52171i) q^{39} +(-1.04230 - 0.757275i) q^{40} +(-1.45829 - 4.48814i) q^{41} +(2.79029 - 2.02727i) q^{42} +(2.02691 + 6.23819i) q^{43} +(-0.816516 + 2.51298i) q^{44} +(2.68676 + 1.95205i) q^{45} +(2.02659 - 6.23721i) q^{46} +(-1.30682 + 4.02199i) q^{47} +(1.94756 + 1.41498i) q^{48} +(2.14322 - 6.59615i) q^{49} +(2.02528 + 6.23317i) q^{50} +(2.28958 - 1.66348i) q^{51} +(-2.28019 - 7.01772i) q^{52} +(10.4875 + 7.61964i) q^{53} +(-4.29836 - 3.12294i) q^{54} +(1.81339 - 1.31751i) q^{55} +3.98346 q^{56} -0.718314 q^{57} +(2.05458 - 1.49274i) q^{58} +(-0.674139 + 2.07479i) q^{59} +(0.265164 + 0.816089i) q^{60} -2.68087 q^{61} -10.2683 q^{63} +(-0.900071 - 2.77013i) q^{64} +(-1.93430 + 5.95317i) q^{65} +(-1.38766 + 1.00820i) q^{66} +2.88300 q^{67} -8.06631 q^{68} +(1.43196 - 1.04038i) q^{69} +(6.74649 + 4.90161i) q^{70} +(-7.28247 - 5.29103i) q^{71} +(-0.907016 - 2.79151i) q^{72} +(3.40115 - 2.47108i) q^{73} +(-2.57446 - 7.92338i) q^{74} +(-0.546605 + 1.68228i) q^{75} +(1.65634 + 1.20340i) q^{76} +(-2.14162 + 6.59123i) q^{77} +(1.48018 - 4.55554i) q^{78} +(-9.08664 - 6.60183i) q^{79} +(-1.79864 + 5.53563i) q^{80} +(2.10687 + 6.48429i) q^{81} +(-7.06379 + 5.13215i) q^{82} +(-3.23771 - 9.96463i) q^{83} +(-2.14642 - 1.55947i) q^{84} +(5.53585 + 4.02203i) q^{85} +(9.81816 - 7.13331i) q^{86} +0.685415 q^{87} -1.98105 q^{88} +(2.18575 - 1.58804i) q^{89} +(1.89878 - 5.84384i) q^{90} +(-5.98067 - 18.4066i) q^{91} -5.04486 q^{92} +7.82446 q^{94} +(-0.536692 - 1.65177i) q^{95} +(1.04705 - 3.22248i) q^{96} +(6.70942 - 4.87468i) q^{97} -12.8323 q^{98} +5.10660 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{2} + 9 q^{3} - 14 q^{4} + 6 q^{5} - 22 q^{6} + 11 q^{7} + 17 q^{8} + 5 q^{9} + 19 q^{10} + 14 q^{11} + 5 q^{12} - q^{13} + 27 q^{14} + 14 q^{15} - 2 q^{16} - 3 q^{17} - 9 q^{18} + 13 q^{19}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.571745 1.75965i −0.404285 1.24426i −0.921491 0.388400i \(-0.873028\pi\)
0.517206 0.855861i \(-0.326972\pi\)
\(3\) 0.154309 0.474914i 0.0890903 0.274192i −0.896578 0.442885i \(-0.853955\pi\)
0.985669 + 0.168694i \(0.0539548\pi\)
\(4\) −1.15144 + 0.836573i −0.575722 + 0.418287i
\(5\) 1.20736 0.539948 0.269974 0.962868i \(-0.412985\pi\)
0.269974 + 0.962868i \(0.412985\pi\)
\(6\) −0.923909 −0.377184
\(7\) −3.02009 + 2.19423i −1.14149 + 0.829340i −0.987326 0.158706i \(-0.949268\pi\)
−0.154163 + 0.988046i \(0.549268\pi\)
\(8\) −0.863288 0.627215i −0.305218 0.221754i
\(9\) 2.22532 + 1.61679i 0.741773 + 0.538930i
\(10\) −0.690303 2.12453i −0.218293 0.671837i
\(11\) 1.50195 1.09123i 0.452854 0.329018i −0.337867 0.941194i \(-0.609706\pi\)
0.790722 + 0.612176i \(0.209706\pi\)
\(12\) 0.219622 + 0.675928i 0.0633995 + 0.195124i
\(13\) −1.60209 + 4.93072i −0.444340 + 1.36754i 0.438867 + 0.898552i \(0.355380\pi\)
−0.883206 + 0.468985i \(0.844620\pi\)
\(14\) 5.58780 + 4.05977i 1.49340 + 1.08502i
\(15\) 0.186307 0.573393i 0.0481042 0.148049i
\(16\) −1.48972 + 4.58490i −0.372431 + 1.14622i
\(17\) 4.58508 + 3.33126i 1.11205 + 0.807949i 0.982985 0.183688i \(-0.0588035\pi\)
0.129062 + 0.991637i \(0.458804\pi\)
\(18\) 1.57267 4.84017i 0.370681 1.14084i
\(19\) −0.444517 1.36808i −0.101979 0.313859i 0.887030 0.461711i \(-0.152764\pi\)
−0.989010 + 0.147851i \(0.952764\pi\)
\(20\) −1.39021 + 1.01005i −0.310860 + 0.225853i
\(21\) 0.576042 + 1.77288i 0.125703 + 0.386873i
\(22\) −2.77891 2.01900i −0.592466 0.430452i
\(23\) 2.86762 + 2.08345i 0.597940 + 0.434429i 0.845147 0.534534i \(-0.179513\pi\)
−0.247207 + 0.968963i \(0.579513\pi\)
\(24\) −0.431086 + 0.313203i −0.0879952 + 0.0639322i
\(25\) −3.54228 −0.708456
\(26\) 9.59234 1.88121
\(27\) 2.32318 1.68789i 0.447096 0.324835i
\(28\) 1.64184 5.05306i 0.310278 0.954939i
\(29\) 0.424157 + 1.30542i 0.0787641 + 0.242411i 0.982684 0.185292i \(-0.0593230\pi\)
−0.903919 + 0.427703i \(0.859323\pi\)
\(30\) −1.11549 −0.203660
\(31\) 0 0
\(32\) 6.78540 1.19950
\(33\) −0.286476 0.881683i −0.0498691 0.153481i
\(34\) 3.24035 9.97278i 0.555716 1.71032i
\(35\) −3.64635 + 2.64923i −0.616345 + 0.447801i
\(36\) −3.91489 −0.652482
\(37\) 4.50281 0.740258 0.370129 0.928980i \(-0.379313\pi\)
0.370129 + 0.928980i \(0.379313\pi\)
\(38\) −2.15320 + 1.56439i −0.349294 + 0.253777i
\(39\) 2.09445 + 1.52171i 0.335381 + 0.243669i
\(40\) −1.04230 0.757275i −0.164802 0.119736i
\(41\) −1.45829 4.48814i −0.227746 0.700930i −0.998001 0.0631942i \(-0.979871\pi\)
0.770255 0.637736i \(-0.220129\pi\)
\(42\) 2.79029 2.02727i 0.430551 0.312814i
\(43\) 2.02691 + 6.23819i 0.309101 + 0.951315i 0.978115 + 0.208065i \(0.0667166\pi\)
−0.669014 + 0.743250i \(0.733283\pi\)
\(44\) −0.816516 + 2.51298i −0.123094 + 0.378846i
\(45\) 2.68676 + 1.95205i 0.400519 + 0.290994i
\(46\) 2.02659 6.23721i 0.298805 0.919627i
\(47\) −1.30682 + 4.02199i −0.190620 + 0.586667i −1.00000 0.000618100i \(-0.999803\pi\)
0.809380 + 0.587285i \(0.199803\pi\)
\(48\) 1.94756 + 1.41498i 0.281106 + 0.204235i
\(49\) 2.14322 6.59615i 0.306174 0.942307i
\(50\) 2.02528 + 6.23317i 0.286418 + 0.881504i
\(51\) 2.28958 1.66348i 0.320606 0.232934i
\(52\) −2.28019 7.01772i −0.316206 0.973182i
\(53\) 10.4875 + 7.61964i 1.44057 + 1.04664i 0.987922 + 0.154950i \(0.0495217\pi\)
0.452651 + 0.891688i \(0.350478\pi\)
\(54\) −4.29836 3.12294i −0.584933 0.424979i
\(55\) 1.81339 1.31751i 0.244518 0.177653i
\(56\) 3.98346 0.532313
\(57\) −0.718314 −0.0951431
\(58\) 2.05458 1.49274i 0.269779 0.196006i
\(59\) −0.674139 + 2.07479i −0.0877654 + 0.270114i −0.985301 0.170828i \(-0.945356\pi\)
0.897535 + 0.440942i \(0.145356\pi\)
\(60\) 0.265164 + 0.816089i 0.0342325 + 0.105357i
\(61\) −2.68087 −0.343251 −0.171625 0.985162i \(-0.554902\pi\)
−0.171625 + 0.985162i \(0.554902\pi\)
\(62\) 0 0
\(63\) −10.2683 −1.29368
\(64\) −0.900071 2.77013i −0.112509 0.346267i
\(65\) −1.93430 + 5.95317i −0.239921 + 0.738399i
\(66\) −1.38766 + 1.00820i −0.170809 + 0.124100i
\(67\) 2.88300 0.352214 0.176107 0.984371i \(-0.443649\pi\)
0.176107 + 0.984371i \(0.443649\pi\)
\(68\) −8.06631 −0.978184
\(69\) 1.43196 1.04038i 0.172388 0.125247i
\(70\) 6.74649 + 4.90161i 0.806360 + 0.585855i
\(71\) −7.28247 5.29103i −0.864271 0.627929i 0.0647727 0.997900i \(-0.479368\pi\)
−0.929043 + 0.369971i \(0.879368\pi\)
\(72\) −0.907016 2.79151i −0.106893 0.328982i
\(73\) 3.40115 2.47108i 0.398074 0.289218i −0.370682 0.928760i \(-0.620876\pi\)
0.768756 + 0.639542i \(0.220876\pi\)
\(74\) −2.57446 7.92338i −0.299275 0.921074i
\(75\) −0.546605 + 1.68228i −0.0631166 + 0.194253i
\(76\) 1.65634 + 1.20340i 0.189995 + 0.138039i
\(77\) −2.14162 + 6.59123i −0.244060 + 0.751140i
\(78\) 1.48018 4.55554i 0.167598 0.515813i
\(79\) −9.08664 6.60183i −1.02233 0.742764i −0.0555681 0.998455i \(-0.517697\pi\)
−0.966759 + 0.255691i \(0.917697\pi\)
\(80\) −1.79864 + 5.53563i −0.201094 + 0.618902i
\(81\) 2.10687 + 6.48429i 0.234097 + 0.720476i
\(82\) −7.06379 + 5.13215i −0.780065 + 0.566751i
\(83\) −3.23771 9.96463i −0.355384 1.09376i −0.955786 0.294062i \(-0.904993\pi\)
0.600402 0.799698i \(-0.295007\pi\)
\(84\) −2.14642 1.55947i −0.234194 0.170152i
\(85\) 5.53585 + 4.02203i 0.600448 + 0.436251i
\(86\) 9.81816 7.13331i 1.05872 0.769204i
\(87\) 0.685415 0.0734842
\(88\) −1.98105 −0.211180
\(89\) 2.18575 1.58804i 0.231689 0.168332i −0.465884 0.884846i \(-0.654263\pi\)
0.697573 + 0.716514i \(0.254263\pi\)
\(90\) 1.89878 5.84384i 0.200149 0.615995i
\(91\) −5.98067 18.4066i −0.626944 1.92954i
\(92\) −5.04486 −0.525963
\(93\) 0 0
\(94\) 7.82446 0.807031
\(95\) −0.536692 1.65177i −0.0550635 0.169468i
\(96\) 1.04705 3.22248i 0.106864 0.328893i
\(97\) 6.70942 4.87468i 0.681239 0.494949i −0.192530 0.981291i \(-0.561669\pi\)
0.873768 + 0.486342i \(0.161669\pi\)
\(98\) −12.8323 −1.29626
\(99\) 5.10660 0.513233
\(100\) 4.07874 2.96337i 0.407874 0.296337i
\(101\) −1.29317 0.939541i −0.128675 0.0934879i 0.521586 0.853199i \(-0.325341\pi\)
−0.650261 + 0.759711i \(0.725341\pi\)
\(102\) −4.23620 3.07778i −0.419446 0.304746i
\(103\) 5.65743 + 17.4118i 0.557444 + 1.71564i 0.689401 + 0.724380i \(0.257874\pi\)
−0.131958 + 0.991255i \(0.542126\pi\)
\(104\) 4.47569 3.25178i 0.438877 0.318863i
\(105\) 0.695491 + 2.14050i 0.0678730 + 0.208892i
\(106\) 7.41171 22.8109i 0.719889 2.21559i
\(107\) −9.36460 6.80378i −0.905310 0.657746i 0.0345146 0.999404i \(-0.489011\pi\)
−0.939824 + 0.341658i \(0.889011\pi\)
\(108\) −1.26297 + 3.88702i −0.121529 + 0.374029i
\(109\) 0.430552 1.32510i 0.0412394 0.126922i −0.928317 0.371789i \(-0.878744\pi\)
0.969557 + 0.244867i \(0.0787444\pi\)
\(110\) −3.35515 2.43766i −0.319901 0.232422i
\(111\) 0.694825 2.13845i 0.0659498 0.202973i
\(112\) −5.56120 17.1156i −0.525484 1.61727i
\(113\) 2.63381 1.91357i 0.247768 0.180014i −0.456969 0.889483i \(-0.651065\pi\)
0.704737 + 0.709469i \(0.251065\pi\)
\(114\) 0.410693 + 1.26398i 0.0384649 + 0.118383i
\(115\) 3.46226 + 2.51548i 0.322857 + 0.234569i
\(116\) −1.58047 1.14828i −0.146743 0.106615i
\(117\) −11.5371 + 8.38219i −1.06661 + 0.774934i
\(118\) 4.03633 0.371575
\(119\) −21.1569 −1.93945
\(120\) −0.520477 + 0.378149i −0.0475129 + 0.0345201i
\(121\) −2.33412 + 7.18368i −0.212193 + 0.653062i
\(122\) 1.53278 + 4.71740i 0.138771 + 0.427093i
\(123\) −2.35651 −0.212479
\(124\) 0 0
\(125\) −10.3136 −0.922478
\(126\) 5.87084 + 18.0686i 0.523016 + 1.60968i
\(127\) 2.96392 9.12200i 0.263005 0.809447i −0.729141 0.684363i \(-0.760080\pi\)
0.992146 0.125083i \(-0.0399198\pi\)
\(128\) 6.61915 4.80909i 0.585056 0.425068i
\(129\) 3.27538 0.288381
\(130\) 11.5814 1.01576
\(131\) 9.29737 6.75493i 0.812315 0.590181i −0.102186 0.994765i \(-0.532584\pi\)
0.914501 + 0.404584i \(0.132584\pi\)
\(132\) 1.06745 + 0.775550i 0.0929099 + 0.0675030i
\(133\) 4.34436 + 3.15636i 0.376704 + 0.273692i
\(134\) −1.64834 5.07307i −0.142395 0.438247i
\(135\) 2.80492 2.03789i 0.241409 0.175394i
\(136\) −1.86883 5.75167i −0.160251 0.493202i
\(137\) −4.87868 + 15.0150i −0.416814 + 1.28282i 0.493805 + 0.869573i \(0.335606\pi\)
−0.910619 + 0.413248i \(0.864394\pi\)
\(138\) −2.64942 1.92492i −0.225534 0.163860i
\(139\) −3.15460 + 9.70886i −0.267570 + 0.823494i 0.723521 + 0.690303i \(0.242523\pi\)
−0.991090 + 0.133192i \(0.957477\pi\)
\(140\) 1.98229 6.10087i 0.167534 0.515618i
\(141\) 1.70844 + 1.24126i 0.143877 + 0.104533i
\(142\) −5.14664 + 15.8397i −0.431896 + 1.32924i
\(143\) 2.97429 + 9.15394i 0.248723 + 0.765491i
\(144\) −10.7279 + 7.79429i −0.893994 + 0.649524i
\(145\) 0.512111 + 1.57612i 0.0425285 + 0.130889i
\(146\) −6.29283 4.57201i −0.520798 0.378382i
\(147\) −2.80189 2.03569i −0.231096 0.167901i
\(148\) −5.18474 + 3.76693i −0.426183 + 0.309640i
\(149\) 3.82067 0.313001 0.156501 0.987678i \(-0.449979\pi\)
0.156501 + 0.987678i \(0.449979\pi\)
\(150\) 3.27274 0.267218
\(151\) 7.17402 5.21223i 0.583814 0.424166i −0.256283 0.966602i \(-0.582498\pi\)
0.840097 + 0.542436i \(0.182498\pi\)
\(152\) −0.474336 + 1.45986i −0.0384737 + 0.118410i
\(153\) 4.81733 + 14.8262i 0.389458 + 1.19863i
\(154\) 12.8227 1.03328
\(155\) 0 0
\(156\) −3.68467 −0.295010
\(157\) −1.59982 4.92372i −0.127679 0.392956i 0.866701 0.498829i \(-0.166236\pi\)
−0.994380 + 0.105873i \(0.966236\pi\)
\(158\) −6.42167 + 19.7639i −0.510881 + 1.57233i
\(159\) 5.23700 3.80490i 0.415321 0.301748i
\(160\) 8.19243 0.647668
\(161\) −13.2320 −1.04283
\(162\) 10.2055 7.41472i 0.801819 0.582556i
\(163\) −0.448015 0.325502i −0.0350912 0.0254953i 0.570101 0.821574i \(-0.306904\pi\)
−0.605193 + 0.796079i \(0.706904\pi\)
\(164\) 5.43379 + 3.94788i 0.424308 + 0.308278i
\(165\) −0.345880 1.06451i −0.0269267 0.0828720i
\(166\) −15.6831 + 11.3945i −1.21725 + 0.884382i
\(167\) 0.617417 + 1.90022i 0.0477772 + 0.147043i 0.972099 0.234571i \(-0.0753684\pi\)
−0.924322 + 0.381614i \(0.875368\pi\)
\(168\) 0.614684 1.89180i 0.0474239 0.145956i
\(169\) −11.2281 8.15772i −0.863703 0.627517i
\(170\) 3.91228 12.0407i 0.300058 0.923483i
\(171\) 1.22271 3.76311i 0.0935028 0.287772i
\(172\) −7.55257 5.48727i −0.575878 0.418400i
\(173\) −1.25387 + 3.85900i −0.0953296 + 0.293394i −0.987339 0.158622i \(-0.949295\pi\)
0.892010 + 0.452016i \(0.149295\pi\)
\(174\) −0.391883 1.20609i −0.0297086 0.0914335i
\(175\) 10.6980 7.77256i 0.808694 0.587551i
\(176\) 2.76569 + 8.51191i 0.208472 + 0.641609i
\(177\) 0.881320 + 0.640316i 0.0662440 + 0.0481291i
\(178\) −4.04409 2.93820i −0.303117 0.220227i
\(179\) 3.20683 2.32990i 0.239690 0.174145i −0.461455 0.887164i \(-0.652673\pi\)
0.701145 + 0.713019i \(0.252673\pi\)
\(180\) −4.72669 −0.352307
\(181\) 6.39742 0.475517 0.237758 0.971324i \(-0.423587\pi\)
0.237758 + 0.971324i \(0.423587\pi\)
\(182\) −28.9698 + 21.0478i −2.14738 + 1.56016i
\(183\) −0.413683 + 1.27319i −0.0305803 + 0.0941166i
\(184\) −1.16881 3.59723i −0.0861659 0.265191i
\(185\) 5.43652 0.399701
\(186\) 0 0
\(187\) 10.5217 0.769425
\(188\) −1.85995 5.72434i −0.135651 0.417491i
\(189\) −3.31261 + 10.1952i −0.240957 + 0.741590i
\(190\) −2.59968 + 1.88878i −0.188601 + 0.137027i
\(191\) 11.6256 0.841202 0.420601 0.907246i \(-0.361819\pi\)
0.420601 + 0.907246i \(0.361819\pi\)
\(192\) −1.45447 −0.104967
\(193\) −10.9569 + 7.96069i −0.788698 + 0.573023i −0.907577 0.419886i \(-0.862070\pi\)
0.118879 + 0.992909i \(0.462070\pi\)
\(194\) −12.4138 9.01917i −0.891260 0.647538i
\(195\) 2.52876 + 1.83725i 0.181089 + 0.131569i
\(196\) 3.05037 + 9.38806i 0.217883 + 0.670576i
\(197\) −18.9345 + 13.7567i −1.34903 + 0.980124i −0.349966 + 0.936762i \(0.613807\pi\)
−0.999059 + 0.0433620i \(0.986193\pi\)
\(198\) −2.91967 8.98583i −0.207492 0.638595i
\(199\) 2.03888 6.27504i 0.144533 0.444826i −0.852418 0.522861i \(-0.824865\pi\)
0.996951 + 0.0780353i \(0.0248647\pi\)
\(200\) 3.05800 + 2.22177i 0.216234 + 0.157103i
\(201\) 0.444873 1.36918i 0.0313789 0.0965744i
\(202\) −0.913902 + 2.81270i −0.0643019 + 0.197901i
\(203\) −4.14539 3.01180i −0.290949 0.211387i
\(204\) −1.24470 + 3.83081i −0.0871467 + 0.268210i
\(205\) −1.76068 5.41881i −0.122971 0.378466i
\(206\) 27.4041 19.9102i 1.90933 1.38721i
\(207\) 3.01287 + 9.27268i 0.209409 + 0.644495i
\(208\) −20.2202 14.6908i −1.40202 1.01863i
\(209\) −2.16053 1.56972i −0.149447 0.108580i
\(210\) 3.36889 2.44764i 0.232476 0.168903i
\(211\) −19.3651 −1.33315 −0.666574 0.745439i \(-0.732240\pi\)
−0.666574 + 0.745439i \(0.732240\pi\)
\(212\) −18.4502 −1.26716
\(213\) −3.63654 + 2.64210i −0.249171 + 0.181034i
\(214\) −6.61811 + 20.3684i −0.452405 + 1.39236i
\(215\) 2.44721 + 7.53175i 0.166899 + 0.513661i
\(216\) −3.06424 −0.208495
\(217\) 0 0
\(218\) −2.57788 −0.174596
\(219\) −0.648723 1.99656i −0.0438366 0.134915i
\(220\) −0.985830 + 3.03407i −0.0664647 + 0.204557i
\(221\) −23.7712 + 17.2708i −1.59903 + 1.16176i
\(222\) −4.16019 −0.279214
\(223\) 7.05971 0.472753 0.236377 0.971662i \(-0.424040\pi\)
0.236377 + 0.971662i \(0.424040\pi\)
\(224\) −20.4925 + 14.8887i −1.36922 + 0.994794i
\(225\) −7.88270 5.72712i −0.525513 0.381808i
\(226\) −4.87308 3.54050i −0.324153 0.235511i
\(227\) −2.78727 8.57835i −0.184998 0.569365i 0.814950 0.579531i \(-0.196764\pi\)
−0.999948 + 0.0101657i \(0.996764\pi\)
\(228\) 0.827099 0.600922i 0.0547760 0.0397971i
\(229\) 5.54804 + 17.0751i 0.366625 + 1.12836i 0.948957 + 0.315404i \(0.102140\pi\)
−0.582333 + 0.812951i \(0.697860\pi\)
\(230\) 2.44683 7.53057i 0.161339 0.496551i
\(231\) 2.79980 + 2.03417i 0.184213 + 0.133839i
\(232\) 0.452611 1.39299i 0.0297154 0.0914545i
\(233\) 4.21725 12.9793i 0.276281 0.850305i −0.712597 0.701574i \(-0.752481\pi\)
0.988878 0.148731i \(-0.0475190\pi\)
\(234\) 21.3460 + 15.5088i 1.39543 + 1.01384i
\(235\) −1.57781 + 4.85599i −0.102925 + 0.316770i
\(236\) −0.959477 2.95297i −0.0624566 0.192222i
\(237\) −4.53745 + 3.29665i −0.294739 + 0.214141i
\(238\) 12.0964 + 37.2288i 0.784091 + 2.41318i
\(239\) 7.96981 + 5.79041i 0.515524 + 0.374550i 0.814915 0.579580i \(-0.196783\pi\)
−0.299391 + 0.954131i \(0.596783\pi\)
\(240\) 2.35140 + 1.70840i 0.151783 + 0.110276i
\(241\) 5.39599 3.92042i 0.347586 0.252536i −0.400269 0.916398i \(-0.631083\pi\)
0.747856 + 0.663861i \(0.231083\pi\)
\(242\) 13.9753 0.898366
\(243\) 12.0194 0.771046
\(244\) 3.08688 2.24275i 0.197617 0.143577i
\(245\) 2.58764 7.96394i 0.165318 0.508797i
\(246\) 1.34732 + 4.14663i 0.0859021 + 0.264380i
\(247\) 7.45779 0.474528
\(248\) 0 0
\(249\) −5.23195 −0.331562
\(250\) 5.89676 + 18.1484i 0.372944 + 1.14780i
\(251\) −9.05975 + 27.8830i −0.571846 + 1.75996i 0.0748286 + 0.997196i \(0.476159\pi\)
−0.646675 + 0.762766i \(0.723841\pi\)
\(252\) 11.8233 8.59016i 0.744801 0.541129i
\(253\) 6.58054 0.413715
\(254\) −17.7461 −1.11349
\(255\) 2.76435 2.00842i 0.173111 0.125772i
\(256\) −16.9596 12.3219i −1.05998 0.770118i
\(257\) 19.3747 + 14.0766i 1.20856 + 0.878073i 0.995100 0.0988784i \(-0.0315255\pi\)
0.213464 + 0.976951i \(0.431525\pi\)
\(258\) −1.87268 5.76352i −0.116588 0.358821i
\(259\) −13.5989 + 9.88020i −0.844996 + 0.613926i
\(260\) −2.75302 8.47292i −0.170735 0.525468i
\(261\) −1.16671 + 3.59075i −0.0722173 + 0.222262i
\(262\) −17.2021 12.4980i −1.06275 0.772130i
\(263\) 1.21883 3.75119i 0.0751566 0.231308i −0.906420 0.422378i \(-0.861196\pi\)
0.981577 + 0.191070i \(0.0611956\pi\)
\(264\) −0.305694 + 0.940828i −0.0188141 + 0.0579040i
\(265\) 12.6622 + 9.19966i 0.777835 + 0.565131i
\(266\) 3.07023 9.44920i 0.188248 0.579368i
\(267\) −0.416902 1.28309i −0.0255140 0.0785240i
\(268\) −3.31961 + 2.41184i −0.202778 + 0.147327i
\(269\) 3.94066 + 12.1281i 0.240266 + 0.739463i 0.996379 + 0.0850221i \(0.0270961\pi\)
−0.756113 + 0.654441i \(0.772904\pi\)
\(270\) −5.18968 3.77052i −0.315834 0.229467i
\(271\) 2.68805 + 1.95298i 0.163287 + 0.118635i 0.666428 0.745569i \(-0.267822\pi\)
−0.503141 + 0.864204i \(0.667822\pi\)
\(272\) −22.1040 + 16.0595i −1.34025 + 0.973750i
\(273\) −9.66443 −0.584918
\(274\) 29.2106 1.76467
\(275\) −5.32032 + 3.86544i −0.320827 + 0.233095i
\(276\) −0.778468 + 2.39588i −0.0468583 + 0.144215i
\(277\) 6.49451 + 19.9880i 0.390217 + 1.20096i 0.932624 + 0.360849i \(0.117513\pi\)
−0.542407 + 0.840116i \(0.682487\pi\)
\(278\) 18.8878 1.13282
\(279\) 0 0
\(280\) 4.80948 0.287421
\(281\) −2.89451 8.90839i −0.172672 0.531430i 0.826847 0.562426i \(-0.190132\pi\)
−0.999519 + 0.0309964i \(0.990132\pi\)
\(282\) 1.20738 3.71595i 0.0718987 0.221281i
\(283\) 8.19788 5.95611i 0.487313 0.354054i −0.316837 0.948480i \(-0.602621\pi\)
0.804150 + 0.594426i \(0.202621\pi\)
\(284\) 12.8117 0.760234
\(285\) −0.867265 −0.0513723
\(286\) 14.4072 10.4674i 0.851915 0.618953i
\(287\) 14.2522 + 10.3548i 0.841278 + 0.611225i
\(288\) 15.0997 + 10.9706i 0.889757 + 0.646446i
\(289\) 4.67242 + 14.3802i 0.274848 + 0.845897i
\(290\) 2.48062 1.80227i 0.145667 0.105833i
\(291\) −1.27973 3.93861i −0.0750192 0.230885i
\(292\) −1.84899 + 5.69062i −0.108204 + 0.333018i
\(293\) 17.2079 + 12.5022i 1.00529 + 0.730389i 0.963217 0.268725i \(-0.0866024\pi\)
0.0420775 + 0.999114i \(0.486602\pi\)
\(294\) −1.98014 + 6.09424i −0.115484 + 0.355423i
\(295\) −0.813929 + 2.50502i −0.0473888 + 0.145848i
\(296\) −3.88722 2.82423i −0.225940 0.164155i
\(297\) 1.64742 5.07025i 0.0955932 0.294206i
\(298\) −2.18445 6.72304i −0.126542 0.389455i
\(299\) −14.8671 + 10.8016i −0.859786 + 0.624671i
\(300\) −0.777963 2.39433i −0.0449157 0.138236i
\(301\) −19.8095 14.3924i −1.14180 0.829565i
\(302\) −13.2734 9.64371i −0.763800 0.554933i
\(303\) −0.645749 + 0.469164i −0.0370973 + 0.0269528i
\(304\) 6.93472 0.397734
\(305\) −3.23678 −0.185338
\(306\) 23.3347 16.9536i 1.33396 0.969175i
\(307\) 5.01882 15.4463i 0.286439 0.881568i −0.699525 0.714608i \(-0.746605\pi\)
0.985964 0.166960i \(-0.0533951\pi\)
\(308\) −3.04809 9.38105i −0.173681 0.534535i
\(309\) 9.14210 0.520076
\(310\) 0 0
\(311\) −10.3858 −0.588924 −0.294462 0.955663i \(-0.595141\pi\)
−0.294462 + 0.955663i \(0.595141\pi\)
\(312\) −0.853677 2.62735i −0.0483299 0.148744i
\(313\) 9.90204 30.4754i 0.559696 1.72257i −0.123510 0.992343i \(-0.539415\pi\)
0.683206 0.730225i \(-0.260585\pi\)
\(314\) −7.74935 + 5.63023i −0.437321 + 0.317732i
\(315\) −12.3975 −0.698521
\(316\) 15.9857 0.899264
\(317\) −20.4800 + 14.8796i −1.15027 + 0.835722i −0.988517 0.151109i \(-0.951716\pi\)
−0.161756 + 0.986831i \(0.551716\pi\)
\(318\) −9.68952 7.03985i −0.543361 0.394775i
\(319\) 2.06158 + 1.49782i 0.115426 + 0.0838620i
\(320\) −1.08671 3.34455i −0.0607490 0.186966i
\(321\) −4.67625 + 3.39750i −0.261003 + 0.189630i
\(322\) 7.56536 + 23.2838i 0.421601 + 1.29755i
\(323\) 2.51929 7.75357i 0.140177 0.431420i
\(324\) −7.85053 5.70374i −0.436140 0.316875i
\(325\) 5.67505 17.4660i 0.314795 0.968839i
\(326\) −0.316619 + 0.974453i −0.0175359 + 0.0539700i
\(327\) −0.562872 0.408950i −0.0311269 0.0226150i
\(328\) −1.55611 + 4.78922i −0.0859218 + 0.264440i
\(329\) −4.87842 15.0142i −0.268956 0.827762i
\(330\) −1.67541 + 1.21726i −0.0922283 + 0.0670078i
\(331\) −10.1714 31.3044i −0.559071 1.72064i −0.684942 0.728597i \(-0.740173\pi\)
0.125871 0.992047i \(-0.459827\pi\)
\(332\) 12.0642 + 8.76514i 0.662108 + 0.481050i
\(333\) 10.0202 + 7.28010i 0.549103 + 0.398947i
\(334\) 2.99071 2.17288i 0.163644 0.118895i
\(335\) 3.48082 0.190178
\(336\) −8.98660 −0.490259
\(337\) −3.19618 + 2.32216i −0.174107 + 0.126496i −0.671426 0.741072i \(-0.734318\pi\)
0.497319 + 0.867568i \(0.334318\pi\)
\(338\) −7.93510 + 24.4217i −0.431613 + 1.32837i
\(339\) −0.502363 1.54611i −0.0272846 0.0839734i
\(340\) −9.73895 −0.528169
\(341\) 0 0
\(342\) −7.32083 −0.395865
\(343\) −0.0742848 0.228625i −0.00401100 0.0123446i
\(344\) 2.16288 6.65666i 0.116615 0.358903i
\(345\) 1.72889 1.25611i 0.0930804 0.0676269i
\(346\) 7.50739 0.403600
\(347\) −13.6844 −0.734619 −0.367310 0.930099i \(-0.619721\pi\)
−0.367310 + 0.930099i \(0.619721\pi\)
\(348\) −0.789217 + 0.573400i −0.0423065 + 0.0307375i
\(349\) 2.99733 + 2.17769i 0.160443 + 0.116569i 0.665110 0.746745i \(-0.268385\pi\)
−0.504667 + 0.863314i \(0.668385\pi\)
\(350\) −19.7935 14.3808i −1.05801 0.768689i
\(351\) 4.60058 + 14.1591i 0.245561 + 0.755758i
\(352\) 10.1913 7.40442i 0.543199 0.394657i
\(353\) −4.78713 14.7333i −0.254793 0.784173i −0.993870 0.110552i \(-0.964738\pi\)
0.739077 0.673621i \(-0.235262\pi\)
\(354\) 0.622843 1.91691i 0.0331037 0.101883i
\(355\) −8.79258 6.38818i −0.466662 0.339050i
\(356\) −1.18826 + 3.65708i −0.0629775 + 0.193825i
\(357\) −3.26470 + 10.0477i −0.172786 + 0.531782i
\(358\) −5.93330 4.31080i −0.313585 0.227833i
\(359\) −1.65923 + 5.10658i −0.0875707 + 0.269515i −0.985246 0.171142i \(-0.945254\pi\)
0.897676 + 0.440657i \(0.145254\pi\)
\(360\) −1.09510 3.37036i −0.0577166 0.177633i
\(361\) 13.6973 9.95165i 0.720909 0.523771i
\(362\) −3.65769 11.2572i −0.192244 0.591667i
\(363\) 3.05146 + 2.21701i 0.160160 + 0.116363i
\(364\) 22.2849 + 16.1909i 1.16804 + 0.848634i
\(365\) 4.10642 2.98349i 0.214940 0.156163i
\(366\) 2.47688 0.129469
\(367\) −14.7209 −0.768425 −0.384212 0.923245i \(-0.625527\pi\)
−0.384212 + 0.923245i \(0.625527\pi\)
\(368\) −13.8244 + 10.0440i −0.720645 + 0.523579i
\(369\) 4.01123 12.3453i 0.208816 0.642670i
\(370\) −3.10831 9.56638i −0.161593 0.497333i
\(371\) −48.3926 −2.51242
\(372\) 0 0
\(373\) 23.8449 1.23464 0.617320 0.786712i \(-0.288218\pi\)
0.617320 + 0.786712i \(0.288218\pi\)
\(374\) −6.01574 18.5146i −0.311067 0.957365i
\(375\) −1.59148 + 4.89808i −0.0821839 + 0.252936i
\(376\) 3.65081 2.65247i 0.188276 0.136791i
\(377\) −7.11622 −0.366504
\(378\) 19.8339 1.02015
\(379\) 17.9012 13.0060i 0.919522 0.668072i −0.0238829 0.999715i \(-0.507603\pi\)
0.943405 + 0.331643i \(0.107603\pi\)
\(380\) 1.99980 + 1.45294i 0.102587 + 0.0745341i
\(381\) −3.87481 2.81521i −0.198512 0.144228i
\(382\) −6.64690 20.4571i −0.340085 1.04667i
\(383\) 19.2535 13.9885i 0.983806 0.714777i 0.0252501 0.999681i \(-0.491962\pi\)
0.958556 + 0.284904i \(0.0919618\pi\)
\(384\) −1.26251 3.88562i −0.0644273 0.198287i
\(385\) −2.58571 + 7.95800i −0.131780 + 0.405577i
\(386\) 20.2726 + 14.7289i 1.03185 + 0.749682i
\(387\) −5.57531 + 17.1590i −0.283409 + 0.872243i
\(388\) −3.64750 + 11.2258i −0.185174 + 0.569906i
\(389\) −13.7973 10.0243i −0.699551 0.508254i 0.180235 0.983624i \(-0.442314\pi\)
−0.879786 + 0.475370i \(0.842314\pi\)
\(390\) 1.78712 5.50018i 0.0904942 0.278513i
\(391\) 6.20778 + 19.1056i 0.313941 + 0.966211i
\(392\) −5.98742 + 4.35012i −0.302410 + 0.219714i
\(393\) −1.77335 5.45780i −0.0894535 0.275310i
\(394\) 35.0327 + 25.4527i 1.76492 + 1.28229i
\(395\) −10.9709 7.97079i −0.552004 0.401054i
\(396\) −5.87996 + 4.27204i −0.295479 + 0.214678i
\(397\) −10.0215 −0.502965 −0.251482 0.967862i \(-0.580918\pi\)
−0.251482 + 0.967862i \(0.580918\pi\)
\(398\) −12.2076 −0.611912
\(399\) 2.16938 1.57614i 0.108605 0.0789059i
\(400\) 5.27702 16.2410i 0.263851 0.812049i
\(401\) −8.82347 27.1559i −0.440623 1.35610i −0.887213 0.461360i \(-0.847362\pi\)
0.446590 0.894739i \(-0.352638\pi\)
\(402\) −2.66363 −0.132850
\(403\) 0 0
\(404\) 2.27501 0.113186
\(405\) 2.54376 + 7.82888i 0.126400 + 0.389020i
\(406\) −2.92961 + 9.01642i −0.145394 + 0.447477i
\(407\) 6.76299 4.91360i 0.335229 0.243558i
\(408\) −3.01993 −0.149509
\(409\) −23.0102 −1.13778 −0.568891 0.822413i \(-0.692628\pi\)
−0.568891 + 0.822413i \(0.692628\pi\)
\(410\) −8.52855 + 6.19636i −0.421195 + 0.306016i
\(411\) 6.37803 + 4.63391i 0.314605 + 0.228574i
\(412\) −21.0805 15.3158i −1.03856 0.754558i
\(413\) −2.51659 7.74526i −0.123833 0.381119i
\(414\) 14.5941 10.6032i 0.717260 0.521120i
\(415\) −3.90908 12.0309i −0.191889 0.590574i
\(416\) −10.8708 + 33.4569i −0.532986 + 1.64036i
\(417\) 4.12409 + 2.99633i 0.201958 + 0.146731i
\(418\) −1.52688 + 4.69926i −0.0746822 + 0.229848i
\(419\) 10.3647 31.8994i 0.506351 1.55839i −0.292137 0.956377i \(-0.594366\pi\)
0.798488 0.602011i \(-0.205634\pi\)
\(420\) −2.59150 1.88284i −0.126452 0.0918731i
\(421\) 2.78958 8.58544i 0.135956 0.418429i −0.859782 0.510662i \(-0.829400\pi\)
0.995737 + 0.0922329i \(0.0294004\pi\)
\(422\) 11.0719 + 34.0758i 0.538971 + 1.65878i
\(423\) −9.41080 + 6.83735i −0.457569 + 0.332443i
\(424\) −4.27460 13.1559i −0.207593 0.638906i
\(425\) −16.2416 11.8002i −0.787835 0.572396i
\(426\) 6.72834 + 4.88843i 0.325989 + 0.236845i
\(427\) 8.09649 5.88245i 0.391817 0.284672i
\(428\) 16.4747 0.796333
\(429\) 4.80630 0.232050
\(430\) 11.8541 8.61248i 0.571654 0.415331i
\(431\) 3.49398 10.7534i 0.168299 0.517972i −0.830965 0.556325i \(-0.812211\pi\)
0.999264 + 0.0383529i \(0.0122111\pi\)
\(432\) 4.27791 + 13.1660i 0.205821 + 0.633452i
\(433\) 9.10433 0.437526 0.218763 0.975778i \(-0.429798\pi\)
0.218763 + 0.975778i \(0.429798\pi\)
\(434\) 0 0
\(435\) 0.827544 0.0396777
\(436\) 0.612788 + 1.88597i 0.0293472 + 0.0903215i
\(437\) 1.57562 4.84927i 0.0753722 0.231972i
\(438\) −3.14235 + 2.28305i −0.150147 + 0.109088i
\(439\) −39.6053 −1.89026 −0.945128 0.326700i \(-0.894063\pi\)
−0.945128 + 0.326700i \(0.894063\pi\)
\(440\) −2.39184 −0.114027
\(441\) 15.4339 11.2134i 0.734949 0.533972i
\(442\) 43.9817 + 31.9546i 2.09200 + 1.51992i
\(443\) −20.4344 14.8465i −0.970868 0.705377i −0.0152186 0.999884i \(-0.504844\pi\)
−0.955649 + 0.294507i \(0.904844\pi\)
\(444\) 0.988918 + 3.04358i 0.0469320 + 0.144442i
\(445\) 2.63899 1.91734i 0.125100 0.0908905i
\(446\) −4.03636 12.4226i −0.191127 0.588228i
\(447\) 0.589563 1.81449i 0.0278854 0.0858224i
\(448\) 8.79660 + 6.39111i 0.415600 + 0.301951i
\(449\) 0.566090 1.74225i 0.0267154 0.0822217i −0.936810 0.349839i \(-0.886236\pi\)
0.963525 + 0.267617i \(0.0862363\pi\)
\(450\) −5.57083 + 17.1452i −0.262611 + 0.808235i
\(451\) −7.08786 5.14963i −0.333754 0.242487i
\(452\) −1.43184 + 4.40674i −0.0673480 + 0.207276i
\(453\) −1.36835 4.21134i −0.0642906 0.197866i
\(454\) −13.5013 + 9.80926i −0.633647 + 0.460371i
\(455\) −7.22083 22.2234i −0.338518 1.04185i
\(456\) 0.620112 + 0.450538i 0.0290394 + 0.0210984i
\(457\) −29.0877 21.1334i −1.36066 0.988581i −0.998402 0.0565045i \(-0.982004\pi\)
−0.362262 0.932076i \(-0.617996\pi\)
\(458\) 26.8742 19.5252i 1.25575 0.912354i
\(459\) 16.2748 0.759642
\(460\) −6.09097 −0.283993
\(461\) 1.08144 0.785711i 0.0503676 0.0365942i −0.562317 0.826922i \(-0.690090\pi\)
0.612684 + 0.790328i \(0.290090\pi\)
\(462\) 1.97866 6.08969i 0.0920557 0.283318i
\(463\) −3.63608 11.1907i −0.168983 0.520076i 0.830325 0.557280i \(-0.188155\pi\)
−0.999308 + 0.0372039i \(0.988155\pi\)
\(464\) −6.61711 −0.307192
\(465\) 0 0
\(466\) −25.2503 −1.16970
\(467\) 3.39883 + 10.4605i 0.157279 + 0.484055i 0.998385 0.0568157i \(-0.0180947\pi\)
−0.841106 + 0.540871i \(0.818095\pi\)
\(468\) 6.27201 19.3033i 0.289924 0.892293i
\(469\) −8.70693 + 6.32596i −0.402049 + 0.292106i
\(470\) 9.44695 0.435755
\(471\) −2.58521 −0.119120
\(472\) 1.88331 1.36831i 0.0866865 0.0629814i
\(473\) 9.85161 + 7.15761i 0.452977 + 0.329107i
\(474\) 8.39522 + 6.09949i 0.385605 + 0.280159i
\(475\) 1.57460 + 4.84612i 0.0722477 + 0.222355i
\(476\) 24.3610 17.6993i 1.11659 0.811247i
\(477\) 11.0188 + 33.9123i 0.504514 + 1.55274i
\(478\) 5.63239 17.3347i 0.257620 0.792872i
\(479\) 0.543461 + 0.394848i 0.0248314 + 0.0180411i 0.600132 0.799901i \(-0.295115\pi\)
−0.575300 + 0.817942i \(0.695115\pi\)
\(480\) 1.26417 3.89070i 0.0577010 0.177585i
\(481\) −7.21391 + 22.2021i −0.328926 + 1.01233i
\(482\) −9.98370 7.25358i −0.454745 0.330392i
\(483\) −2.04182 + 6.28409i −0.0929062 + 0.285936i
\(484\) −3.32207 10.2243i −0.151003 0.464740i
\(485\) 8.10070 5.88550i 0.367834 0.267247i
\(486\) −6.87205 21.1500i −0.311722 0.959383i
\(487\) 19.8820 + 14.4451i 0.900939 + 0.654571i 0.938707 0.344716i \(-0.112025\pi\)
−0.0377677 + 0.999287i \(0.512025\pi\)
\(488\) 2.31437 + 1.68148i 0.104766 + 0.0761172i
\(489\) −0.223718 + 0.162541i −0.0101169 + 0.00735034i
\(490\) −15.4932 −0.699912
\(491\) 8.63428 0.389660 0.194830 0.980837i \(-0.437585\pi\)
0.194830 + 0.980837i \(0.437585\pi\)
\(492\) 2.71339 1.97139i 0.122329 0.0888772i
\(493\) −2.40390 + 7.39845i −0.108266 + 0.333209i
\(494\) −4.26395 13.1231i −0.191844 0.590436i
\(495\) 6.16551 0.277119
\(496\) 0 0
\(497\) 33.6035 1.50732
\(498\) 2.99134 + 9.20641i 0.134045 + 0.412549i
\(499\) 9.60931 29.5744i 0.430172 1.32393i −0.467782 0.883844i \(-0.654947\pi\)
0.897954 0.440089i \(-0.145053\pi\)
\(500\) 11.8756 8.62809i 0.531091 0.385860i
\(501\) 0.997713 0.0445745
\(502\) 54.2443 2.42104
\(503\) 13.3847 9.72453i 0.596793 0.433595i −0.247946 0.968774i \(-0.579756\pi\)
0.844739 + 0.535178i \(0.179756\pi\)
\(504\) 8.86447 + 6.44042i 0.394855 + 0.286879i
\(505\) −1.56132 1.13437i −0.0694779 0.0504786i
\(506\) −3.76239 11.5794i −0.167259 0.514769i
\(507\) −5.60682 + 4.07359i −0.249008 + 0.180915i
\(508\) 4.21843 + 12.9830i 0.187163 + 0.576028i
\(509\) 9.54772 29.3849i 0.423195 1.30246i −0.481516 0.876437i \(-0.659914\pi\)
0.904712 0.426024i \(-0.140086\pi\)
\(510\) −5.11462 3.71599i −0.226479 0.164547i
\(511\) −4.84968 + 14.9258i −0.214537 + 0.660278i
\(512\) −6.92906 + 21.3254i −0.306224 + 0.942460i
\(513\) −3.34186 2.42801i −0.147547 0.107199i
\(514\) 13.6924 42.1410i 0.603948 1.85876i
\(515\) 6.83057 + 21.0223i 0.300991 + 0.926355i
\(516\) −3.77141 + 2.74009i −0.166027 + 0.120626i
\(517\) 2.42613 + 7.46686i 0.106701 + 0.328392i
\(518\) 25.1608 + 18.2804i 1.10550 + 0.803195i
\(519\) 1.63921 + 1.19096i 0.0719534 + 0.0522772i
\(520\) 5.40377 3.92607i 0.236971 0.172170i
\(521\) −14.7219 −0.644980 −0.322490 0.946573i \(-0.604520\pi\)
−0.322490 + 0.946573i \(0.604520\pi\)
\(522\) 6.98553 0.305748
\(523\) 24.5610 17.8446i 1.07398 0.780290i 0.0973541 0.995250i \(-0.468962\pi\)
0.976623 + 0.214960i \(0.0689621\pi\)
\(524\) −5.05440 + 15.5559i −0.220803 + 0.679561i
\(525\) −2.04050 6.28002i −0.0890548 0.274082i
\(526\) −7.29764 −0.318192
\(527\) 0 0
\(528\) 4.46920 0.194497
\(529\) −3.22490 9.92522i −0.140213 0.431531i
\(530\) 8.94861 27.5410i 0.388703 1.19630i
\(531\) −4.85466 + 3.52712i −0.210674 + 0.153064i
\(532\) −7.64282 −0.331358
\(533\) 24.4661 1.05974
\(534\) −2.01943 + 1.46720i −0.0873894 + 0.0634921i
\(535\) −11.3065 8.21462i −0.488821 0.355149i
\(536\) −2.48886 1.80826i −0.107502 0.0781050i
\(537\) −0.611660 1.88250i −0.0263951 0.0812357i
\(538\) 19.0882 13.8684i 0.822949 0.597908i
\(539\) −3.97891 12.2458i −0.171384 0.527465i
\(540\) −1.52486 + 4.69304i −0.0656196 + 0.201956i
\(541\) 21.9252 + 15.9296i 0.942636 + 0.684865i 0.949054 0.315114i \(-0.102043\pi\)
−0.00641782 + 0.999979i \(0.502043\pi\)
\(542\) 1.89969 5.84664i 0.0815986 0.251135i
\(543\) 0.987180 3.03823i 0.0423639 0.130383i
\(544\) 31.1116 + 22.6039i 1.33390 + 0.969135i
\(545\) 0.519831 1.59988i 0.0222671 0.0685312i
\(546\) 5.52559 + 17.0060i 0.236473 + 0.727790i
\(547\) −26.5864 + 19.3161i −1.13675 + 0.825899i −0.986663 0.162774i \(-0.947956\pi\)
−0.150089 + 0.988673i \(0.547956\pi\)
\(548\) −6.94364 21.3703i −0.296618 0.912896i
\(549\) −5.96580 4.33441i −0.254614 0.184988i
\(550\) 9.84368 + 7.15186i 0.419736 + 0.304956i
\(551\) 1.59738 1.16056i 0.0680506 0.0494417i
\(552\) −1.88873 −0.0803899
\(553\) 41.9284 1.78298
\(554\) 31.4588 22.8561i 1.33655 0.971064i
\(555\) 0.838905 2.58188i 0.0356095 0.109595i
\(556\) −4.48982 13.8183i −0.190411 0.586025i
\(557\) −3.79343 −0.160733 −0.0803663 0.996765i \(-0.525609\pi\)
−0.0803663 + 0.996765i \(0.525609\pi\)
\(558\) 0 0
\(559\) −34.0061 −1.43830
\(560\) −6.71438 20.6647i −0.283734 0.873245i
\(561\) 1.62360 4.99692i 0.0685483 0.210970i
\(562\) −14.0207 + 10.1867i −0.591429 + 0.429698i
\(563\) −8.97818 −0.378385 −0.189193 0.981940i \(-0.560587\pi\)
−0.189193 + 0.981940i \(0.560587\pi\)
\(564\) −3.00558 −0.126558
\(565\) 3.17996 2.31037i 0.133782 0.0971981i
\(566\) −15.1678 11.0200i −0.637549 0.463206i
\(567\) −20.5910 14.9602i −0.864739 0.628270i
\(568\) 2.96826 + 9.13536i 0.124545 + 0.383311i
\(569\) −7.68209 + 5.58136i −0.322050 + 0.233983i −0.737050 0.675839i \(-0.763782\pi\)
0.415000 + 0.909821i \(0.363782\pi\)
\(570\) 0.495855 + 1.52608i 0.0207691 + 0.0639206i
\(571\) 1.98029 6.09472i 0.0828727 0.255056i −0.901031 0.433754i \(-0.857189\pi\)
0.983904 + 0.178698i \(0.0571886\pi\)
\(572\) −11.0827 8.05203i −0.463390 0.336672i
\(573\) 1.79394 5.52118i 0.0749429 0.230651i
\(574\) 10.0722 30.9991i 0.420407 1.29388i
\(575\) −10.1579 7.38016i −0.423614 0.307774i
\(576\) 2.47578 7.61966i 0.103157 0.317486i
\(577\) 2.43357 + 7.48975i 0.101311 + 0.311802i 0.988847 0.148936i \(-0.0475848\pi\)
−0.887536 + 0.460738i \(0.847585\pi\)
\(578\) 22.6328 16.4437i 0.941399 0.683966i
\(579\) 2.08989 + 6.43202i 0.0868528 + 0.267305i
\(580\) −1.90820 1.38639i −0.0792339 0.0575668i
\(581\) 31.6428 + 22.9899i 1.31277 + 0.953781i
\(582\) −6.19889 + 4.50376i −0.256952 + 0.186687i
\(583\) 24.0665 0.996733
\(584\) −4.48607 −0.185635
\(585\) −13.9294 + 10.1203i −0.575912 + 0.418424i
\(586\) 12.1611 37.4279i 0.502369 1.54613i
\(587\) 14.2389 + 43.8227i 0.587701 + 1.80876i 0.588144 + 0.808756i \(0.299859\pi\)
−0.000443412 1.00000i \(0.500141\pi\)
\(588\) 4.92922 0.203278
\(589\) 0 0
\(590\) 4.87331 0.200631
\(591\) 3.61149 + 11.1150i 0.148557 + 0.457211i
\(592\) −6.70795 + 20.6449i −0.275695 + 0.848502i
\(593\) −6.95156 + 5.05060i −0.285466 + 0.207403i −0.721298 0.692625i \(-0.756454\pi\)
0.435832 + 0.900028i \(0.356454\pi\)
\(594\) −9.86377 −0.404715
\(595\) −25.5441 −1.04720
\(596\) −4.39928 + 3.19627i −0.180202 + 0.130924i
\(597\) −2.66549 1.93659i −0.109091 0.0792594i
\(598\) 27.5072 + 19.9851i 1.12485 + 0.817254i
\(599\) −7.85123 24.1636i −0.320793 0.987298i −0.973304 0.229519i \(-0.926285\pi\)
0.652511 0.757779i \(-0.273715\pi\)
\(600\) 1.52703 1.10945i 0.0623407 0.0452931i
\(601\) −7.77657 23.9338i −0.317213 0.976281i −0.974834 0.222932i \(-0.928437\pi\)
0.657621 0.753349i \(-0.271563\pi\)
\(602\) −13.9997 + 43.0865i −0.570584 + 1.75608i
\(603\) 6.41559 + 4.66120i 0.261263 + 0.189819i
\(604\) −3.90007 + 12.0032i −0.158692 + 0.488403i
\(605\) −2.81813 + 8.67330i −0.114573 + 0.352620i
\(606\) 1.19477 + 0.868050i 0.0485342 + 0.0352621i
\(607\) 2.90074 8.92757i 0.117738 0.362359i −0.874771 0.484537i \(-0.838988\pi\)
0.992508 + 0.122178i \(0.0389880\pi\)
\(608\) −3.01622 9.28298i −0.122324 0.376474i
\(609\) −2.07002 + 1.50396i −0.0838814 + 0.0609434i
\(610\) 1.85062 + 5.69561i 0.0749292 + 0.230608i
\(611\) −17.7377 12.8872i −0.717589 0.521359i
\(612\) −17.9501 13.0415i −0.725590 0.527172i
\(613\) −9.29233 + 6.75128i −0.375314 + 0.272681i −0.759411 0.650611i \(-0.774513\pi\)
0.384097 + 0.923293i \(0.374513\pi\)
\(614\) −30.0496 −1.21270
\(615\) −2.84516 −0.114728
\(616\) 5.98295 4.34687i 0.241060 0.175140i
\(617\) −0.696336 + 2.14310i −0.0280334 + 0.0862780i −0.964094 0.265560i \(-0.914443\pi\)
0.936061 + 0.351838i \(0.114443\pi\)
\(618\) −5.22695 16.0869i −0.210259 0.647110i
\(619\) 23.6684 0.951314 0.475657 0.879631i \(-0.342210\pi\)
0.475657 + 0.879631i \(0.342210\pi\)
\(620\) 0 0
\(621\) 10.1786 0.408455
\(622\) 5.93803 + 18.2754i 0.238093 + 0.732776i
\(623\) −3.11665 + 9.59206i −0.124866 + 0.384298i
\(624\) −10.0970 + 7.33594i −0.404205 + 0.293672i
\(625\) 5.25913 0.210365
\(626\) −59.2874 −2.36960
\(627\) −1.07887 + 0.783845i −0.0430859 + 0.0313038i
\(628\) 5.96115 + 4.33103i 0.237876 + 0.172827i
\(629\) 20.6458 + 15.0000i 0.823201 + 0.598091i
\(630\) 7.08822 + 21.8153i 0.282402 + 0.869142i
\(631\) 28.0745 20.3973i 1.11763 0.812004i 0.133780 0.991011i \(-0.457289\pi\)
0.983848 + 0.179007i \(0.0572885\pi\)
\(632\) 3.70361 + 11.3986i 0.147322 + 0.453410i
\(633\) −2.98821 + 9.19675i −0.118771 + 0.365538i
\(634\) 37.8923 + 27.5303i 1.50489 + 1.09337i
\(635\) 3.57852 11.0136i 0.142009 0.437059i
\(636\) −2.84703 + 8.76226i −0.112892 + 0.347446i
\(637\) 29.0902 + 21.1353i 1.15259 + 0.837409i
\(638\) 1.45695 4.48403i 0.0576812 0.177524i
\(639\) −7.65135 23.5484i −0.302683 0.931562i
\(640\) 7.99171 5.80631i 0.315900 0.229515i
\(641\) 8.15581 + 25.1010i 0.322135 + 0.991430i 0.972717 + 0.231994i \(0.0745250\pi\)
−0.650582 + 0.759436i \(0.725475\pi\)
\(642\) 8.65203 + 6.28607i 0.341468 + 0.248091i
\(643\) −9.33144 6.77969i −0.367996 0.267365i 0.388383 0.921498i \(-0.373034\pi\)
−0.756379 + 0.654133i \(0.773034\pi\)
\(644\) 15.2360 11.0696i 0.600381 0.436202i
\(645\) 3.95456 0.155711
\(646\) −15.0840 −0.593471
\(647\) −34.8256 + 25.3023i −1.36914 + 0.994736i −0.371332 + 0.928500i \(0.621099\pi\)
−0.997804 + 0.0662355i \(0.978901\pi\)
\(648\) 2.24821 6.91927i 0.0883179 0.271815i
\(649\) 1.25154 + 3.85186i 0.0491274 + 0.151199i
\(650\) −33.9787 −1.33276
\(651\) 0 0
\(652\) 0.788169 0.0308671
\(653\) −14.7595 45.4249i −0.577582 1.77762i −0.627213 0.778848i \(-0.715805\pi\)
0.0496311 0.998768i \(-0.484195\pi\)
\(654\) −0.397790 + 1.22427i −0.0155548 + 0.0478729i
\(655\) 11.2253 8.15565i 0.438608 0.318668i
\(656\) 22.7501 0.888243
\(657\) 11.5639 0.451149
\(658\) −23.6306 + 17.1686i −0.921217 + 0.669303i
\(659\) 18.4987 + 13.4401i 0.720607 + 0.523552i 0.886578 0.462579i \(-0.153076\pi\)
−0.165971 + 0.986131i \(0.553076\pi\)
\(660\) 1.28880 + 0.936370i 0.0501666 + 0.0364481i
\(661\) −6.15079 18.9302i −0.239238 0.736299i −0.996531 0.0832235i \(-0.973478\pi\)
0.757293 0.653075i \(-0.226522\pi\)
\(662\) −49.2693 + 35.7962i −1.91491 + 1.39126i
\(663\) 4.53404 + 13.9543i 0.176088 + 0.541942i
\(664\) −3.45490 + 10.6331i −0.134076 + 0.412644i
\(665\) 5.24522 + 3.81087i 0.203401 + 0.147779i
\(666\) 7.08143 21.7944i 0.274400 0.844516i
\(667\) −1.50346 + 4.62717i −0.0582141 + 0.179165i
\(668\) −2.30059 1.67148i −0.0890125 0.0646714i
\(669\) 1.08938 3.35276i 0.0421178 0.129625i
\(670\) −1.99014 6.12503i −0.0768860 0.236631i
\(671\) −4.02653 + 2.92545i −0.155443 + 0.112936i
\(672\) 3.90868 + 12.0297i 0.150780 + 0.464054i
\(673\) −14.0988 10.2434i −0.543467 0.394852i 0.281904 0.959443i \(-0.409034\pi\)
−0.825371 + 0.564591i \(0.809034\pi\)
\(674\) 5.91359 + 4.29648i 0.227783 + 0.165494i
\(675\) −8.22936 + 5.97898i −0.316748 + 0.230131i
\(676\) 19.7531 0.759734
\(677\) 31.8257 1.22316 0.611581 0.791182i \(-0.290534\pi\)
0.611581 + 0.791182i \(0.290534\pi\)
\(678\) −2.43340 + 1.76797i −0.0934540 + 0.0678983i
\(679\) −9.56693 + 29.4440i −0.367145 + 1.12996i
\(680\) −2.25635 6.94434i −0.0865272 0.266303i
\(681\) −4.50408 −0.172597
\(682\) 0 0
\(683\) 19.9935 0.765031 0.382515 0.923949i \(-0.375058\pi\)
0.382515 + 0.923949i \(0.375058\pi\)
\(684\) 1.74023 + 5.35589i 0.0665395 + 0.204788i
\(685\) −5.89033 + 18.1286i −0.225058 + 0.692657i
\(686\) −0.359828 + 0.261431i −0.0137383 + 0.00998147i
\(687\) 8.96533 0.342049
\(688\) −31.6210 −1.20554
\(689\) −54.3723 + 39.5038i −2.07142 + 1.50497i
\(690\) −3.19881 2.32407i −0.121777 0.0884758i
\(691\) 11.5362 + 8.38155i 0.438858 + 0.318849i 0.785181 0.619266i \(-0.212570\pi\)
−0.346323 + 0.938115i \(0.612570\pi\)
\(692\) −1.78458 5.49237i −0.0678396 0.208789i
\(693\) −15.4224 + 11.2050i −0.585849 + 0.425644i
\(694\) 7.82401 + 24.0798i 0.296995 + 0.914058i
\(695\) −3.80874 + 11.7221i −0.144474 + 0.444645i
\(696\) −0.591710 0.429903i −0.0224287 0.0162954i
\(697\) 8.26480 25.4364i 0.313052 0.963473i
\(698\) 2.11826 6.51934i 0.0801773 0.246760i
\(699\) −5.51332 4.00566i −0.208533 0.151508i
\(700\) −5.81585 + 17.8993i −0.219818 + 0.676532i
\(701\) −14.3832 44.2670i −0.543247 1.67194i −0.725122 0.688621i \(-0.758217\pi\)
0.181875 0.983322i \(-0.441783\pi\)
\(702\) 22.2847 16.1908i 0.841084 0.611083i
\(703\) −2.00158 6.16022i −0.0754908 0.232337i
\(704\) −4.37471 3.17841i −0.164878 0.119791i
\(705\) 2.06271 + 1.49865i 0.0776861 + 0.0564423i
\(706\) −23.1884 + 16.8474i −0.872707 + 0.634058i
\(707\) 5.96706 0.224414
\(708\) −1.55046 −0.0582699
\(709\) −17.9815 + 13.0643i −0.675309 + 0.490640i −0.871798 0.489866i \(-0.837046\pi\)
0.196489 + 0.980506i \(0.437046\pi\)
\(710\) −6.21386 + 19.1243i −0.233202 + 0.717721i
\(711\) −9.54690 29.3823i −0.358037 1.10192i
\(712\) −2.88297 −0.108044
\(713\) 0 0
\(714\) 19.5471 0.731531
\(715\) 3.59105 + 11.0521i 0.134298 + 0.413326i
\(716\) −1.74336 + 5.36550i −0.0651523 + 0.200518i
\(717\) 3.97976 2.89147i 0.148627 0.107984i
\(718\) 9.93445 0.370750
\(719\) 44.0914 1.64433 0.822165 0.569249i \(-0.192766\pi\)
0.822165 + 0.569249i \(0.192766\pi\)
\(720\) −12.9525 + 9.41053i −0.482710 + 0.350710i
\(721\) −55.2914 40.1716i −2.05916 1.49607i
\(722\) −25.3428 18.4126i −0.943160 0.685246i
\(723\) −1.02921 3.16759i −0.0382768 0.117804i
\(724\) −7.36627 + 5.35191i −0.273765 + 0.198902i
\(725\) −1.50248 4.62417i −0.0558008 0.171737i
\(726\) 2.15651 6.63707i 0.0800357 0.246325i
\(727\) −31.5599 22.9296i −1.17049 0.850413i −0.179426 0.983772i \(-0.557424\pi\)
−0.991068 + 0.133358i \(0.957424\pi\)
\(728\) −6.38186 + 19.6414i −0.236528 + 0.727957i
\(729\) −4.46591 + 13.7447i −0.165404 + 0.509062i
\(730\) −7.59772 5.52006i −0.281204 0.204307i
\(731\) −11.4875 + 35.3548i −0.424879 + 1.30764i
\(732\) −0.588780 1.81208i −0.0217619 0.0669763i
\(733\) −5.51028 + 4.00345i −0.203527 + 0.147871i −0.684880 0.728656i \(-0.740145\pi\)
0.481353 + 0.876527i \(0.340145\pi\)
\(734\) 8.41660 + 25.9036i 0.310663 + 0.956121i
\(735\) −3.38289 2.45782i −0.124780 0.0906579i
\(736\) 19.4580 + 14.1370i 0.717230 + 0.521098i
\(737\) 4.33012 3.14601i 0.159502 0.115885i
\(738\) −24.0168 −0.884070
\(739\) −33.2004 −1.22130 −0.610649 0.791902i \(-0.709091\pi\)
−0.610649 + 0.791902i \(0.709091\pi\)
\(740\) −6.25985 + 4.54805i −0.230117 + 0.167190i
\(741\) 1.15080 3.54181i 0.0422758 0.130112i
\(742\) 27.6682 + 85.1540i 1.01573 + 3.12610i
\(743\) 22.5011 0.825484 0.412742 0.910848i \(-0.364571\pi\)
0.412742 + 0.910848i \(0.364571\pi\)
\(744\) 0 0
\(745\) 4.61293 0.169005
\(746\) −13.6332 41.9586i −0.499146 1.53621i
\(747\) 8.90578 27.4092i 0.325845 1.00285i
\(748\) −12.1152 + 8.80219i −0.442975 + 0.321840i
\(749\) 43.2110 1.57890
\(750\) 9.52884 0.347944
\(751\) −5.18946 + 3.77036i −0.189366 + 0.137583i −0.678429 0.734666i \(-0.737339\pi\)
0.489063 + 0.872249i \(0.337339\pi\)
\(752\) −16.4936 11.9833i −0.601460 0.436986i
\(753\) 11.8441 + 8.60521i 0.431621 + 0.313591i
\(754\) 4.06866 + 12.5221i 0.148172 + 0.456026i
\(755\) 8.66164 6.29305i 0.315229 0.229028i
\(756\) −4.71472 14.5104i −0.171473 0.527739i
\(757\) −7.99547 + 24.6075i −0.290600 + 0.894375i 0.694064 + 0.719914i \(0.255819\pi\)
−0.984664 + 0.174462i \(0.944181\pi\)
\(758\) −33.1209 24.0637i −1.20300 0.874034i
\(759\) 1.01544 3.12519i 0.0368580 0.113437i
\(760\) −0.572695 + 1.76257i −0.0207738 + 0.0639352i
\(761\) 36.1894 + 26.2932i 1.31187 + 0.953126i 0.999995 + 0.00300175i \(0.000955488\pi\)
0.311870 + 0.950125i \(0.399045\pi\)
\(762\) −2.73839 + 8.42789i −0.0992014 + 0.305310i
\(763\) 1.60727 + 4.94666i 0.0581870 + 0.179081i
\(764\) −13.3863 + 9.72569i −0.484298 + 0.351863i
\(765\) 5.81626 + 17.9006i 0.210287 + 0.647198i
\(766\) −35.6229 25.8815i −1.28711 0.935138i
\(767\) −9.15016 6.64798i −0.330393 0.240045i
\(768\) −8.46886 + 6.15299i −0.305594 + 0.222027i
\(769\) 12.6875 0.457524 0.228762 0.973482i \(-0.426532\pi\)
0.228762 + 0.973482i \(0.426532\pi\)
\(770\) 15.4817 0.557920
\(771\) 9.67486 7.02920i 0.348432 0.253150i
\(772\) 5.95661 18.3326i 0.214383 0.659804i
\(773\) 2.84535 + 8.75710i 0.102340 + 0.314971i 0.989097 0.147265i \(-0.0470471\pi\)
−0.886757 + 0.462236i \(0.847047\pi\)
\(774\) 33.3816 1.19988
\(775\) 0 0
\(776\) −8.84964 −0.317683
\(777\) 2.59381 + 7.98293i 0.0930524 + 0.286386i
\(778\) −9.75078 + 30.0098i −0.349582 + 1.07590i
\(779\) −5.49191 + 3.99011i −0.196768 + 0.142960i
\(780\) −4.44873 −0.159290
\(781\) −16.7116 −0.597989
\(782\) 30.0699 21.8470i 1.07530 0.781249i
\(783\) 3.18880 + 2.31680i 0.113959 + 0.0827958i
\(784\) 27.0499 + 19.6529i 0.966067 + 0.701889i
\(785\) −1.93156 5.94472i −0.0689402 0.212176i
\(786\) −8.58992 + 6.24094i −0.306392 + 0.222607i
\(787\) −14.4482 44.4670i −0.515023 1.58508i −0.783241 0.621718i \(-0.786435\pi\)
0.268218 0.963358i \(-0.413565\pi\)
\(788\) 10.2935 31.6801i 0.366691 1.12856i
\(789\) −1.59342 1.15768i −0.0567271 0.0412147i
\(790\) −7.75328 + 23.8621i −0.275849 + 0.848977i
\(791\) −3.75553 + 11.5583i −0.133531 + 0.410967i
\(792\) −4.40846 3.20294i −0.156648 0.113811i
\(793\) 4.29500 13.2186i 0.152520 0.469408i
\(794\) 5.72974 + 17.6343i 0.203341 + 0.625819i
\(795\) 6.32295 4.59389i 0.224252 0.162929i
\(796\) 2.90187 + 8.93103i 0.102854 + 0.316552i
\(797\) 0.291229 + 0.211590i 0.0103159 + 0.00749491i 0.592931 0.805253i \(-0.297971\pi\)
−0.582615 + 0.812748i \(0.697971\pi\)
\(798\) −4.01380 2.91619i −0.142087 0.103232i
\(799\) −19.3902 + 14.0878i −0.685975 + 0.498390i
\(800\) −24.0358 −0.849793
\(801\) 7.43151 0.262580
\(802\) −42.7400 + 31.0525i −1.50920 + 1.09650i
\(803\) 2.41184 7.42286i 0.0851118 0.261947i
\(804\) 0.633171 + 1.94870i 0.0223302 + 0.0687254i
\(805\) −15.9759 −0.563075
\(806\) 0 0
\(807\) 6.36789 0.224160
\(808\) 0.527081 + 1.62219i 0.0185426 + 0.0570684i
\(809\) −8.87530 + 27.3154i −0.312039 + 0.960357i 0.664917 + 0.746917i \(0.268467\pi\)
−0.976956 + 0.213440i \(0.931533\pi\)
\(810\) 12.3217 8.95225i 0.432941 0.314550i
\(811\) −19.9135 −0.699258 −0.349629 0.936888i \(-0.613692\pi\)
−0.349629 + 0.936888i \(0.613692\pi\)
\(812\) 7.29278 0.255926
\(813\) 1.34229 0.975231i 0.0470762 0.0342028i
\(814\) −12.5129 9.09117i −0.438578 0.318646i
\(815\) −0.540915 0.392998i −0.0189474 0.0137661i
\(816\) 4.21604 + 12.9756i 0.147591 + 0.454238i
\(817\) 7.63335 5.54596i 0.267057 0.194028i
\(818\) 13.1560 + 40.4900i 0.459988 + 1.41570i
\(819\) 16.4507 50.6300i 0.574834 1.76916i
\(820\) 6.56055 + 4.76652i 0.229104 + 0.166454i
\(821\) 14.2250 43.7800i 0.496456 1.52793i −0.318220 0.948017i \(-0.603085\pi\)
0.814676 0.579917i \(-0.196915\pi\)
\(822\) 4.50745 13.8725i 0.157216 0.483860i
\(823\) 10.7037 + 7.77667i 0.373106 + 0.271078i 0.758498 0.651676i \(-0.225934\pi\)
−0.385392 + 0.922753i \(0.625934\pi\)
\(824\) 6.03695 18.5798i 0.210307 0.647259i
\(825\) 1.01478 + 3.12317i 0.0353300 + 0.108735i
\(826\) −12.1901 + 8.85663i −0.424148 + 0.308162i
\(827\) 3.52516 + 10.8493i 0.122582 + 0.377268i 0.993453 0.114244i \(-0.0364444\pi\)
−0.870871 + 0.491512i \(0.836444\pi\)
\(828\) −11.2264 8.15648i −0.390145 0.283457i
\(829\) −34.8386 25.3118i −1.21000 0.879114i −0.214766 0.976666i \(-0.568899\pi\)
−0.995230 + 0.0975520i \(0.968899\pi\)
\(830\) −18.9352 + 13.7572i −0.657251 + 0.477521i
\(831\) 10.4948 0.364059
\(832\) 15.1008 0.523525
\(833\) 31.8003 23.1043i 1.10182 0.800516i
\(834\) 2.91456 8.97010i 0.100923 0.310609i
\(835\) 0.745446 + 2.29425i 0.0257972 + 0.0793957i
\(836\) 3.80091 0.131457
\(837\) 0 0
\(838\) −62.0578 −2.14375
\(839\) 13.4023 + 41.2479i 0.462697 + 1.42404i 0.861856 + 0.507153i \(0.169302\pi\)
−0.399159 + 0.916882i \(0.630698\pi\)
\(840\) 0.742146 2.28409i 0.0256065 0.0788086i
\(841\) 21.9373 15.9384i 0.756458 0.549599i
\(842\) −16.7023 −0.575600
\(843\) −4.67737 −0.161097
\(844\) 22.2978 16.2003i 0.767522 0.557637i
\(845\) −13.5564 9.84931i −0.466355 0.338827i
\(846\) 17.4119 + 12.6505i 0.598634 + 0.434933i
\(847\) −8.71337 26.8170i −0.299395 0.921443i
\(848\) −50.5588 + 36.7331i −1.73620 + 1.26142i
\(849\) −1.56363 4.81237i −0.0536638 0.165160i
\(850\) −11.4782 + 35.3264i −0.393700 + 1.21168i
\(851\) 12.9124 + 9.38138i 0.442630 + 0.321590i
\(852\) 1.97696 6.08446i 0.0677295 0.208450i
\(853\) 2.08658 6.42185i 0.0714433 0.219880i −0.908959 0.416885i \(-0.863122\pi\)
0.980402 + 0.197005i \(0.0631217\pi\)
\(854\) −14.9802 10.8837i −0.512611 0.372434i
\(855\) 1.47625 4.54343i 0.0504867 0.155382i
\(856\) 3.81691 + 11.7472i 0.130459 + 0.401512i
\(857\) 20.1009 14.6042i 0.686635 0.498870i −0.188917 0.981993i \(-0.560498\pi\)
0.875552 + 0.483123i \(0.160498\pi\)
\(858\) −2.74798 8.45740i −0.0938144 0.288731i
\(859\) −1.29270 0.939204i −0.0441065 0.0320452i 0.565514 0.824739i \(-0.308678\pi\)
−0.609620 + 0.792694i \(0.708678\pi\)
\(860\) −9.11869 6.62511i −0.310945 0.225915i
\(861\) 7.11688 5.17072i 0.242543 0.176218i
\(862\) −20.9198 −0.712533
\(863\) −30.7713 −1.04747 −0.523734 0.851882i \(-0.675461\pi\)
−0.523734 + 0.851882i \(0.675461\pi\)
\(864\) 15.7637 11.4530i 0.536292 0.389639i
\(865\) −1.51387 + 4.65921i −0.0514731 + 0.158418i
\(866\) −5.20536 16.0204i −0.176885 0.544397i
\(867\) 7.55038 0.256424
\(868\) 0 0
\(869\) −20.8518 −0.707348
\(870\) −0.473144 1.45619i −0.0160411 0.0493694i
\(871\) −4.61882 + 14.2153i −0.156503 + 0.481666i
\(872\) −1.20281 + 0.873895i −0.0407324 + 0.0295938i
\(873\) 22.8119 0.772067
\(874\) −9.43387 −0.319105
\(875\) 31.1481 22.6304i 1.05300 0.765048i
\(876\) 2.41724 + 1.75623i 0.0816710 + 0.0593374i
\(877\) −6.73981 4.89676i −0.227587 0.165352i 0.468148 0.883650i \(-0.344921\pi\)
−0.695735 + 0.718298i \(0.744921\pi\)
\(878\) 22.6441 + 69.6914i 0.764202 + 2.35197i
\(879\) 8.59283 6.24305i 0.289829 0.210573i
\(880\) 3.33918 + 10.2770i 0.112564 + 0.346436i
\(881\) 6.75616 20.7933i 0.227621 0.700544i −0.770394 0.637568i \(-0.779941\pi\)
0.998015 0.0629767i \(-0.0200594\pi\)
\(882\) −28.5560 20.7471i −0.961529 0.698592i
\(883\) −3.85357 + 11.8601i −0.129683 + 0.399123i −0.994725 0.102576i \(-0.967292\pi\)
0.865042 + 0.501699i \(0.167292\pi\)
\(884\) 12.9229 39.7727i 0.434646 1.33770i
\(885\) 1.06407 + 0.773093i 0.0357684 + 0.0259872i
\(886\) −14.4413 + 44.4458i −0.485166 + 1.49319i
\(887\) −7.64568 23.5310i −0.256717 0.790093i −0.993487 0.113949i \(-0.963650\pi\)
0.736770 0.676144i \(-0.236350\pi\)
\(888\) −1.94110 + 1.41029i −0.0651391 + 0.0473263i
\(889\) 11.0644 + 34.0528i 0.371089 + 1.14209i
\(890\) −4.88267 3.54747i −0.163668 0.118911i
\(891\) 10.2403 + 7.43998i 0.343062 + 0.249249i
\(892\) −8.12886 + 5.90597i −0.272174 + 0.197746i
\(893\) 6.08331 0.203570
\(894\) −3.52995 −0.118059
\(895\) 3.87181 2.81303i 0.129420 0.0940293i
\(896\) −9.43821 + 29.0478i −0.315309 + 0.970420i
\(897\) 2.83570 + 8.72738i 0.0946812 + 0.291399i
\(898\) −3.38940 −0.113106
\(899\) 0 0
\(900\) 13.8676 0.462255
\(901\) 22.7032 + 69.8734i 0.756354 + 2.32782i
\(902\) −5.00910 + 15.4164i −0.166785 + 0.513311i
\(903\) −9.89194 + 7.18692i −0.329183 + 0.239166i
\(904\) −3.47395 −0.115542
\(905\) 7.72400 0.256754
\(906\) −6.62814 + 4.81563i −0.220205 + 0.159989i
\(907\) 25.4366 + 18.4808i 0.844609 + 0.613644i 0.923654 0.383227i \(-0.125187\pi\)
−0.0790457 + 0.996871i \(0.525187\pi\)
\(908\) 10.3858 + 7.54573i 0.344665 + 0.250414i
\(909\) −1.35867 4.18156i −0.0450643 0.138694i
\(910\) −34.9770 + 25.4123i −1.15948 + 0.842409i
\(911\) 2.59075 + 7.97351i 0.0858354 + 0.264174i 0.984757 0.173935i \(-0.0556483\pi\)
−0.898922 + 0.438109i \(0.855648\pi\)
\(912\) 1.07009 3.29340i 0.0354342 0.109055i
\(913\) −15.7366 11.4333i −0.520804 0.378386i
\(914\) −20.5567 + 63.2671i −0.679956 + 2.09269i
\(915\) −0.499465 + 1.53719i −0.0165118 + 0.0508181i
\(916\) −20.6728 15.0197i −0.683050 0.496265i
\(917\) −13.2571 + 40.8011i −0.437787 + 1.34737i
\(918\) −9.30503 28.6379i −0.307112 0.945193i
\(919\) 32.4723 23.5925i 1.07116 0.778245i 0.0950416 0.995473i \(-0.469702\pi\)
0.976121 + 0.217228i \(0.0697016\pi\)
\(920\) −1.41118 4.34316i −0.0465251 0.143190i
\(921\) −6.56123 4.76701i −0.216200 0.157078i
\(922\) −2.00088 1.45373i −0.0658956 0.0478759i
\(923\) 37.7558 27.4312i 1.24275 0.902908i
\(924\) −4.92554 −0.162039
\(925\) −15.9502 −0.524440
\(926\) −17.6128 + 12.7965i −0.578793 + 0.420518i
\(927\) −15.5616 + 47.8937i −0.511110 + 1.57303i
\(928\) 2.87808 + 8.85781i 0.0944775 + 0.290772i
\(929\) 54.6187 1.79198 0.895991 0.444072i \(-0.146467\pi\)
0.895991 + 0.444072i \(0.146467\pi\)
\(930\) 0 0
\(931\) −9.97677 −0.326975
\(932\) 6.00225 + 18.4730i 0.196610 + 0.605104i
\(933\) −1.60262 + 4.93236i −0.0524675 + 0.161478i
\(934\) 16.4636 11.9615i 0.538705 0.391392i
\(935\) 12.7035 0.415450
\(936\) 15.2173 0.497392
\(937\) 10.8326 7.87037i 0.353887 0.257114i −0.396611 0.917987i \(-0.629814\pi\)
0.750498 + 0.660873i \(0.229814\pi\)
\(938\) 16.1096 + 11.7043i 0.525998 + 0.382160i
\(939\) −12.9452 9.40524i −0.422451 0.306928i
\(940\) −2.24563 6.91135i −0.0732445 0.225423i
\(941\) 31.0272 22.5426i 1.01146 0.734866i 0.0469426 0.998898i \(-0.485052\pi\)
0.964514 + 0.264031i \(0.0850522\pi\)
\(942\) 1.47808 + 4.54907i 0.0481586 + 0.148217i
\(943\) 5.16900 15.9086i 0.168326 0.518054i
\(944\) −8.50840 6.18172i −0.276925 0.201198i
\(945\) −3.99952 + 12.3093i −0.130104 + 0.400420i
\(946\) 6.96229 21.4277i 0.226363 0.696675i
\(947\) −35.1821 25.5613i −1.14327 0.830631i −0.155695 0.987805i \(-0.549762\pi\)
−0.987571 + 0.157174i \(0.949762\pi\)
\(948\) 2.46673 7.59182i 0.0801157 0.246571i
\(949\) 6.73527 + 20.7290i 0.218636 + 0.672892i
\(950\) 7.62722 5.54150i 0.247460 0.179790i
\(951\) 3.90629 + 12.0223i 0.126670 + 0.389850i
\(952\) 18.2645 + 13.2699i 0.591956 + 0.430081i
\(953\) 32.5345 + 23.6377i 1.05390 + 0.765700i 0.972949 0.231018i \(-0.0742057\pi\)
0.0809464 + 0.996718i \(0.474206\pi\)
\(954\) 53.3738 38.7783i 1.72804 1.25549i
\(955\) 14.0363 0.454205
\(956\) −14.0209 −0.453468
\(957\) 1.02946 0.747945i 0.0332776 0.0241776i
\(958\) 0.384073 1.18205i 0.0124088 0.0381904i
\(959\) −18.2123 56.0517i −0.588106 1.81001i
\(960\) −1.75607 −0.0566768
\(961\) 0 0
\(962\) 43.1925 1.39258
\(963\) −9.83894 30.2811i −0.317055 0.975796i
\(964\) −2.93347 + 9.02829i −0.0944806 + 0.290781i
\(965\) −13.2290 + 9.61143i −0.425856 + 0.309403i
\(966\) 12.2252 0.393339
\(967\) 43.8720 1.41083 0.705414 0.708795i \(-0.250761\pi\)
0.705414 + 0.708795i \(0.250761\pi\)
\(968\) 6.52073 4.73759i 0.209584 0.152272i
\(969\) −3.29353 2.39289i −0.105803 0.0768707i
\(970\) −14.9880 10.8894i −0.481234 0.349637i
\(971\) 15.9201 + 48.9969i 0.510899 + 1.57239i 0.790621 + 0.612305i \(0.209758\pi\)
−0.279722 + 0.960081i \(0.590242\pi\)
\(972\) −13.8397 + 10.0551i −0.443908 + 0.322518i
\(973\) −11.7762 36.2436i −0.377529 1.16192i
\(974\) 14.0509 43.2443i 0.450221 1.38564i
\(975\) −7.41914 5.39032i −0.237603 0.172628i
\(976\) 3.99376 12.2915i 0.127837 0.393442i
\(977\) 4.44223 13.6718i 0.142119 0.437399i −0.854510 0.519435i \(-0.826142\pi\)
0.996629 + 0.0820365i \(0.0261424\pi\)
\(978\) 0.413924 + 0.300734i 0.0132358 + 0.00961640i
\(979\) 1.54997 4.77031i 0.0495371 0.152460i
\(980\) 3.68289 + 11.3348i 0.117646 + 0.362076i
\(981\) 3.10052 2.25266i 0.0989921 0.0719220i
\(982\) −4.93661 15.1933i −0.157534 0.484838i
\(983\) 43.4233 + 31.5489i 1.38499 + 1.00625i 0.996394 + 0.0848433i \(0.0270390\pi\)
0.388594 + 0.921409i \(0.372961\pi\)
\(984\) 2.03434 + 1.47804i 0.0648525 + 0.0471181i
\(985\) −22.8608 + 16.6093i −0.728404 + 0.529217i
\(986\) 14.3931 0.458370
\(987\) −7.88326 −0.250927
\(988\) −8.58723 + 6.23898i −0.273196 + 0.198489i
\(989\) −7.18454 + 22.1117i −0.228455 + 0.703112i
\(990\) −3.52510 10.8491i −0.112035 0.344808i
\(991\) −35.5382 −1.12891 −0.564453 0.825465i \(-0.690913\pi\)
−0.564453 + 0.825465i \(0.690913\pi\)
\(992\) 0 0
\(993\) −16.4364 −0.521594
\(994\) −19.2126 59.1304i −0.609388 1.87550i
\(995\) 2.46167 7.57624i 0.0780402 0.240183i
\(996\) 6.02430 4.37691i 0.190887 0.138688i
\(997\) −30.5225 −0.966658 −0.483329 0.875439i \(-0.660573\pi\)
−0.483329 + 0.875439i \(0.660573\pi\)
\(998\) −57.5347 −1.82123
\(999\) 10.4609 7.60025i 0.330967 0.240461i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.d.o.531.2 16
31.2 even 5 961.2.d.p.388.3 16
31.3 odd 30 961.2.c.i.439.2 16
31.4 even 5 961.2.d.p.374.3 16
31.5 even 3 31.2.g.a.7.1 16
31.6 odd 6 961.2.g.j.547.1 16
31.7 even 15 961.2.g.s.816.2 16
31.8 even 5 inner 961.2.d.o.628.2 16
31.9 even 15 961.2.g.k.448.1 16
31.10 even 15 961.2.g.s.338.2 16
31.11 odd 30 961.2.g.n.732.2 16
31.12 odd 30 961.2.g.n.235.2 16
31.13 odd 30 961.2.c.i.521.2 16
31.14 even 15 31.2.g.a.9.1 yes 16
31.15 odd 10 961.2.a.j.1.2 8
31.16 even 5 961.2.a.i.1.2 8
31.17 odd 30 961.2.g.l.846.1 16
31.18 even 15 961.2.c.j.521.2 16
31.19 even 15 961.2.g.t.235.2 16
31.20 even 15 961.2.g.t.732.2 16
31.21 odd 30 961.2.g.m.338.2 16
31.22 odd 30 961.2.g.j.448.1 16
31.23 odd 10 961.2.d.n.628.2 16
31.24 odd 30 961.2.g.m.816.2 16
31.25 even 3 961.2.g.k.547.1 16
31.26 odd 6 961.2.g.l.844.1 16
31.27 odd 10 961.2.d.q.374.3 16
31.28 even 15 961.2.c.j.439.2 16
31.29 odd 10 961.2.d.q.388.3 16
31.30 odd 2 961.2.d.n.531.2 16
93.5 odd 6 279.2.y.c.100.2 16
93.14 odd 30 279.2.y.c.226.2 16
93.47 odd 10 8649.2.a.bf.1.7 8
93.77 even 10 8649.2.a.be.1.7 8
124.67 odd 6 496.2.bg.c.193.1 16
124.107 odd 30 496.2.bg.c.257.1 16
155.14 even 30 775.2.bl.a.226.2 16
155.67 odd 12 775.2.ck.a.224.4 32
155.98 odd 12 775.2.ck.a.224.1 32
155.107 odd 60 775.2.ck.a.474.1 32
155.129 even 6 775.2.bl.a.751.2 16
155.138 odd 60 775.2.ck.a.474.4 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.7.1 16 31.5 even 3
31.2.g.a.9.1 yes 16 31.14 even 15
279.2.y.c.100.2 16 93.5 odd 6
279.2.y.c.226.2 16 93.14 odd 30
496.2.bg.c.193.1 16 124.67 odd 6
496.2.bg.c.257.1 16 124.107 odd 30
775.2.bl.a.226.2 16 155.14 even 30
775.2.bl.a.751.2 16 155.129 even 6
775.2.ck.a.224.1 32 155.98 odd 12
775.2.ck.a.224.4 32 155.67 odd 12
775.2.ck.a.474.1 32 155.107 odd 60
775.2.ck.a.474.4 32 155.138 odd 60
961.2.a.i.1.2 8 31.16 even 5
961.2.a.j.1.2 8 31.15 odd 10
961.2.c.i.439.2 16 31.3 odd 30
961.2.c.i.521.2 16 31.13 odd 30
961.2.c.j.439.2 16 31.28 even 15
961.2.c.j.521.2 16 31.18 even 15
961.2.d.n.531.2 16 31.30 odd 2
961.2.d.n.628.2 16 31.23 odd 10
961.2.d.o.531.2 16 1.1 even 1 trivial
961.2.d.o.628.2 16 31.8 even 5 inner
961.2.d.p.374.3 16 31.4 even 5
961.2.d.p.388.3 16 31.2 even 5
961.2.d.q.374.3 16 31.27 odd 10
961.2.d.q.388.3 16 31.29 odd 10
961.2.g.j.448.1 16 31.22 odd 30
961.2.g.j.547.1 16 31.6 odd 6
961.2.g.k.448.1 16 31.9 even 15
961.2.g.k.547.1 16 31.25 even 3
961.2.g.l.844.1 16 31.26 odd 6
961.2.g.l.846.1 16 31.17 odd 30
961.2.g.m.338.2 16 31.21 odd 30
961.2.g.m.816.2 16 31.24 odd 30
961.2.g.n.235.2 16 31.12 odd 30
961.2.g.n.732.2 16 31.11 odd 30
961.2.g.s.338.2 16 31.10 even 15
961.2.g.s.816.2 16 31.7 even 15
961.2.g.t.235.2 16 31.19 even 15
961.2.g.t.732.2 16 31.20 even 15
8649.2.a.be.1.7 8 93.77 even 10
8649.2.a.bf.1.7 8 93.47 odd 10