Defining parameters
Level: | \( N \) | \(=\) | \( 9610 = 2 \cdot 5 \cdot 31^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 9610.q (of order \(15\) and degree \(8\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 31 \) |
Character field: | \(\Q(\zeta_{15})\) | ||
Sturm bound: | \(2976\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(9610, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 12416 | 2464 | 9952 |
Cusp forms | 11392 | 2464 | 8928 |
Eisenstein series | 1024 | 0 | 1024 |
Decomposition of \(S_{2}^{\mathrm{new}}(9610, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(9610, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(9610, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(31, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(62, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(155, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(310, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(961, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1922, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(4805, [\chi])\)\(^{\oplus 2}\)