Properties

Label 968.4.a.o.1.2
Level $968$
Weight $4$
Character 968.1
Self dual yes
Analytic conductor $57.114$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [968,4,Mod(1,968)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(968, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("968.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 968 = 2^{3} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 968.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.1138488856\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 87x^{6} + 12x^{5} + 2157x^{4} + 2939x^{3} - 5906x^{2} - 3030x + 45 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6}\cdot 11 \)
Twist minimal: no (minimal twist has level 88)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(6.90062\) of defining polynomial
Character \(\chi\) \(=\) 968.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-6.24005 q^{3} +8.05999 q^{5} +25.5634 q^{7} +11.9382 q^{9} -37.7535 q^{13} -50.2947 q^{15} +40.6687 q^{17} -114.776 q^{19} -159.517 q^{21} +40.3517 q^{23} -60.0365 q^{25} +93.9864 q^{27} -95.2574 q^{29} -217.659 q^{31} +206.041 q^{35} +253.997 q^{37} +235.584 q^{39} -370.610 q^{41} +453.237 q^{43} +96.2217 q^{45} -304.697 q^{47} +310.488 q^{49} -253.775 q^{51} +263.190 q^{53} +716.207 q^{57} -26.5227 q^{59} -262.767 q^{61} +305.181 q^{63} -304.293 q^{65} +956.232 q^{67} -251.797 q^{69} -405.573 q^{71} -557.834 q^{73} +374.631 q^{75} +928.116 q^{79} -908.811 q^{81} +372.454 q^{83} +327.790 q^{85} +594.411 q^{87} -1382.64 q^{89} -965.108 q^{91} +1358.20 q^{93} -925.093 q^{95} -979.623 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{3} - 13 q^{5} + 9 q^{7} + 36 q^{9} - 7 q^{13} - 66 q^{15} - 94 q^{17} + 92 q^{19} - 17 q^{21} - 46 q^{23} + 101 q^{25} + 124 q^{27} - 241 q^{29} - 265 q^{31} + 664 q^{35} - 469 q^{37} - 788 q^{39}+ \cdots - 4702 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −6.24005 −1.20090 −0.600449 0.799663i \(-0.705011\pi\)
−0.600449 + 0.799663i \(0.705011\pi\)
\(4\) 0 0
\(5\) 8.05999 0.720908 0.360454 0.932777i \(-0.382622\pi\)
0.360454 + 0.932777i \(0.382622\pi\)
\(6\) 0 0
\(7\) 25.5634 1.38029 0.690147 0.723669i \(-0.257546\pi\)
0.690147 + 0.723669i \(0.257546\pi\)
\(8\) 0 0
\(9\) 11.9382 0.442155
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −37.7535 −0.805457 −0.402728 0.915320i \(-0.631938\pi\)
−0.402728 + 0.915320i \(0.631938\pi\)
\(14\) 0 0
\(15\) −50.2947 −0.865736
\(16\) 0 0
\(17\) 40.6687 0.580213 0.290106 0.956994i \(-0.406309\pi\)
0.290106 + 0.956994i \(0.406309\pi\)
\(18\) 0 0
\(19\) −114.776 −1.38586 −0.692931 0.721004i \(-0.743681\pi\)
−0.692931 + 0.721004i \(0.743681\pi\)
\(20\) 0 0
\(21\) −159.517 −1.65759
\(22\) 0 0
\(23\) 40.3517 0.365823 0.182911 0.983129i \(-0.441448\pi\)
0.182911 + 0.983129i \(0.441448\pi\)
\(24\) 0 0
\(25\) −60.0365 −0.480292
\(26\) 0 0
\(27\) 93.9864 0.669915
\(28\) 0 0
\(29\) −95.2574 −0.609960 −0.304980 0.952359i \(-0.598650\pi\)
−0.304980 + 0.952359i \(0.598650\pi\)
\(30\) 0 0
\(31\) −217.659 −1.26106 −0.630528 0.776166i \(-0.717162\pi\)
−0.630528 + 0.776166i \(0.717162\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 206.041 0.995065
\(36\) 0 0
\(37\) 253.997 1.12856 0.564282 0.825582i \(-0.309153\pi\)
0.564282 + 0.825582i \(0.309153\pi\)
\(38\) 0 0
\(39\) 235.584 0.967271
\(40\) 0 0
\(41\) −370.610 −1.41170 −0.705848 0.708363i \(-0.749434\pi\)
−0.705848 + 0.708363i \(0.749434\pi\)
\(42\) 0 0
\(43\) 453.237 1.60740 0.803698 0.595038i \(-0.202863\pi\)
0.803698 + 0.595038i \(0.202863\pi\)
\(44\) 0 0
\(45\) 96.2217 0.318753
\(46\) 0 0
\(47\) −304.697 −0.945630 −0.472815 0.881162i \(-0.656762\pi\)
−0.472815 + 0.881162i \(0.656762\pi\)
\(48\) 0 0
\(49\) 310.488 0.905213
\(50\) 0 0
\(51\) −253.775 −0.696776
\(52\) 0 0
\(53\) 263.190 0.682113 0.341057 0.940043i \(-0.389215\pi\)
0.341057 + 0.940043i \(0.389215\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 716.207 1.66428
\(58\) 0 0
\(59\) −26.5227 −0.0585248 −0.0292624 0.999572i \(-0.509316\pi\)
−0.0292624 + 0.999572i \(0.509316\pi\)
\(60\) 0 0
\(61\) −262.767 −0.551538 −0.275769 0.961224i \(-0.588933\pi\)
−0.275769 + 0.961224i \(0.588933\pi\)
\(62\) 0 0
\(63\) 305.181 0.610304
\(64\) 0 0
\(65\) −304.293 −0.580660
\(66\) 0 0
\(67\) 956.232 1.74362 0.871808 0.489847i \(-0.162947\pi\)
0.871808 + 0.489847i \(0.162947\pi\)
\(68\) 0 0
\(69\) −251.797 −0.439315
\(70\) 0 0
\(71\) −405.573 −0.677924 −0.338962 0.940800i \(-0.610076\pi\)
−0.338962 + 0.940800i \(0.610076\pi\)
\(72\) 0 0
\(73\) −557.834 −0.894377 −0.447188 0.894440i \(-0.647575\pi\)
−0.447188 + 0.894440i \(0.647575\pi\)
\(74\) 0 0
\(75\) 374.631 0.576782
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 928.116 1.32179 0.660894 0.750479i \(-0.270177\pi\)
0.660894 + 0.750479i \(0.270177\pi\)
\(80\) 0 0
\(81\) −908.811 −1.24665
\(82\) 0 0
\(83\) 372.454 0.492556 0.246278 0.969199i \(-0.420792\pi\)
0.246278 + 0.969199i \(0.420792\pi\)
\(84\) 0 0
\(85\) 327.790 0.418280
\(86\) 0 0
\(87\) 594.411 0.732500
\(88\) 0 0
\(89\) −1382.64 −1.64673 −0.823366 0.567511i \(-0.807906\pi\)
−0.823366 + 0.567511i \(0.807906\pi\)
\(90\) 0 0
\(91\) −965.108 −1.11177
\(92\) 0 0
\(93\) 1358.20 1.51440
\(94\) 0 0
\(95\) −925.093 −0.999079
\(96\) 0 0
\(97\) −979.623 −1.02542 −0.512710 0.858562i \(-0.671358\pi\)
−0.512710 + 0.858562i \(0.671358\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1842.16 −1.81487 −0.907434 0.420194i \(-0.861962\pi\)
−0.907434 + 0.420194i \(0.861962\pi\)
\(102\) 0 0
\(103\) −1021.93 −0.977611 −0.488806 0.872393i \(-0.662567\pi\)
−0.488806 + 0.872393i \(0.662567\pi\)
\(104\) 0 0
\(105\) −1285.71 −1.19497
\(106\) 0 0
\(107\) 1301.34 1.17575 0.587876 0.808951i \(-0.299964\pi\)
0.587876 + 0.808951i \(0.299964\pi\)
\(108\) 0 0
\(109\) 529.422 0.465224 0.232612 0.972570i \(-0.425273\pi\)
0.232612 + 0.972570i \(0.425273\pi\)
\(110\) 0 0
\(111\) −1584.96 −1.35529
\(112\) 0 0
\(113\) −763.264 −0.635414 −0.317707 0.948189i \(-0.602913\pi\)
−0.317707 + 0.948189i \(0.602913\pi\)
\(114\) 0 0
\(115\) 325.235 0.263724
\(116\) 0 0
\(117\) −450.708 −0.356137
\(118\) 0 0
\(119\) 1039.63 0.800864
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 2312.62 1.69530
\(124\) 0 0
\(125\) −1491.39 −1.06715
\(126\) 0 0
\(127\) −1549.50 −1.08265 −0.541323 0.840815i \(-0.682076\pi\)
−0.541323 + 0.840815i \(0.682076\pi\)
\(128\) 0 0
\(129\) −2828.22 −1.93032
\(130\) 0 0
\(131\) −224.401 −0.149664 −0.0748322 0.997196i \(-0.523842\pi\)
−0.0748322 + 0.997196i \(0.523842\pi\)
\(132\) 0 0
\(133\) −2934.06 −1.91290
\(134\) 0 0
\(135\) 757.530 0.482947
\(136\) 0 0
\(137\) −2089.00 −1.30274 −0.651368 0.758762i \(-0.725805\pi\)
−0.651368 + 0.758762i \(0.725805\pi\)
\(138\) 0 0
\(139\) −1678.27 −1.02409 −0.512047 0.858957i \(-0.671113\pi\)
−0.512047 + 0.858957i \(0.671113\pi\)
\(140\) 0 0
\(141\) 1901.32 1.13560
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −767.774 −0.439725
\(146\) 0 0
\(147\) −1937.46 −1.08707
\(148\) 0 0
\(149\) −1169.25 −0.642877 −0.321438 0.946930i \(-0.604166\pi\)
−0.321438 + 0.946930i \(0.604166\pi\)
\(150\) 0 0
\(151\) 1902.22 1.02517 0.512586 0.858636i \(-0.328688\pi\)
0.512586 + 0.858636i \(0.328688\pi\)
\(152\) 0 0
\(153\) 485.511 0.256544
\(154\) 0 0
\(155\) −1754.33 −0.909105
\(156\) 0 0
\(157\) −3434.75 −1.74601 −0.873004 0.487714i \(-0.837831\pi\)
−0.873004 + 0.487714i \(0.837831\pi\)
\(158\) 0 0
\(159\) −1642.32 −0.819148
\(160\) 0 0
\(161\) 1031.53 0.504943
\(162\) 0 0
\(163\) −3142.98 −1.51029 −0.755145 0.655558i \(-0.772433\pi\)
−0.755145 + 0.655558i \(0.772433\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3440.92 1.59441 0.797205 0.603709i \(-0.206311\pi\)
0.797205 + 0.603709i \(0.206311\pi\)
\(168\) 0 0
\(169\) −771.674 −0.351240
\(170\) 0 0
\(171\) −1370.22 −0.612766
\(172\) 0 0
\(173\) 3999.60 1.75771 0.878855 0.477089i \(-0.158308\pi\)
0.878855 + 0.477089i \(0.158308\pi\)
\(174\) 0 0
\(175\) −1534.74 −0.662944
\(176\) 0 0
\(177\) 165.503 0.0702823
\(178\) 0 0
\(179\) −2223.96 −0.928639 −0.464320 0.885668i \(-0.653701\pi\)
−0.464320 + 0.885668i \(0.653701\pi\)
\(180\) 0 0
\(181\) 903.760 0.371138 0.185569 0.982631i \(-0.440587\pi\)
0.185569 + 0.982631i \(0.440587\pi\)
\(182\) 0 0
\(183\) 1639.68 0.662341
\(184\) 0 0
\(185\) 2047.22 0.813591
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 2402.61 0.924679
\(190\) 0 0
\(191\) −2787.58 −1.05603 −0.528017 0.849234i \(-0.677064\pi\)
−0.528017 + 0.849234i \(0.677064\pi\)
\(192\) 0 0
\(193\) −994.846 −0.371039 −0.185520 0.982641i \(-0.559397\pi\)
−0.185520 + 0.982641i \(0.559397\pi\)
\(194\) 0 0
\(195\) 1898.80 0.697313
\(196\) 0 0
\(197\) 2774.75 1.00352 0.501758 0.865008i \(-0.332687\pi\)
0.501758 + 0.865008i \(0.332687\pi\)
\(198\) 0 0
\(199\) 2875.77 1.02441 0.512206 0.858863i \(-0.328828\pi\)
0.512206 + 0.858863i \(0.328828\pi\)
\(200\) 0 0
\(201\) −5966.93 −2.09391
\(202\) 0 0
\(203\) −2435.10 −0.841925
\(204\) 0 0
\(205\) −2987.11 −1.01770
\(206\) 0 0
\(207\) 481.727 0.161750
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −1808.81 −0.590159 −0.295079 0.955473i \(-0.595346\pi\)
−0.295079 + 0.955473i \(0.595346\pi\)
\(212\) 0 0
\(213\) 2530.79 0.814117
\(214\) 0 0
\(215\) 3653.09 1.15878
\(216\) 0 0
\(217\) −5564.11 −1.74063
\(218\) 0 0
\(219\) 3480.91 1.07406
\(220\) 0 0
\(221\) −1535.39 −0.467336
\(222\) 0 0
\(223\) 2272.93 0.682542 0.341271 0.939965i \(-0.389143\pi\)
0.341271 + 0.939965i \(0.389143\pi\)
\(224\) 0 0
\(225\) −716.727 −0.212364
\(226\) 0 0
\(227\) −3706.17 −1.08364 −0.541822 0.840493i \(-0.682265\pi\)
−0.541822 + 0.840493i \(0.682265\pi\)
\(228\) 0 0
\(229\) −2962.16 −0.854781 −0.427391 0.904067i \(-0.640567\pi\)
−0.427391 + 0.904067i \(0.640567\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3585.02 1.00799 0.503997 0.863706i \(-0.331862\pi\)
0.503997 + 0.863706i \(0.331862\pi\)
\(234\) 0 0
\(235\) −2455.85 −0.681712
\(236\) 0 0
\(237\) −5791.49 −1.58733
\(238\) 0 0
\(239\) −1727.50 −0.467544 −0.233772 0.972291i \(-0.575107\pi\)
−0.233772 + 0.972291i \(0.575107\pi\)
\(240\) 0 0
\(241\) −1906.29 −0.509524 −0.254762 0.967004i \(-0.581997\pi\)
−0.254762 + 0.967004i \(0.581997\pi\)
\(242\) 0 0
\(243\) 3133.39 0.827189
\(244\) 0 0
\(245\) 2502.53 0.652575
\(246\) 0 0
\(247\) 4333.19 1.11625
\(248\) 0 0
\(249\) −2324.13 −0.591510
\(250\) 0 0
\(251\) −1235.30 −0.310643 −0.155322 0.987864i \(-0.549641\pi\)
−0.155322 + 0.987864i \(0.549641\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −2045.42 −0.502311
\(256\) 0 0
\(257\) 4370.16 1.06071 0.530356 0.847775i \(-0.322058\pi\)
0.530356 + 0.847775i \(0.322058\pi\)
\(258\) 0 0
\(259\) 6493.04 1.55775
\(260\) 0 0
\(261\) −1137.20 −0.269697
\(262\) 0 0
\(263\) −2475.73 −0.580455 −0.290228 0.956958i \(-0.593731\pi\)
−0.290228 + 0.956958i \(0.593731\pi\)
\(264\) 0 0
\(265\) 2121.31 0.491741
\(266\) 0 0
\(267\) 8627.71 1.97756
\(268\) 0 0
\(269\) 6972.45 1.58036 0.790182 0.612873i \(-0.209986\pi\)
0.790182 + 0.612873i \(0.209986\pi\)
\(270\) 0 0
\(271\) −1050.79 −0.235538 −0.117769 0.993041i \(-0.537574\pi\)
−0.117769 + 0.993041i \(0.537574\pi\)
\(272\) 0 0
\(273\) 6022.32 1.33512
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 1601.70 0.347425 0.173712 0.984796i \(-0.444424\pi\)
0.173712 + 0.984796i \(0.444424\pi\)
\(278\) 0 0
\(279\) −2598.46 −0.557582
\(280\) 0 0
\(281\) −777.009 −0.164955 −0.0824777 0.996593i \(-0.526283\pi\)
−0.0824777 + 0.996593i \(0.526283\pi\)
\(282\) 0 0
\(283\) 49.8474 0.0104704 0.00523520 0.999986i \(-0.498334\pi\)
0.00523520 + 0.999986i \(0.498334\pi\)
\(284\) 0 0
\(285\) 5772.62 1.19979
\(286\) 0 0
\(287\) −9474.05 −1.94856
\(288\) 0 0
\(289\) −3259.05 −0.663353
\(290\) 0 0
\(291\) 6112.90 1.23142
\(292\) 0 0
\(293\) 6372.06 1.27051 0.635256 0.772302i \(-0.280895\pi\)
0.635256 + 0.772302i \(0.280895\pi\)
\(294\) 0 0
\(295\) −213.773 −0.0421910
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1523.42 −0.294654
\(300\) 0 0
\(301\) 11586.3 2.21868
\(302\) 0 0
\(303\) 11495.2 2.17947
\(304\) 0 0
\(305\) −2117.90 −0.397608
\(306\) 0 0
\(307\) −7352.11 −1.36680 −0.683399 0.730045i \(-0.739499\pi\)
−0.683399 + 0.730045i \(0.739499\pi\)
\(308\) 0 0
\(309\) 6376.90 1.17401
\(310\) 0 0
\(311\) −693.573 −0.126459 −0.0632297 0.997999i \(-0.520140\pi\)
−0.0632297 + 0.997999i \(0.520140\pi\)
\(312\) 0 0
\(313\) −2660.10 −0.480375 −0.240188 0.970726i \(-0.577209\pi\)
−0.240188 + 0.970726i \(0.577209\pi\)
\(314\) 0 0
\(315\) 2459.76 0.439973
\(316\) 0 0
\(317\) −6696.52 −1.18648 −0.593240 0.805026i \(-0.702151\pi\)
−0.593240 + 0.805026i \(0.702151\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −8120.43 −1.41196
\(322\) 0 0
\(323\) −4667.79 −0.804095
\(324\) 0 0
\(325\) 2266.59 0.386854
\(326\) 0 0
\(327\) −3303.62 −0.558687
\(328\) 0 0
\(329\) −7789.09 −1.30525
\(330\) 0 0
\(331\) 9026.82 1.49897 0.749485 0.662021i \(-0.230301\pi\)
0.749485 + 0.662021i \(0.230301\pi\)
\(332\) 0 0
\(333\) 3032.27 0.499001
\(334\) 0 0
\(335\) 7707.22 1.25699
\(336\) 0 0
\(337\) −5808.67 −0.938926 −0.469463 0.882952i \(-0.655553\pi\)
−0.469463 + 0.882952i \(0.655553\pi\)
\(338\) 0 0
\(339\) 4762.80 0.763068
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −831.120 −0.130835
\(344\) 0 0
\(345\) −2029.48 −0.316706
\(346\) 0 0
\(347\) −5901.32 −0.912967 −0.456483 0.889732i \(-0.650891\pi\)
−0.456483 + 0.889732i \(0.650891\pi\)
\(348\) 0 0
\(349\) −1212.13 −0.185913 −0.0929566 0.995670i \(-0.529632\pi\)
−0.0929566 + 0.995670i \(0.529632\pi\)
\(350\) 0 0
\(351\) −3548.32 −0.539587
\(352\) 0 0
\(353\) 5188.71 0.782344 0.391172 0.920318i \(-0.372070\pi\)
0.391172 + 0.920318i \(0.372070\pi\)
\(354\) 0 0
\(355\) −3268.91 −0.488721
\(356\) 0 0
\(357\) −6487.35 −0.961756
\(358\) 0 0
\(359\) 5171.56 0.760291 0.380146 0.924927i \(-0.375874\pi\)
0.380146 + 0.924927i \(0.375874\pi\)
\(360\) 0 0
\(361\) 6314.49 0.920614
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −4496.14 −0.644763
\(366\) 0 0
\(367\) 3672.62 0.522368 0.261184 0.965289i \(-0.415887\pi\)
0.261184 + 0.965289i \(0.415887\pi\)
\(368\) 0 0
\(369\) −4424.41 −0.624189
\(370\) 0 0
\(371\) 6728.05 0.941517
\(372\) 0 0
\(373\) 3048.06 0.423116 0.211558 0.977365i \(-0.432146\pi\)
0.211558 + 0.977365i \(0.432146\pi\)
\(374\) 0 0
\(375\) 9306.36 1.28154
\(376\) 0 0
\(377\) 3596.30 0.491297
\(378\) 0 0
\(379\) −10964.0 −1.48596 −0.742982 0.669311i \(-0.766589\pi\)
−0.742982 + 0.669311i \(0.766589\pi\)
\(380\) 0 0
\(381\) 9668.96 1.30015
\(382\) 0 0
\(383\) −8661.05 −1.15551 −0.577753 0.816212i \(-0.696070\pi\)
−0.577753 + 0.816212i \(0.696070\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 5410.83 0.710718
\(388\) 0 0
\(389\) 12109.2 1.57830 0.789152 0.614197i \(-0.210520\pi\)
0.789152 + 0.614197i \(0.210520\pi\)
\(390\) 0 0
\(391\) 1641.05 0.212255
\(392\) 0 0
\(393\) 1400.28 0.179732
\(394\) 0 0
\(395\) 7480.61 0.952887
\(396\) 0 0
\(397\) −9791.79 −1.23787 −0.618937 0.785441i \(-0.712436\pi\)
−0.618937 + 0.785441i \(0.712436\pi\)
\(398\) 0 0
\(399\) 18308.7 2.29719
\(400\) 0 0
\(401\) −12954.3 −1.61323 −0.806615 0.591077i \(-0.798703\pi\)
−0.806615 + 0.591077i \(0.798703\pi\)
\(402\) 0 0
\(403\) 8217.39 1.01573
\(404\) 0 0
\(405\) −7325.01 −0.898723
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −1686.53 −0.203896 −0.101948 0.994790i \(-0.532508\pi\)
−0.101948 + 0.994790i \(0.532508\pi\)
\(410\) 0 0
\(411\) 13035.4 1.56445
\(412\) 0 0
\(413\) −678.011 −0.0807815
\(414\) 0 0
\(415\) 3001.98 0.355088
\(416\) 0 0
\(417\) 10472.5 1.22983
\(418\) 0 0
\(419\) −491.088 −0.0572583 −0.0286291 0.999590i \(-0.509114\pi\)
−0.0286291 + 0.999590i \(0.509114\pi\)
\(420\) 0 0
\(421\) −8078.56 −0.935213 −0.467607 0.883937i \(-0.654884\pi\)
−0.467607 + 0.883937i \(0.654884\pi\)
\(422\) 0 0
\(423\) −3637.53 −0.418115
\(424\) 0 0
\(425\) −2441.61 −0.278671
\(426\) 0 0
\(427\) −6717.22 −0.761285
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −6233.33 −0.696633 −0.348317 0.937377i \(-0.613247\pi\)
−0.348317 + 0.937377i \(0.613247\pi\)
\(432\) 0 0
\(433\) −10196.2 −1.13164 −0.565820 0.824529i \(-0.691440\pi\)
−0.565820 + 0.824529i \(0.691440\pi\)
\(434\) 0 0
\(435\) 4790.95 0.528065
\(436\) 0 0
\(437\) −4631.40 −0.506980
\(438\) 0 0
\(439\) −1418.48 −0.154215 −0.0771073 0.997023i \(-0.524568\pi\)
−0.0771073 + 0.997023i \(0.524568\pi\)
\(440\) 0 0
\(441\) 3706.66 0.400244
\(442\) 0 0
\(443\) 9724.44 1.04294 0.521469 0.853270i \(-0.325384\pi\)
0.521469 + 0.853270i \(0.325384\pi\)
\(444\) 0 0
\(445\) −11144.0 −1.18714
\(446\) 0 0
\(447\) 7296.17 0.772029
\(448\) 0 0
\(449\) 1030.78 0.108342 0.0541711 0.998532i \(-0.482748\pi\)
0.0541711 + 0.998532i \(0.482748\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −11870.0 −1.23113
\(454\) 0 0
\(455\) −7778.76 −0.801482
\(456\) 0 0
\(457\) 6659.16 0.681624 0.340812 0.940131i \(-0.389298\pi\)
0.340812 + 0.940131i \(0.389298\pi\)
\(458\) 0 0
\(459\) 3822.31 0.388693
\(460\) 0 0
\(461\) −6709.39 −0.677847 −0.338924 0.940814i \(-0.610063\pi\)
−0.338924 + 0.940814i \(0.610063\pi\)
\(462\) 0 0
\(463\) −10505.3 −1.05448 −0.527240 0.849716i \(-0.676773\pi\)
−0.527240 + 0.849716i \(0.676773\pi\)
\(464\) 0 0
\(465\) 10947.1 1.09174
\(466\) 0 0
\(467\) −2012.33 −0.199400 −0.0996999 0.995018i \(-0.531788\pi\)
−0.0996999 + 0.995018i \(0.531788\pi\)
\(468\) 0 0
\(469\) 24444.5 2.40670
\(470\) 0 0
\(471\) 21433.0 2.09678
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 6890.74 0.665619
\(476\) 0 0
\(477\) 3142.02 0.301600
\(478\) 0 0
\(479\) 749.816 0.0715239 0.0357620 0.999360i \(-0.488614\pi\)
0.0357620 + 0.999360i \(0.488614\pi\)
\(480\) 0 0
\(481\) −9589.28 −0.909010
\(482\) 0 0
\(483\) −6436.78 −0.606385
\(484\) 0 0
\(485\) −7895.76 −0.739233
\(486\) 0 0
\(487\) −4533.33 −0.421817 −0.210908 0.977506i \(-0.567642\pi\)
−0.210908 + 0.977506i \(0.567642\pi\)
\(488\) 0 0
\(489\) 19612.3 1.81370
\(490\) 0 0
\(491\) −10436.7 −0.959266 −0.479633 0.877469i \(-0.659230\pi\)
−0.479633 + 0.877469i \(0.659230\pi\)
\(492\) 0 0
\(493\) −3874.00 −0.353907
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −10367.8 −0.935735
\(498\) 0 0
\(499\) 13272.7 1.19071 0.595357 0.803461i \(-0.297011\pi\)
0.595357 + 0.803461i \(0.297011\pi\)
\(500\) 0 0
\(501\) −21471.5 −1.91472
\(502\) 0 0
\(503\) 13051.8 1.15696 0.578481 0.815696i \(-0.303646\pi\)
0.578481 + 0.815696i \(0.303646\pi\)
\(504\) 0 0
\(505\) −14847.8 −1.30835
\(506\) 0 0
\(507\) 4815.28 0.421803
\(508\) 0 0
\(509\) 5872.85 0.511414 0.255707 0.966754i \(-0.417692\pi\)
0.255707 + 0.966754i \(0.417692\pi\)
\(510\) 0 0
\(511\) −14260.1 −1.23450
\(512\) 0 0
\(513\) −10787.4 −0.928409
\(514\) 0 0
\(515\) −8236.77 −0.704768
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −24957.7 −2.11083
\(520\) 0 0
\(521\) 395.918 0.0332926 0.0166463 0.999861i \(-0.494701\pi\)
0.0166463 + 0.999861i \(0.494701\pi\)
\(522\) 0 0
\(523\) 6835.89 0.571535 0.285767 0.958299i \(-0.407752\pi\)
0.285767 + 0.958299i \(0.407752\pi\)
\(524\) 0 0
\(525\) 9576.83 0.796128
\(526\) 0 0
\(527\) −8851.92 −0.731681
\(528\) 0 0
\(529\) −10538.7 −0.866174
\(530\) 0 0
\(531\) −316.633 −0.0258771
\(532\) 0 0
\(533\) 13991.8 1.13706
\(534\) 0 0
\(535\) 10488.8 0.847609
\(536\) 0 0
\(537\) 13877.6 1.11520
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −7770.06 −0.617488 −0.308744 0.951145i \(-0.599909\pi\)
−0.308744 + 0.951145i \(0.599909\pi\)
\(542\) 0 0
\(543\) −5639.50 −0.445698
\(544\) 0 0
\(545\) 4267.14 0.335384
\(546\) 0 0
\(547\) 7412.71 0.579423 0.289712 0.957114i \(-0.406441\pi\)
0.289712 + 0.957114i \(0.406441\pi\)
\(548\) 0 0
\(549\) −3136.96 −0.243866
\(550\) 0 0
\(551\) 10933.2 0.845321
\(552\) 0 0
\(553\) 23725.8 1.82446
\(554\) 0 0
\(555\) −12774.7 −0.977040
\(556\) 0 0
\(557\) −59.2615 −0.00450806 −0.00225403 0.999997i \(-0.500717\pi\)
−0.00225403 + 0.999997i \(0.500717\pi\)
\(558\) 0 0
\(559\) −17111.3 −1.29469
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −437.322 −0.0327370 −0.0163685 0.999866i \(-0.505210\pi\)
−0.0163685 + 0.999866i \(0.505210\pi\)
\(564\) 0 0
\(565\) −6151.90 −0.458075
\(566\) 0 0
\(567\) −23232.3 −1.72075
\(568\) 0 0
\(569\) 2070.16 0.152523 0.0762616 0.997088i \(-0.475702\pi\)
0.0762616 + 0.997088i \(0.475702\pi\)
\(570\) 0 0
\(571\) 14131.1 1.03567 0.517837 0.855479i \(-0.326737\pi\)
0.517837 + 0.855479i \(0.326737\pi\)
\(572\) 0 0
\(573\) 17394.6 1.26819
\(574\) 0 0
\(575\) −2422.58 −0.175702
\(576\) 0 0
\(577\) 25774.2 1.85961 0.929803 0.368057i \(-0.119977\pi\)
0.929803 + 0.368057i \(0.119977\pi\)
\(578\) 0 0
\(579\) 6207.89 0.445580
\(580\) 0 0
\(581\) 9521.20 0.679873
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −3632.71 −0.256742
\(586\) 0 0
\(587\) −4769.69 −0.335377 −0.167689 0.985840i \(-0.553630\pi\)
−0.167689 + 0.985840i \(0.553630\pi\)
\(588\) 0 0
\(589\) 24982.0 1.74765
\(590\) 0 0
\(591\) −17314.6 −1.20512
\(592\) 0 0
\(593\) −3093.70 −0.214238 −0.107119 0.994246i \(-0.534163\pi\)
−0.107119 + 0.994246i \(0.534163\pi\)
\(594\) 0 0
\(595\) 8379.42 0.577349
\(596\) 0 0
\(597\) −17944.9 −1.23021
\(598\) 0 0
\(599\) 17833.1 1.21643 0.608215 0.793772i \(-0.291886\pi\)
0.608215 + 0.793772i \(0.291886\pi\)
\(600\) 0 0
\(601\) 17607.4 1.19504 0.597520 0.801854i \(-0.296153\pi\)
0.597520 + 0.801854i \(0.296153\pi\)
\(602\) 0 0
\(603\) 11415.7 0.770949
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 11243.6 0.751831 0.375916 0.926654i \(-0.377328\pi\)
0.375916 + 0.926654i \(0.377328\pi\)
\(608\) 0 0
\(609\) 15195.2 1.01107
\(610\) 0 0
\(611\) 11503.4 0.761664
\(612\) 0 0
\(613\) −1363.56 −0.0898431 −0.0449216 0.998991i \(-0.514304\pi\)
−0.0449216 + 0.998991i \(0.514304\pi\)
\(614\) 0 0
\(615\) 18639.7 1.22216
\(616\) 0 0
\(617\) −9137.98 −0.596242 −0.298121 0.954528i \(-0.596360\pi\)
−0.298121 + 0.954528i \(0.596360\pi\)
\(618\) 0 0
\(619\) 6755.03 0.438623 0.219312 0.975655i \(-0.429619\pi\)
0.219312 + 0.975655i \(0.429619\pi\)
\(620\) 0 0
\(621\) 3792.52 0.245070
\(622\) 0 0
\(623\) −35344.9 −2.27297
\(624\) 0 0
\(625\) −4516.06 −0.289028
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 10329.7 0.654808
\(630\) 0 0
\(631\) 8959.94 0.565276 0.282638 0.959227i \(-0.408790\pi\)
0.282638 + 0.959227i \(0.408790\pi\)
\(632\) 0 0
\(633\) 11287.0 0.708720
\(634\) 0 0
\(635\) −12489.0 −0.780488
\(636\) 0 0
\(637\) −11722.0 −0.729109
\(638\) 0 0
\(639\) −4841.80 −0.299748
\(640\) 0 0
\(641\) 1855.75 0.114349 0.0571746 0.998364i \(-0.481791\pi\)
0.0571746 + 0.998364i \(0.481791\pi\)
\(642\) 0 0
\(643\) −18963.6 −1.16306 −0.581532 0.813524i \(-0.697546\pi\)
−0.581532 + 0.813524i \(0.697546\pi\)
\(644\) 0 0
\(645\) −22795.4 −1.39158
\(646\) 0 0
\(647\) −494.010 −0.0300178 −0.0150089 0.999887i \(-0.504778\pi\)
−0.0150089 + 0.999887i \(0.504778\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 34720.3 2.09032
\(652\) 0 0
\(653\) 6060.45 0.363191 0.181595 0.983373i \(-0.441874\pi\)
0.181595 + 0.983373i \(0.441874\pi\)
\(654\) 0 0
\(655\) −1808.67 −0.107894
\(656\) 0 0
\(657\) −6659.52 −0.395453
\(658\) 0 0
\(659\) 22461.7 1.32774 0.663872 0.747846i \(-0.268912\pi\)
0.663872 + 0.747846i \(0.268912\pi\)
\(660\) 0 0
\(661\) −10681.4 −0.628531 −0.314265 0.949335i \(-0.601758\pi\)
−0.314265 + 0.949335i \(0.601758\pi\)
\(662\) 0 0
\(663\) 9580.88 0.561223
\(664\) 0 0
\(665\) −23648.5 −1.37902
\(666\) 0 0
\(667\) −3843.80 −0.223137
\(668\) 0 0
\(669\) −14183.2 −0.819663
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 24976.8 1.43059 0.715293 0.698825i \(-0.246293\pi\)
0.715293 + 0.698825i \(0.246293\pi\)
\(674\) 0 0
\(675\) −5642.62 −0.321755
\(676\) 0 0
\(677\) 25089.8 1.42434 0.712171 0.702006i \(-0.247712\pi\)
0.712171 + 0.702006i \(0.247712\pi\)
\(678\) 0 0
\(679\) −25042.5 −1.41538
\(680\) 0 0
\(681\) 23126.7 1.30135
\(682\) 0 0
\(683\) 28044.5 1.57114 0.785572 0.618770i \(-0.212369\pi\)
0.785572 + 0.618770i \(0.212369\pi\)
\(684\) 0 0
\(685\) −16837.3 −0.939153
\(686\) 0 0
\(687\) 18484.0 1.02650
\(688\) 0 0
\(689\) −9936.36 −0.549412
\(690\) 0 0
\(691\) −10272.3 −0.565523 −0.282762 0.959190i \(-0.591251\pi\)
−0.282762 + 0.959190i \(0.591251\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −13526.9 −0.738277
\(696\) 0 0
\(697\) −15072.2 −0.819084
\(698\) 0 0
\(699\) −22370.7 −1.21050
\(700\) 0 0
\(701\) 13891.9 0.748486 0.374243 0.927331i \(-0.377903\pi\)
0.374243 + 0.927331i \(0.377903\pi\)
\(702\) 0 0
\(703\) −29152.8 −1.56404
\(704\) 0 0
\(705\) 15324.6 0.818666
\(706\) 0 0
\(707\) −47091.9 −2.50505
\(708\) 0 0
\(709\) −17336.9 −0.918339 −0.459169 0.888349i \(-0.651853\pi\)
−0.459169 + 0.888349i \(0.651853\pi\)
\(710\) 0 0
\(711\) 11080.0 0.584435
\(712\) 0 0
\(713\) −8782.93 −0.461323
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 10779.7 0.561472
\(718\) 0 0
\(719\) 34184.3 1.77310 0.886550 0.462632i \(-0.153095\pi\)
0.886550 + 0.462632i \(0.153095\pi\)
\(720\) 0 0
\(721\) −26124.1 −1.34939
\(722\) 0 0
\(723\) 11895.4 0.611886
\(724\) 0 0
\(725\) 5718.92 0.292959
\(726\) 0 0
\(727\) −12623.5 −0.643987 −0.321994 0.946742i \(-0.604353\pi\)
−0.321994 + 0.946742i \(0.604353\pi\)
\(728\) 0 0
\(729\) 4985.40 0.253285
\(730\) 0 0
\(731\) 18432.6 0.932631
\(732\) 0 0
\(733\) 16017.6 0.807127 0.403563 0.914952i \(-0.367771\pi\)
0.403563 + 0.914952i \(0.367771\pi\)
\(734\) 0 0
\(735\) −15615.9 −0.783675
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 13769.3 0.685404 0.342702 0.939444i \(-0.388658\pi\)
0.342702 + 0.939444i \(0.388658\pi\)
\(740\) 0 0
\(741\) −27039.3 −1.34050
\(742\) 0 0
\(743\) 12391.0 0.611820 0.305910 0.952060i \(-0.401039\pi\)
0.305910 + 0.952060i \(0.401039\pi\)
\(744\) 0 0
\(745\) −9424.14 −0.463455
\(746\) 0 0
\(747\) 4446.43 0.217786
\(748\) 0 0
\(749\) 33266.7 1.62288
\(750\) 0 0
\(751\) −29830.3 −1.44943 −0.724715 0.689048i \(-0.758029\pi\)
−0.724715 + 0.689048i \(0.758029\pi\)
\(752\) 0 0
\(753\) 7708.33 0.373051
\(754\) 0 0
\(755\) 15331.9 0.739054
\(756\) 0 0
\(757\) 15347.1 0.736856 0.368428 0.929656i \(-0.379896\pi\)
0.368428 + 0.929656i \(0.379896\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 8363.37 0.398386 0.199193 0.979960i \(-0.436168\pi\)
0.199193 + 0.979960i \(0.436168\pi\)
\(762\) 0 0
\(763\) 13533.8 0.642147
\(764\) 0 0
\(765\) 3913.21 0.184945
\(766\) 0 0
\(767\) 1001.33 0.0471392
\(768\) 0 0
\(769\) −20316.4 −0.952704 −0.476352 0.879255i \(-0.658041\pi\)
−0.476352 + 0.879255i \(0.658041\pi\)
\(770\) 0 0
\(771\) −27270.0 −1.27381
\(772\) 0 0
\(773\) 14594.1 0.679059 0.339529 0.940595i \(-0.389732\pi\)
0.339529 + 0.940595i \(0.389732\pi\)
\(774\) 0 0
\(775\) 13067.5 0.605675
\(776\) 0 0
\(777\) −40516.9 −1.87070
\(778\) 0 0
\(779\) 42537.1 1.95642
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −8952.90 −0.408621
\(784\) 0 0
\(785\) −27684.1 −1.25871
\(786\) 0 0
\(787\) −11618.9 −0.526263 −0.263132 0.964760i \(-0.584755\pi\)
−0.263132 + 0.964760i \(0.584755\pi\)
\(788\) 0 0
\(789\) 15448.6 0.697067
\(790\) 0 0
\(791\) −19511.6 −0.877059
\(792\) 0 0
\(793\) 9920.37 0.444240
\(794\) 0 0
\(795\) −13237.1 −0.590530
\(796\) 0 0
\(797\) 13405.1 0.595774 0.297887 0.954601i \(-0.403718\pi\)
0.297887 + 0.954601i \(0.403718\pi\)
\(798\) 0 0
\(799\) −12391.6 −0.548666
\(800\) 0 0
\(801\) −16506.2 −0.728111
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 8314.11 0.364017
\(806\) 0 0
\(807\) −43508.4 −1.89785
\(808\) 0 0
\(809\) 10020.5 0.435478 0.217739 0.976007i \(-0.430132\pi\)
0.217739 + 0.976007i \(0.430132\pi\)
\(810\) 0 0
\(811\) −25543.6 −1.10599 −0.552995 0.833185i \(-0.686515\pi\)
−0.552995 + 0.833185i \(0.686515\pi\)
\(812\) 0 0
\(813\) 6556.98 0.282858
\(814\) 0 0
\(815\) −25332.4 −1.08878
\(816\) 0 0
\(817\) −52020.7 −2.22763
\(818\) 0 0
\(819\) −11521.6 −0.491573
\(820\) 0 0
\(821\) −29823.7 −1.26779 −0.633895 0.773419i \(-0.718545\pi\)
−0.633895 + 0.773419i \(0.718545\pi\)
\(822\) 0 0
\(823\) 17422.4 0.737919 0.368959 0.929446i \(-0.379714\pi\)
0.368959 + 0.929446i \(0.379714\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1102.45 0.0463554 0.0231777 0.999731i \(-0.492622\pi\)
0.0231777 + 0.999731i \(0.492622\pi\)
\(828\) 0 0
\(829\) −32806.0 −1.37443 −0.687213 0.726456i \(-0.741166\pi\)
−0.687213 + 0.726456i \(0.741166\pi\)
\(830\) 0 0
\(831\) −9994.66 −0.417221
\(832\) 0 0
\(833\) 12627.1 0.525216
\(834\) 0 0
\(835\) 27733.8 1.14942
\(836\) 0 0
\(837\) −20457.0 −0.844800
\(838\) 0 0
\(839\) −15448.5 −0.635689 −0.317844 0.948143i \(-0.602959\pi\)
−0.317844 + 0.948143i \(0.602959\pi\)
\(840\) 0 0
\(841\) −15315.0 −0.627948
\(842\) 0 0
\(843\) 4848.57 0.198094
\(844\) 0 0
\(845\) −6219.69 −0.253211
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −311.050 −0.0125739
\(850\) 0 0
\(851\) 10249.2 0.412854
\(852\) 0 0
\(853\) −11178.9 −0.448720 −0.224360 0.974506i \(-0.572029\pi\)
−0.224360 + 0.974506i \(0.572029\pi\)
\(854\) 0 0
\(855\) −11043.9 −0.441748
\(856\) 0 0
\(857\) 10846.6 0.432338 0.216169 0.976356i \(-0.430644\pi\)
0.216169 + 0.976356i \(0.430644\pi\)
\(858\) 0 0
\(859\) −18632.5 −0.740086 −0.370043 0.929015i \(-0.620657\pi\)
−0.370043 + 0.929015i \(0.620657\pi\)
\(860\) 0 0
\(861\) 59118.5 2.34002
\(862\) 0 0
\(863\) 36583.7 1.44302 0.721508 0.692407i \(-0.243450\pi\)
0.721508 + 0.692407i \(0.243450\pi\)
\(864\) 0 0
\(865\) 32236.7 1.26715
\(866\) 0 0
\(867\) 20336.7 0.796619
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −36101.1 −1.40441
\(872\) 0 0
\(873\) −11694.9 −0.453394
\(874\) 0 0
\(875\) −38125.1 −1.47299
\(876\) 0 0
\(877\) 2744.17 0.105660 0.0528301 0.998604i \(-0.483176\pi\)
0.0528301 + 0.998604i \(0.483176\pi\)
\(878\) 0 0
\(879\) −39762.0 −1.52575
\(880\) 0 0
\(881\) −43965.1 −1.68130 −0.840649 0.541581i \(-0.817826\pi\)
−0.840649 + 0.541581i \(0.817826\pi\)
\(882\) 0 0
\(883\) −25936.5 −0.988485 −0.494242 0.869324i \(-0.664554\pi\)
−0.494242 + 0.869324i \(0.664554\pi\)
\(884\) 0 0
\(885\) 1333.95 0.0506671
\(886\) 0 0
\(887\) −12631.1 −0.478140 −0.239070 0.971002i \(-0.576843\pi\)
−0.239070 + 0.971002i \(0.576843\pi\)
\(888\) 0 0
\(889\) −39610.5 −1.49437
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 34971.8 1.31051
\(894\) 0 0
\(895\) −17925.1 −0.669463
\(896\) 0 0
\(897\) 9506.21 0.353850
\(898\) 0 0
\(899\) 20733.6 0.769194
\(900\) 0 0
\(901\) 10703.6 0.395771
\(902\) 0 0
\(903\) −72299.0 −2.66441
\(904\) 0 0
\(905\) 7284.30 0.267556
\(906\) 0 0
\(907\) −38597.3 −1.41301 −0.706506 0.707708i \(-0.749729\pi\)
−0.706506 + 0.707708i \(0.749729\pi\)
\(908\) 0 0
\(909\) −21992.0 −0.802453
\(910\) 0 0
\(911\) 8432.65 0.306681 0.153340 0.988173i \(-0.450997\pi\)
0.153340 + 0.988173i \(0.450997\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 13215.8 0.477487
\(916\) 0 0
\(917\) −5736.47 −0.206581
\(918\) 0 0
\(919\) −32004.2 −1.14877 −0.574385 0.818585i \(-0.694759\pi\)
−0.574385 + 0.818585i \(0.694759\pi\)
\(920\) 0 0
\(921\) 45877.5 1.64138
\(922\) 0 0
\(923\) 15311.8 0.546038
\(924\) 0 0
\(925\) −15249.1 −0.542041
\(926\) 0 0
\(927\) −12200.0 −0.432256
\(928\) 0 0
\(929\) −30554.1 −1.07906 −0.539531 0.841966i \(-0.681398\pi\)
−0.539531 + 0.841966i \(0.681398\pi\)
\(930\) 0 0
\(931\) −35636.5 −1.25450
\(932\) 0 0
\(933\) 4327.93 0.151865
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 50336.2 1.75498 0.877488 0.479599i \(-0.159218\pi\)
0.877488 + 0.479599i \(0.159218\pi\)
\(938\) 0 0
\(939\) 16599.1 0.576882
\(940\) 0 0
\(941\) −25108.0 −0.869815 −0.434908 0.900475i \(-0.643219\pi\)
−0.434908 + 0.900475i \(0.643219\pi\)
\(942\) 0 0
\(943\) −14954.8 −0.516430
\(944\) 0 0
\(945\) 19365.0 0.666609
\(946\) 0 0
\(947\) −21894.4 −0.751292 −0.375646 0.926763i \(-0.622579\pi\)
−0.375646 + 0.926763i \(0.622579\pi\)
\(948\) 0 0
\(949\) 21060.2 0.720382
\(950\) 0 0
\(951\) 41786.6 1.42484
\(952\) 0 0
\(953\) 10886.3 0.370034 0.185017 0.982735i \(-0.440766\pi\)
0.185017 + 0.982735i \(0.440766\pi\)
\(954\) 0 0
\(955\) −22467.9 −0.761302
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −53401.8 −1.79816
\(960\) 0 0
\(961\) 17584.5 0.590262
\(962\) 0 0
\(963\) 15535.7 0.519865
\(964\) 0 0
\(965\) −8018.45 −0.267485
\(966\) 0 0
\(967\) 36363.5 1.20928 0.604639 0.796499i \(-0.293317\pi\)
0.604639 + 0.796499i \(0.293317\pi\)
\(968\) 0 0
\(969\) 29127.2 0.965635
\(970\) 0 0
\(971\) 32955.0 1.08916 0.544582 0.838708i \(-0.316688\pi\)
0.544582 + 0.838708i \(0.316688\pi\)
\(972\) 0 0
\(973\) −42902.3 −1.41355
\(974\) 0 0
\(975\) −14143.6 −0.464572
\(976\) 0 0
\(977\) 26129.3 0.855630 0.427815 0.903866i \(-0.359283\pi\)
0.427815 + 0.903866i \(0.359283\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 6320.34 0.205701
\(982\) 0 0
\(983\) −27810.2 −0.902347 −0.451174 0.892436i \(-0.648994\pi\)
−0.451174 + 0.892436i \(0.648994\pi\)
\(984\) 0 0
\(985\) 22364.5 0.723443
\(986\) 0 0
\(987\) 48604.3 1.56747
\(988\) 0 0
\(989\) 18288.9 0.588022
\(990\) 0 0
\(991\) 39402.4 1.26303 0.631513 0.775365i \(-0.282434\pi\)
0.631513 + 0.775365i \(0.282434\pi\)
\(992\) 0 0
\(993\) −56327.8 −1.80011
\(994\) 0 0
\(995\) 23178.7 0.738506
\(996\) 0 0
\(997\) −39087.9 −1.24165 −0.620826 0.783949i \(-0.713203\pi\)
−0.620826 + 0.783949i \(0.713203\pi\)
\(998\) 0 0
\(999\) 23872.3 0.756042
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 968.4.a.o.1.2 8
4.3 odd 2 1936.4.a.bv.1.7 8
11.7 odd 10 88.4.i.a.49.4 yes 16
11.8 odd 10 88.4.i.a.9.4 16
11.10 odd 2 968.4.a.n.1.2 8
44.7 even 10 176.4.m.e.49.1 16
44.19 even 10 176.4.m.e.97.1 16
44.43 even 2 1936.4.a.bw.1.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.4.i.a.9.4 16 11.8 odd 10
88.4.i.a.49.4 yes 16 11.7 odd 10
176.4.m.e.49.1 16 44.7 even 10
176.4.m.e.97.1 16 44.19 even 10
968.4.a.n.1.2 8 11.10 odd 2
968.4.a.o.1.2 8 1.1 even 1 trivial
1936.4.a.bv.1.7 8 4.3 odd 2
1936.4.a.bw.1.7 8 44.43 even 2