Properties

Label 968.6.a.p.1.16
Level $968$
Weight $6$
Character 968.1
Self dual yes
Analytic conductor $155.252$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [968,6,Mod(1,968)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(968, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("968.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 968 = 2^{3} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 968.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(155.251537579\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} - 2635 x^{14} + 10644 x^{13} + 2721739 x^{12} - 11107836 x^{11} + \cdots + 53\!\cdots\!20 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{26}\cdot 11^{8} \)
Twist minimal: no (minimal twist has level 88)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.16
Root \(26.9484\) of defining polynomial
Character \(\chi\) \(=\) 968.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+28.5665 q^{3} -7.81027 q^{5} -226.871 q^{7} +573.042 q^{9} +103.782 q^{13} -223.112 q^{15} -743.834 q^{17} -505.644 q^{19} -6480.91 q^{21} +198.898 q^{23} -3064.00 q^{25} +9428.13 q^{27} +6772.60 q^{29} +4660.09 q^{31} +1771.93 q^{35} +15273.7 q^{37} +2964.69 q^{39} +6410.43 q^{41} -17173.7 q^{43} -4475.61 q^{45} +11370.9 q^{47} +34663.6 q^{49} -21248.7 q^{51} +7986.68 q^{53} -14444.5 q^{57} -29343.7 q^{59} +39236.8 q^{61} -130007. q^{63} -810.568 q^{65} +50764.1 q^{67} +5681.82 q^{69} -49625.8 q^{71} -10301.7 q^{73} -87527.6 q^{75} +8842.71 q^{79} +130079. q^{81} +118939. q^{83} +5809.54 q^{85} +193469. q^{87} +113732. q^{89} -23545.3 q^{91} +133122. q^{93} +3949.22 q^{95} -98770.0 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 12 q^{3} + 81 q^{5} - 47 q^{7} + 1416 q^{9} + 859 q^{13} - 738 q^{15} + 1226 q^{17} + 616 q^{19} + 1141 q^{21} + 2258 q^{23} + 10307 q^{25} + 564 q^{27} + 1613 q^{29} + 18511 q^{31} - 23544 q^{35}+ \cdots + 171314 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 28.5665 1.83254 0.916269 0.400563i \(-0.131185\pi\)
0.916269 + 0.400563i \(0.131185\pi\)
\(4\) 0 0
\(5\) −7.81027 −0.139714 −0.0698572 0.997557i \(-0.522254\pi\)
−0.0698572 + 0.997557i \(0.522254\pi\)
\(6\) 0 0
\(7\) −226.871 −1.74999 −0.874993 0.484135i \(-0.839134\pi\)
−0.874993 + 0.484135i \(0.839134\pi\)
\(8\) 0 0
\(9\) 573.042 2.35820
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 103.782 0.170320 0.0851599 0.996367i \(-0.472860\pi\)
0.0851599 + 0.996367i \(0.472860\pi\)
\(14\) 0 0
\(15\) −223.112 −0.256032
\(16\) 0 0
\(17\) −743.834 −0.624243 −0.312122 0.950042i \(-0.601040\pi\)
−0.312122 + 0.950042i \(0.601040\pi\)
\(18\) 0 0
\(19\) −505.644 −0.321337 −0.160669 0.987008i \(-0.551365\pi\)
−0.160669 + 0.987008i \(0.551365\pi\)
\(20\) 0 0
\(21\) −6480.91 −3.20692
\(22\) 0 0
\(23\) 198.898 0.0783991 0.0391996 0.999231i \(-0.487519\pi\)
0.0391996 + 0.999231i \(0.487519\pi\)
\(24\) 0 0
\(25\) −3064.00 −0.980480
\(26\) 0 0
\(27\) 9428.13 2.48895
\(28\) 0 0
\(29\) 6772.60 1.49541 0.747705 0.664031i \(-0.231156\pi\)
0.747705 + 0.664031i \(0.231156\pi\)
\(30\) 0 0
\(31\) 4660.09 0.870944 0.435472 0.900202i \(-0.356581\pi\)
0.435472 + 0.900202i \(0.356581\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1771.93 0.244498
\(36\) 0 0
\(37\) 15273.7 1.83418 0.917089 0.398684i \(-0.130533\pi\)
0.917089 + 0.398684i \(0.130533\pi\)
\(38\) 0 0
\(39\) 2964.69 0.312118
\(40\) 0 0
\(41\) 6410.43 0.595563 0.297781 0.954634i \(-0.403753\pi\)
0.297781 + 0.954634i \(0.403753\pi\)
\(42\) 0 0
\(43\) −17173.7 −1.41642 −0.708209 0.706003i \(-0.750497\pi\)
−0.708209 + 0.706003i \(0.750497\pi\)
\(44\) 0 0
\(45\) −4475.61 −0.329474
\(46\) 0 0
\(47\) 11370.9 0.750844 0.375422 0.926854i \(-0.377498\pi\)
0.375422 + 0.926854i \(0.377498\pi\)
\(48\) 0 0
\(49\) 34663.6 2.06245
\(50\) 0 0
\(51\) −21248.7 −1.14395
\(52\) 0 0
\(53\) 7986.68 0.390550 0.195275 0.980749i \(-0.437440\pi\)
0.195275 + 0.980749i \(0.437440\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −14444.5 −0.588863
\(58\) 0 0
\(59\) −29343.7 −1.09745 −0.548724 0.836003i \(-0.684886\pi\)
−0.548724 + 0.836003i \(0.684886\pi\)
\(60\) 0 0
\(61\) 39236.8 1.35011 0.675055 0.737768i \(-0.264120\pi\)
0.675055 + 0.737768i \(0.264120\pi\)
\(62\) 0 0
\(63\) −130007. −4.12681
\(64\) 0 0
\(65\) −810.568 −0.0237961
\(66\) 0 0
\(67\) 50764.1 1.38156 0.690781 0.723065i \(-0.257267\pi\)
0.690781 + 0.723065i \(0.257267\pi\)
\(68\) 0 0
\(69\) 5681.82 0.143669
\(70\) 0 0
\(71\) −49625.8 −1.16832 −0.584159 0.811639i \(-0.698576\pi\)
−0.584159 + 0.811639i \(0.698576\pi\)
\(72\) 0 0
\(73\) −10301.7 −0.226257 −0.113129 0.993580i \(-0.536087\pi\)
−0.113129 + 0.993580i \(0.536087\pi\)
\(74\) 0 0
\(75\) −87527.6 −1.79677
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 8842.71 0.159411 0.0797054 0.996818i \(-0.474602\pi\)
0.0797054 + 0.996818i \(0.474602\pi\)
\(80\) 0 0
\(81\) 130079. 2.20290
\(82\) 0 0
\(83\) 118939. 1.89508 0.947540 0.319636i \(-0.103561\pi\)
0.947540 + 0.319636i \(0.103561\pi\)
\(84\) 0 0
\(85\) 5809.54 0.0872157
\(86\) 0 0
\(87\) 193469. 2.74040
\(88\) 0 0
\(89\) 113732. 1.52198 0.760988 0.648766i \(-0.224714\pi\)
0.760988 + 0.648766i \(0.224714\pi\)
\(90\) 0 0
\(91\) −23545.3 −0.298057
\(92\) 0 0
\(93\) 133122. 1.59604
\(94\) 0 0
\(95\) 3949.22 0.0448954
\(96\) 0 0
\(97\) −98770.0 −1.06585 −0.532924 0.846163i \(-0.678907\pi\)
−0.532924 + 0.846163i \(0.678907\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 110176. 1.07469 0.537346 0.843362i \(-0.319427\pi\)
0.537346 + 0.843362i \(0.319427\pi\)
\(102\) 0 0
\(103\) 1092.79 0.0101495 0.00507474 0.999987i \(-0.498385\pi\)
0.00507474 + 0.999987i \(0.498385\pi\)
\(104\) 0 0
\(105\) 50617.6 0.448052
\(106\) 0 0
\(107\) 102670. 0.866929 0.433465 0.901171i \(-0.357291\pi\)
0.433465 + 0.901171i \(0.357291\pi\)
\(108\) 0 0
\(109\) −165410. −1.33351 −0.666755 0.745277i \(-0.732317\pi\)
−0.666755 + 0.745277i \(0.732317\pi\)
\(110\) 0 0
\(111\) 436317. 3.36120
\(112\) 0 0
\(113\) 20724.5 0.152682 0.0763410 0.997082i \(-0.475676\pi\)
0.0763410 + 0.997082i \(0.475676\pi\)
\(114\) 0 0
\(115\) −1553.45 −0.0109535
\(116\) 0 0
\(117\) 59471.7 0.401648
\(118\) 0 0
\(119\) 168755. 1.09242
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 183123. 1.09139
\(124\) 0 0
\(125\) 48337.7 0.276701
\(126\) 0 0
\(127\) 120534. 0.663135 0.331567 0.943432i \(-0.392423\pi\)
0.331567 + 0.943432i \(0.392423\pi\)
\(128\) 0 0
\(129\) −490590. −2.59564
\(130\) 0 0
\(131\) −194173. −0.988579 −0.494289 0.869297i \(-0.664572\pi\)
−0.494289 + 0.869297i \(0.664572\pi\)
\(132\) 0 0
\(133\) 114716. 0.562336
\(134\) 0 0
\(135\) −73636.2 −0.347742
\(136\) 0 0
\(137\) 203753. 0.927476 0.463738 0.885972i \(-0.346508\pi\)
0.463738 + 0.885972i \(0.346508\pi\)
\(138\) 0 0
\(139\) −133442. −0.585808 −0.292904 0.956142i \(-0.594622\pi\)
−0.292904 + 0.956142i \(0.594622\pi\)
\(140\) 0 0
\(141\) 324826. 1.37595
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −52895.8 −0.208930
\(146\) 0 0
\(147\) 990217. 3.77952
\(148\) 0 0
\(149\) 161735. 0.596812 0.298406 0.954439i \(-0.403545\pi\)
0.298406 + 0.954439i \(0.403545\pi\)
\(150\) 0 0
\(151\) 328389. 1.17205 0.586025 0.810293i \(-0.300692\pi\)
0.586025 + 0.810293i \(0.300692\pi\)
\(152\) 0 0
\(153\) −426248. −1.47209
\(154\) 0 0
\(155\) −36396.6 −0.121683
\(156\) 0 0
\(157\) 436449. 1.41314 0.706569 0.707644i \(-0.250242\pi\)
0.706569 + 0.707644i \(0.250242\pi\)
\(158\) 0 0
\(159\) 228151. 0.715698
\(160\) 0 0
\(161\) −45124.3 −0.137197
\(162\) 0 0
\(163\) −420387. −1.23931 −0.619655 0.784874i \(-0.712728\pi\)
−0.619655 + 0.784874i \(0.712728\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −59123.7 −0.164048 −0.0820239 0.996630i \(-0.526138\pi\)
−0.0820239 + 0.996630i \(0.526138\pi\)
\(168\) 0 0
\(169\) −360522. −0.970991
\(170\) 0 0
\(171\) −289756. −0.757777
\(172\) 0 0
\(173\) 15782.3 0.0400917 0.0200458 0.999799i \(-0.493619\pi\)
0.0200458 + 0.999799i \(0.493619\pi\)
\(174\) 0 0
\(175\) 695134. 1.71583
\(176\) 0 0
\(177\) −838244. −2.01112
\(178\) 0 0
\(179\) 246375. 0.574731 0.287365 0.957821i \(-0.407221\pi\)
0.287365 + 0.957821i \(0.407221\pi\)
\(180\) 0 0
\(181\) 461119. 1.04621 0.523103 0.852270i \(-0.324774\pi\)
0.523103 + 0.852270i \(0.324774\pi\)
\(182\) 0 0
\(183\) 1.12086e6 2.47413
\(184\) 0 0
\(185\) −119292. −0.256261
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −2.13897e6 −4.35563
\(190\) 0 0
\(191\) 55118.9 0.109324 0.0546622 0.998505i \(-0.482592\pi\)
0.0546622 + 0.998505i \(0.482592\pi\)
\(192\) 0 0
\(193\) 334715. 0.646818 0.323409 0.946259i \(-0.395171\pi\)
0.323409 + 0.946259i \(0.395171\pi\)
\(194\) 0 0
\(195\) −23155.1 −0.0436073
\(196\) 0 0
\(197\) −448550. −0.823466 −0.411733 0.911305i \(-0.635076\pi\)
−0.411733 + 0.911305i \(0.635076\pi\)
\(198\) 0 0
\(199\) −248626. −0.445055 −0.222527 0.974926i \(-0.571431\pi\)
−0.222527 + 0.974926i \(0.571431\pi\)
\(200\) 0 0
\(201\) 1.45015e6 2.53176
\(202\) 0 0
\(203\) −1.53651e6 −2.61695
\(204\) 0 0
\(205\) −50067.2 −0.0832086
\(206\) 0 0
\(207\) 113977. 0.184881
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 108300. 0.167464 0.0837320 0.996488i \(-0.473316\pi\)
0.0837320 + 0.996488i \(0.473316\pi\)
\(212\) 0 0
\(213\) −1.41763e6 −2.14099
\(214\) 0 0
\(215\) 134131. 0.197894
\(216\) 0 0
\(217\) −1.05724e6 −1.52414
\(218\) 0 0
\(219\) −294284. −0.414625
\(220\) 0 0
\(221\) −77196.9 −0.106321
\(222\) 0 0
\(223\) −416787. −0.561244 −0.280622 0.959818i \(-0.590541\pi\)
−0.280622 + 0.959818i \(0.590541\pi\)
\(224\) 0 0
\(225\) −1.75580e6 −2.31217
\(226\) 0 0
\(227\) −120823. −0.155627 −0.0778135 0.996968i \(-0.524794\pi\)
−0.0778135 + 0.996968i \(0.524794\pi\)
\(228\) 0 0
\(229\) −727597. −0.916858 −0.458429 0.888731i \(-0.651588\pi\)
−0.458429 + 0.888731i \(0.651588\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.28248e6 −1.54761 −0.773803 0.633426i \(-0.781648\pi\)
−0.773803 + 0.633426i \(0.781648\pi\)
\(234\) 0 0
\(235\) −88809.6 −0.104904
\(236\) 0 0
\(237\) 252605. 0.292126
\(238\) 0 0
\(239\) 1.32934e6 1.50536 0.752680 0.658387i \(-0.228761\pi\)
0.752680 + 0.658387i \(0.228761\pi\)
\(240\) 0 0
\(241\) 141314. 0.156727 0.0783635 0.996925i \(-0.475031\pi\)
0.0783635 + 0.996925i \(0.475031\pi\)
\(242\) 0 0
\(243\) 1.42486e6 1.54795
\(244\) 0 0
\(245\) −270732. −0.288154
\(246\) 0 0
\(247\) −52477.0 −0.0547301
\(248\) 0 0
\(249\) 3.39765e6 3.47281
\(250\) 0 0
\(251\) 1.04399e6 1.04595 0.522975 0.852348i \(-0.324822\pi\)
0.522975 + 0.852348i \(0.324822\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 165958. 0.159826
\(256\) 0 0
\(257\) 458476. 0.432996 0.216498 0.976283i \(-0.430536\pi\)
0.216498 + 0.976283i \(0.430536\pi\)
\(258\) 0 0
\(259\) −3.46518e6 −3.20978
\(260\) 0 0
\(261\) 3.88098e6 3.52647
\(262\) 0 0
\(263\) 670400. 0.597647 0.298824 0.954308i \(-0.403406\pi\)
0.298824 + 0.954308i \(0.403406\pi\)
\(264\) 0 0
\(265\) −62378.1 −0.0545654
\(266\) 0 0
\(267\) 3.24892e6 2.78908
\(268\) 0 0
\(269\) 420624. 0.354416 0.177208 0.984173i \(-0.443294\pi\)
0.177208 + 0.984173i \(0.443294\pi\)
\(270\) 0 0
\(271\) −247861. −0.205015 −0.102507 0.994732i \(-0.532687\pi\)
−0.102507 + 0.994732i \(0.532687\pi\)
\(272\) 0 0
\(273\) −672604. −0.546202
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −824737. −0.645827 −0.322913 0.946429i \(-0.604662\pi\)
−0.322913 + 0.946429i \(0.604662\pi\)
\(278\) 0 0
\(279\) 2.67043e6 2.05386
\(280\) 0 0
\(281\) 55290.1 0.0417717 0.0208858 0.999782i \(-0.493351\pi\)
0.0208858 + 0.999782i \(0.493351\pi\)
\(282\) 0 0
\(283\) 402749. 0.298929 0.149465 0.988767i \(-0.452245\pi\)
0.149465 + 0.988767i \(0.452245\pi\)
\(284\) 0 0
\(285\) 112815. 0.0822726
\(286\) 0 0
\(287\) −1.45434e6 −1.04223
\(288\) 0 0
\(289\) −866568. −0.610320
\(290\) 0 0
\(291\) −2.82151e6 −1.95321
\(292\) 0 0
\(293\) 1.08012e6 0.735028 0.367514 0.930018i \(-0.380209\pi\)
0.367514 + 0.930018i \(0.380209\pi\)
\(294\) 0 0
\(295\) 229182. 0.153329
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 20642.1 0.0133529
\(300\) 0 0
\(301\) 3.89621e6 2.47871
\(302\) 0 0
\(303\) 3.14734e6 1.96941
\(304\) 0 0
\(305\) −306450. −0.188630
\(306\) 0 0
\(307\) −1.62198e6 −0.982199 −0.491100 0.871103i \(-0.663405\pi\)
−0.491100 + 0.871103i \(0.663405\pi\)
\(308\) 0 0
\(309\) 31217.1 0.0185993
\(310\) 0 0
\(311\) −2.89346e6 −1.69635 −0.848177 0.529713i \(-0.822300\pi\)
−0.848177 + 0.529713i \(0.822300\pi\)
\(312\) 0 0
\(313\) 51329.5 0.0296146 0.0148073 0.999890i \(-0.495287\pi\)
0.0148073 + 0.999890i \(0.495287\pi\)
\(314\) 0 0
\(315\) 1.01539e6 0.576575
\(316\) 0 0
\(317\) 2.03903e6 1.13966 0.569829 0.821763i \(-0.307009\pi\)
0.569829 + 0.821763i \(0.307009\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 2.93291e6 1.58868
\(322\) 0 0
\(323\) 376116. 0.200593
\(324\) 0 0
\(325\) −317989. −0.166995
\(326\) 0 0
\(327\) −4.72519e6 −2.44371
\(328\) 0 0
\(329\) −2.57973e6 −1.31397
\(330\) 0 0
\(331\) 3.07847e6 1.54442 0.772210 0.635368i \(-0.219151\pi\)
0.772210 + 0.635368i \(0.219151\pi\)
\(332\) 0 0
\(333\) 8.75250e6 4.32535
\(334\) 0 0
\(335\) −396482. −0.193024
\(336\) 0 0
\(337\) −3.75093e6 −1.79914 −0.899569 0.436779i \(-0.856119\pi\)
−0.899569 + 0.436779i \(0.856119\pi\)
\(338\) 0 0
\(339\) 592025. 0.279796
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −4.05116e6 −1.85928
\(344\) 0 0
\(345\) −44376.5 −0.0200727
\(346\) 0 0
\(347\) 1.41792e6 0.632162 0.316081 0.948732i \(-0.397633\pi\)
0.316081 + 0.948732i \(0.397633\pi\)
\(348\) 0 0
\(349\) 1.47969e6 0.650289 0.325144 0.945664i \(-0.394587\pi\)
0.325144 + 0.945664i \(0.394587\pi\)
\(350\) 0 0
\(351\) 978474. 0.423918
\(352\) 0 0
\(353\) 1.03495e6 0.442059 0.221030 0.975267i \(-0.429058\pi\)
0.221030 + 0.975267i \(0.429058\pi\)
\(354\) 0 0
\(355\) 387591. 0.163231
\(356\) 0 0
\(357\) 4.82072e6 2.00190
\(358\) 0 0
\(359\) 2.56769e6 1.05149 0.525746 0.850641i \(-0.323786\pi\)
0.525746 + 0.850641i \(0.323786\pi\)
\(360\) 0 0
\(361\) −2.22042e6 −0.896742
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 80459.2 0.0316114
\(366\) 0 0
\(367\) −1.02419e6 −0.396931 −0.198465 0.980108i \(-0.563596\pi\)
−0.198465 + 0.980108i \(0.563596\pi\)
\(368\) 0 0
\(369\) 3.67345e6 1.40445
\(370\) 0 0
\(371\) −1.81195e6 −0.683457
\(372\) 0 0
\(373\) 1.22803e6 0.457022 0.228511 0.973541i \(-0.426614\pi\)
0.228511 + 0.973541i \(0.426614\pi\)
\(374\) 0 0
\(375\) 1.38084e6 0.507066
\(376\) 0 0
\(377\) 702877. 0.254698
\(378\) 0 0
\(379\) 3.32029e6 1.18735 0.593675 0.804705i \(-0.297677\pi\)
0.593675 + 0.804705i \(0.297677\pi\)
\(380\) 0 0
\(381\) 3.44324e6 1.21522
\(382\) 0 0
\(383\) −2.15177e6 −0.749547 −0.374774 0.927116i \(-0.622280\pi\)
−0.374774 + 0.927116i \(0.622280\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −9.84123e6 −3.34020
\(388\) 0 0
\(389\) −131576. −0.0440862 −0.0220431 0.999757i \(-0.507017\pi\)
−0.0220431 + 0.999757i \(0.507017\pi\)
\(390\) 0 0
\(391\) −147947. −0.0489401
\(392\) 0 0
\(393\) −5.54684e6 −1.81161
\(394\) 0 0
\(395\) −69063.9 −0.0222720
\(396\) 0 0
\(397\) 2.18510e6 0.695818 0.347909 0.937528i \(-0.386892\pi\)
0.347909 + 0.937528i \(0.386892\pi\)
\(398\) 0 0
\(399\) 3.27704e6 1.03050
\(400\) 0 0
\(401\) −2.82287e6 −0.876659 −0.438329 0.898814i \(-0.644430\pi\)
−0.438329 + 0.898814i \(0.644430\pi\)
\(402\) 0 0
\(403\) 483636. 0.148339
\(404\) 0 0
\(405\) −1.01595e6 −0.307777
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −2.03753e6 −0.602275 −0.301138 0.953581i \(-0.597366\pi\)
−0.301138 + 0.953581i \(0.597366\pi\)
\(410\) 0 0
\(411\) 5.82050e6 1.69964
\(412\) 0 0
\(413\) 6.65724e6 1.92052
\(414\) 0 0
\(415\) −928943. −0.264770
\(416\) 0 0
\(417\) −3.81196e6 −1.07352
\(418\) 0 0
\(419\) −6.34804e6 −1.76646 −0.883232 0.468937i \(-0.844637\pi\)
−0.883232 + 0.468937i \(0.844637\pi\)
\(420\) 0 0
\(421\) −4.62038e6 −1.27049 −0.635247 0.772309i \(-0.719102\pi\)
−0.635247 + 0.772309i \(0.719102\pi\)
\(422\) 0 0
\(423\) 6.51599e6 1.77064
\(424\) 0 0
\(425\) 2.27911e6 0.612058
\(426\) 0 0
\(427\) −8.90171e6 −2.36267
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −239506. −0.0621045 −0.0310522 0.999518i \(-0.509886\pi\)
−0.0310522 + 0.999518i \(0.509886\pi\)
\(432\) 0 0
\(433\) −3.99866e6 −1.02493 −0.512466 0.858708i \(-0.671268\pi\)
−0.512466 + 0.858708i \(0.671268\pi\)
\(434\) 0 0
\(435\) −1.51105e6 −0.382873
\(436\) 0 0
\(437\) −100572. −0.0251926
\(438\) 0 0
\(439\) −1.89124e6 −0.468367 −0.234183 0.972192i \(-0.575242\pi\)
−0.234183 + 0.972192i \(0.575242\pi\)
\(440\) 0 0
\(441\) 1.98637e7 4.86367
\(442\) 0 0
\(443\) −325767. −0.0788675 −0.0394338 0.999222i \(-0.512555\pi\)
−0.0394338 + 0.999222i \(0.512555\pi\)
\(444\) 0 0
\(445\) −888278. −0.212642
\(446\) 0 0
\(447\) 4.62019e6 1.09368
\(448\) 0 0
\(449\) 4.04299e6 0.946426 0.473213 0.880948i \(-0.343094\pi\)
0.473213 + 0.880948i \(0.343094\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 9.38091e6 2.14783
\(454\) 0 0
\(455\) 183895. 0.0416429
\(456\) 0 0
\(457\) 5.69414e6 1.27537 0.637687 0.770296i \(-0.279891\pi\)
0.637687 + 0.770296i \(0.279891\pi\)
\(458\) 0 0
\(459\) −7.01297e6 −1.55371
\(460\) 0 0
\(461\) 3.16150e6 0.692853 0.346426 0.938077i \(-0.387395\pi\)
0.346426 + 0.938077i \(0.387395\pi\)
\(462\) 0 0
\(463\) 5.10293e6 1.10628 0.553142 0.833087i \(-0.313429\pi\)
0.553142 + 0.833087i \(0.313429\pi\)
\(464\) 0 0
\(465\) −1.03972e6 −0.222990
\(466\) 0 0
\(467\) 8.63661e6 1.83253 0.916265 0.400573i \(-0.131189\pi\)
0.916265 + 0.400573i \(0.131189\pi\)
\(468\) 0 0
\(469\) −1.15169e7 −2.41771
\(470\) 0 0
\(471\) 1.24678e7 2.58963
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 1.54929e6 0.315065
\(476\) 0 0
\(477\) 4.57670e6 0.920994
\(478\) 0 0
\(479\) −2.76656e6 −0.550936 −0.275468 0.961310i \(-0.588833\pi\)
−0.275468 + 0.961310i \(0.588833\pi\)
\(480\) 0 0
\(481\) 1.58515e6 0.312397
\(482\) 0 0
\(483\) −1.28904e6 −0.251420
\(484\) 0 0
\(485\) 771420. 0.148914
\(486\) 0 0
\(487\) 1.28730e6 0.245955 0.122978 0.992409i \(-0.460756\pi\)
0.122978 + 0.992409i \(0.460756\pi\)
\(488\) 0 0
\(489\) −1.20090e7 −2.27108
\(490\) 0 0
\(491\) −4.50003e6 −0.842386 −0.421193 0.906971i \(-0.638389\pi\)
−0.421193 + 0.906971i \(0.638389\pi\)
\(492\) 0 0
\(493\) −5.03769e6 −0.933500
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.12587e7 2.04454
\(498\) 0 0
\(499\) 6.62509e6 1.19108 0.595539 0.803326i \(-0.296939\pi\)
0.595539 + 0.803326i \(0.296939\pi\)
\(500\) 0 0
\(501\) −1.68896e6 −0.300624
\(502\) 0 0
\(503\) −2.53815e6 −0.447298 −0.223649 0.974670i \(-0.571797\pi\)
−0.223649 + 0.974670i \(0.571797\pi\)
\(504\) 0 0
\(505\) −860504. −0.150150
\(506\) 0 0
\(507\) −1.02988e7 −1.77938
\(508\) 0 0
\(509\) 1.07741e7 1.84325 0.921627 0.388076i \(-0.126860\pi\)
0.921627 + 0.388076i \(0.126860\pi\)
\(510\) 0 0
\(511\) 2.33717e6 0.395947
\(512\) 0 0
\(513\) −4.76728e6 −0.799793
\(514\) 0 0
\(515\) −8534.99 −0.00141803
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 450843. 0.0734695
\(520\) 0 0
\(521\) 2.33552e6 0.376955 0.188477 0.982078i \(-0.439645\pi\)
0.188477 + 0.982078i \(0.439645\pi\)
\(522\) 0 0
\(523\) 5.82595e6 0.931349 0.465675 0.884956i \(-0.345812\pi\)
0.465675 + 0.884956i \(0.345812\pi\)
\(524\) 0 0
\(525\) 1.98575e7 3.14432
\(526\) 0 0
\(527\) −3.46634e6 −0.543681
\(528\) 0 0
\(529\) −6.39678e6 −0.993854
\(530\) 0 0
\(531\) −1.68152e7 −2.58800
\(532\) 0 0
\(533\) 665290. 0.101436
\(534\) 0 0
\(535\) −801879. −0.121122
\(536\) 0 0
\(537\) 7.03806e6 1.05322
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 1.43227e6 0.210394 0.105197 0.994451i \(-0.466453\pi\)
0.105197 + 0.994451i \(0.466453\pi\)
\(542\) 0 0
\(543\) 1.31725e7 1.91721
\(544\) 0 0
\(545\) 1.29190e6 0.186311
\(546\) 0 0
\(547\) −2.04920e6 −0.292831 −0.146415 0.989223i \(-0.546774\pi\)
−0.146415 + 0.989223i \(0.546774\pi\)
\(548\) 0 0
\(549\) 2.24843e7 3.18383
\(550\) 0 0
\(551\) −3.42453e6 −0.480531
\(552\) 0 0
\(553\) −2.00616e6 −0.278967
\(554\) 0 0
\(555\) −3.40775e6 −0.469608
\(556\) 0 0
\(557\) 1.31288e7 1.79302 0.896511 0.443022i \(-0.146094\pi\)
0.896511 + 0.443022i \(0.146094\pi\)
\(558\) 0 0
\(559\) −1.78232e6 −0.241244
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 9.67304e6 1.28615 0.643076 0.765803i \(-0.277658\pi\)
0.643076 + 0.765803i \(0.277658\pi\)
\(564\) 0 0
\(565\) −161864. −0.0213319
\(566\) 0 0
\(567\) −2.95112e7 −3.85504
\(568\) 0 0
\(569\) 7.77016e6 1.00612 0.503059 0.864252i \(-0.332208\pi\)
0.503059 + 0.864252i \(0.332208\pi\)
\(570\) 0 0
\(571\) −7.11020e6 −0.912624 −0.456312 0.889820i \(-0.650830\pi\)
−0.456312 + 0.889820i \(0.650830\pi\)
\(572\) 0 0
\(573\) 1.57455e6 0.200341
\(574\) 0 0
\(575\) −609424. −0.0768688
\(576\) 0 0
\(577\) −6.57427e6 −0.822068 −0.411034 0.911620i \(-0.634832\pi\)
−0.411034 + 0.911620i \(0.634832\pi\)
\(578\) 0 0
\(579\) 9.56162e6 1.18532
\(580\) 0 0
\(581\) −2.69838e7 −3.31636
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −464490. −0.0561160
\(586\) 0 0
\(587\) −1.32751e7 −1.59016 −0.795082 0.606502i \(-0.792572\pi\)
−0.795082 + 0.606502i \(0.792572\pi\)
\(588\) 0 0
\(589\) −2.35635e6 −0.279867
\(590\) 0 0
\(591\) −1.28135e7 −1.50903
\(592\) 0 0
\(593\) −3.41554e6 −0.398862 −0.199431 0.979912i \(-0.563909\pi\)
−0.199431 + 0.979912i \(0.563909\pi\)
\(594\) 0 0
\(595\) −1.31802e6 −0.152626
\(596\) 0 0
\(597\) −7.10235e6 −0.815580
\(598\) 0 0
\(599\) −1.28063e7 −1.45833 −0.729167 0.684336i \(-0.760092\pi\)
−0.729167 + 0.684336i \(0.760092\pi\)
\(600\) 0 0
\(601\) −5.36209e6 −0.605547 −0.302774 0.953063i \(-0.597913\pi\)
−0.302774 + 0.953063i \(0.597913\pi\)
\(602\) 0 0
\(603\) 2.90900e7 3.25799
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −1.11943e7 −1.23318 −0.616589 0.787285i \(-0.711486\pi\)
−0.616589 + 0.787285i \(0.711486\pi\)
\(608\) 0 0
\(609\) −4.38926e7 −4.79566
\(610\) 0 0
\(611\) 1.18010e6 0.127884
\(612\) 0 0
\(613\) 1.00749e7 1.08291 0.541453 0.840731i \(-0.317874\pi\)
0.541453 + 0.840731i \(0.317874\pi\)
\(614\) 0 0
\(615\) −1.43024e6 −0.152483
\(616\) 0 0
\(617\) −6.05167e6 −0.639974 −0.319987 0.947422i \(-0.603679\pi\)
−0.319987 + 0.947422i \(0.603679\pi\)
\(618\) 0 0
\(619\) −3.05589e6 −0.320561 −0.160281 0.987072i \(-0.551240\pi\)
−0.160281 + 0.987072i \(0.551240\pi\)
\(620\) 0 0
\(621\) 1.87524e6 0.195132
\(622\) 0 0
\(623\) −2.58026e7 −2.66344
\(624\) 0 0
\(625\) 9.19747e6 0.941821
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −1.13611e7 −1.14497
\(630\) 0 0
\(631\) −1.70588e7 −1.70559 −0.852797 0.522242i \(-0.825096\pi\)
−0.852797 + 0.522242i \(0.825096\pi\)
\(632\) 0 0
\(633\) 3.09374e6 0.306884
\(634\) 0 0
\(635\) −941406. −0.0926494
\(636\) 0 0
\(637\) 3.59747e6 0.351276
\(638\) 0 0
\(639\) −2.84377e7 −2.75513
\(640\) 0 0
\(641\) 4.69770e6 0.451586 0.225793 0.974175i \(-0.427503\pi\)
0.225793 + 0.974175i \(0.427503\pi\)
\(642\) 0 0
\(643\) 1.22911e7 1.17237 0.586184 0.810178i \(-0.300630\pi\)
0.586184 + 0.810178i \(0.300630\pi\)
\(644\) 0 0
\(645\) 3.83164e6 0.362648
\(646\) 0 0
\(647\) −1.25331e7 −1.17706 −0.588530 0.808475i \(-0.700293\pi\)
−0.588530 + 0.808475i \(0.700293\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −3.02016e7 −2.79305
\(652\) 0 0
\(653\) −1.71823e6 −0.157688 −0.0788438 0.996887i \(-0.525123\pi\)
−0.0788438 + 0.996887i \(0.525123\pi\)
\(654\) 0 0
\(655\) 1.51655e6 0.138119
\(656\) 0 0
\(657\) −5.90332e6 −0.533560
\(658\) 0 0
\(659\) 4.08412e6 0.366341 0.183170 0.983081i \(-0.441364\pi\)
0.183170 + 0.983081i \(0.441364\pi\)
\(660\) 0 0
\(661\) −1.93674e7 −1.72412 −0.862062 0.506803i \(-0.830827\pi\)
−0.862062 + 0.506803i \(0.830827\pi\)
\(662\) 0 0
\(663\) −2.20524e6 −0.194837
\(664\) 0 0
\(665\) −895965. −0.0785664
\(666\) 0 0
\(667\) 1.34706e6 0.117239
\(668\) 0 0
\(669\) −1.19061e7 −1.02850
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 7.66812e6 0.652606 0.326303 0.945265i \(-0.394197\pi\)
0.326303 + 0.945265i \(0.394197\pi\)
\(674\) 0 0
\(675\) −2.88878e7 −2.44037
\(676\) 0 0
\(677\) −9.43644e6 −0.791292 −0.395646 0.918403i \(-0.629479\pi\)
−0.395646 + 0.918403i \(0.629479\pi\)
\(678\) 0 0
\(679\) 2.24081e7 1.86522
\(680\) 0 0
\(681\) −3.45149e6 −0.285193
\(682\) 0 0
\(683\) −3.74584e6 −0.307254 −0.153627 0.988129i \(-0.549095\pi\)
−0.153627 + 0.988129i \(0.549095\pi\)
\(684\) 0 0
\(685\) −1.59137e6 −0.129582
\(686\) 0 0
\(687\) −2.07849e7 −1.68018
\(688\) 0 0
\(689\) 828877. 0.0665184
\(690\) 0 0
\(691\) 6.77469e6 0.539752 0.269876 0.962895i \(-0.413017\pi\)
0.269876 + 0.962895i \(0.413017\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.04222e6 0.0818458
\(696\) 0 0
\(697\) −4.76830e6 −0.371776
\(698\) 0 0
\(699\) −3.66359e7 −2.83605
\(700\) 0 0
\(701\) 4.84402e6 0.372316 0.186158 0.982520i \(-0.440396\pi\)
0.186158 + 0.982520i \(0.440396\pi\)
\(702\) 0 0
\(703\) −7.72308e6 −0.589390
\(704\) 0 0
\(705\) −2.53698e6 −0.192240
\(706\) 0 0
\(707\) −2.49958e7 −1.88069
\(708\) 0 0
\(709\) −5.68600e6 −0.424807 −0.212403 0.977182i \(-0.568129\pi\)
−0.212403 + 0.977182i \(0.568129\pi\)
\(710\) 0 0
\(711\) 5.06724e6 0.375922
\(712\) 0 0
\(713\) 926884. 0.0682813
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 3.79744e7 2.75863
\(718\) 0 0
\(719\) 1.53777e7 1.10935 0.554675 0.832067i \(-0.312843\pi\)
0.554675 + 0.832067i \(0.312843\pi\)
\(720\) 0 0
\(721\) −247923. −0.0177614
\(722\) 0 0
\(723\) 4.03685e6 0.287208
\(724\) 0 0
\(725\) −2.07512e7 −1.46622
\(726\) 0 0
\(727\) −5.66695e6 −0.397662 −0.198831 0.980034i \(-0.563714\pi\)
−0.198831 + 0.980034i \(0.563714\pi\)
\(728\) 0 0
\(729\) 9.09400e6 0.633776
\(730\) 0 0
\(731\) 1.27744e7 0.884190
\(732\) 0 0
\(733\) 2.05277e7 1.41117 0.705587 0.708623i \(-0.250683\pi\)
0.705587 + 0.708623i \(0.250683\pi\)
\(734\) 0 0
\(735\) −7.73386e6 −0.528053
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 7.30063e6 0.491755 0.245878 0.969301i \(-0.420924\pi\)
0.245878 + 0.969301i \(0.420924\pi\)
\(740\) 0 0
\(741\) −1.49908e6 −0.100295
\(742\) 0 0
\(743\) 5.31052e6 0.352911 0.176455 0.984309i \(-0.443537\pi\)
0.176455 + 0.984309i \(0.443537\pi\)
\(744\) 0 0
\(745\) −1.26319e6 −0.0833832
\(746\) 0 0
\(747\) 6.81568e7 4.46898
\(748\) 0 0
\(749\) −2.32929e7 −1.51711
\(750\) 0 0
\(751\) −1.84307e7 −1.19246 −0.596228 0.802815i \(-0.703335\pi\)
−0.596228 + 0.802815i \(0.703335\pi\)
\(752\) 0 0
\(753\) 2.98230e7 1.91674
\(754\) 0 0
\(755\) −2.56481e6 −0.163752
\(756\) 0 0
\(757\) 1.44043e7 0.913594 0.456797 0.889571i \(-0.348997\pi\)
0.456797 + 0.889571i \(0.348997\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1.32563e7 −0.829777 −0.414888 0.909872i \(-0.636179\pi\)
−0.414888 + 0.909872i \(0.636179\pi\)
\(762\) 0 0
\(763\) 3.75269e7 2.33362
\(764\) 0 0
\(765\) 3.32911e6 0.205672
\(766\) 0 0
\(767\) −3.04536e6 −0.186917
\(768\) 0 0
\(769\) −1.42172e7 −0.866958 −0.433479 0.901164i \(-0.642714\pi\)
−0.433479 + 0.901164i \(0.642714\pi\)
\(770\) 0 0
\(771\) 1.30970e7 0.793482
\(772\) 0 0
\(773\) −6.54253e6 −0.393819 −0.196910 0.980422i \(-0.563091\pi\)
−0.196910 + 0.980422i \(0.563091\pi\)
\(774\) 0 0
\(775\) −1.42785e7 −0.853943
\(776\) 0 0
\(777\) −9.89878e7 −5.88205
\(778\) 0 0
\(779\) −3.24140e6 −0.191376
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 6.38530e7 3.72200
\(784\) 0 0
\(785\) −3.40878e6 −0.197436
\(786\) 0 0
\(787\) 1.06942e7 0.615474 0.307737 0.951471i \(-0.400428\pi\)
0.307737 + 0.951471i \(0.400428\pi\)
\(788\) 0 0
\(789\) 1.91510e7 1.09521
\(790\) 0 0
\(791\) −4.70179e6 −0.267191
\(792\) 0 0
\(793\) 4.07209e6 0.229950
\(794\) 0 0
\(795\) −1.78192e6 −0.0999933
\(796\) 0 0
\(797\) 6.10148e6 0.340243 0.170122 0.985423i \(-0.445584\pi\)
0.170122 + 0.985423i \(0.445584\pi\)
\(798\) 0 0
\(799\) −8.45805e6 −0.468709
\(800\) 0 0
\(801\) 6.51733e7 3.58912
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 352433. 0.0191684
\(806\) 0 0
\(807\) 1.20157e7 0.649480
\(808\) 0 0
\(809\) 4.48277e6 0.240811 0.120405 0.992725i \(-0.461581\pi\)
0.120405 + 0.992725i \(0.461581\pi\)
\(810\) 0 0
\(811\) −2.72220e7 −1.45334 −0.726672 0.686985i \(-0.758934\pi\)
−0.726672 + 0.686985i \(0.758934\pi\)
\(812\) 0 0
\(813\) −7.08051e6 −0.375697
\(814\) 0 0
\(815\) 3.28333e6 0.173149
\(816\) 0 0
\(817\) 8.68376e6 0.455148
\(818\) 0 0
\(819\) −1.34924e7 −0.702878
\(820\) 0 0
\(821\) 1.09162e7 0.565213 0.282607 0.959236i \(-0.408801\pi\)
0.282607 + 0.959236i \(0.408801\pi\)
\(822\) 0 0
\(823\) −2.17066e7 −1.11710 −0.558551 0.829470i \(-0.688643\pi\)
−0.558551 + 0.829470i \(0.688643\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 3.15427e7 1.60374 0.801872 0.597496i \(-0.203837\pi\)
0.801872 + 0.597496i \(0.203837\pi\)
\(828\) 0 0
\(829\) −3.15118e6 −0.159253 −0.0796264 0.996825i \(-0.525373\pi\)
−0.0796264 + 0.996825i \(0.525373\pi\)
\(830\) 0 0
\(831\) −2.35598e7 −1.18350
\(832\) 0 0
\(833\) −2.57840e7 −1.28747
\(834\) 0 0
\(835\) 461772. 0.0229198
\(836\) 0 0
\(837\) 4.39360e7 2.16774
\(838\) 0 0
\(839\) −2.65837e7 −1.30380 −0.651900 0.758305i \(-0.726028\pi\)
−0.651900 + 0.758305i \(0.726028\pi\)
\(840\) 0 0
\(841\) 2.53570e7 1.23625
\(842\) 0 0
\(843\) 1.57944e6 0.0765482
\(844\) 0 0
\(845\) 2.81578e6 0.135661
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 1.15051e7 0.547799
\(850\) 0 0
\(851\) 3.03792e6 0.143798
\(852\) 0 0
\(853\) 3.74756e7 1.76350 0.881751 0.471716i \(-0.156365\pi\)
0.881751 + 0.471716i \(0.156365\pi\)
\(854\) 0 0
\(855\) 2.26307e6 0.105872
\(856\) 0 0
\(857\) −1.33372e7 −0.620314 −0.310157 0.950685i \(-0.600382\pi\)
−0.310157 + 0.950685i \(0.600382\pi\)
\(858\) 0 0
\(859\) −42617.6 −0.00197064 −0.000985318 1.00000i \(-0.500314\pi\)
−0.000985318 1.00000i \(0.500314\pi\)
\(860\) 0 0
\(861\) −4.15454e7 −1.90992
\(862\) 0 0
\(863\) 916590. 0.0418936 0.0209468 0.999781i \(-0.493332\pi\)
0.0209468 + 0.999781i \(0.493332\pi\)
\(864\) 0 0
\(865\) −123264. −0.00560138
\(866\) 0 0
\(867\) −2.47548e7 −1.11844
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 5.26842e6 0.235307
\(872\) 0 0
\(873\) −5.65993e7 −2.51348
\(874\) 0 0
\(875\) −1.09665e7 −0.484224
\(876\) 0 0
\(877\) −978998. −0.0429816 −0.0214908 0.999769i \(-0.506841\pi\)
−0.0214908 + 0.999769i \(0.506841\pi\)
\(878\) 0 0
\(879\) 3.08553e7 1.34697
\(880\) 0 0
\(881\) 7.30408e6 0.317049 0.158524 0.987355i \(-0.449326\pi\)
0.158524 + 0.987355i \(0.449326\pi\)
\(882\) 0 0
\(883\) 7.42858e6 0.320630 0.160315 0.987066i \(-0.448749\pi\)
0.160315 + 0.987066i \(0.448749\pi\)
\(884\) 0 0
\(885\) 6.54691e6 0.280982
\(886\) 0 0
\(887\) −3.16930e6 −0.135255 −0.0676277 0.997711i \(-0.521543\pi\)
−0.0676277 + 0.997711i \(0.521543\pi\)
\(888\) 0 0
\(889\) −2.73458e7 −1.16048
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −5.74962e6 −0.241274
\(894\) 0 0
\(895\) −1.92426e6 −0.0802981
\(896\) 0 0
\(897\) 589673. 0.0244698
\(898\) 0 0
\(899\) 3.15609e7 1.30242
\(900\) 0 0
\(901\) −5.94077e6 −0.243798
\(902\) 0 0
\(903\) 1.11301e8 4.54234
\(904\) 0 0
\(905\) −3.60147e6 −0.146170
\(906\) 0 0
\(907\) 3.41859e6 0.137984 0.0689919 0.997617i \(-0.478022\pi\)
0.0689919 + 0.997617i \(0.478022\pi\)
\(908\) 0 0
\(909\) 6.31355e7 2.53433
\(910\) 0 0
\(911\) −9.37087e6 −0.374097 −0.187048 0.982351i \(-0.559892\pi\)
−0.187048 + 0.982351i \(0.559892\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −8.75419e6 −0.345671
\(916\) 0 0
\(917\) 4.40524e7 1.73000
\(918\) 0 0
\(919\) 1.18620e7 0.463308 0.231654 0.972798i \(-0.425586\pi\)
0.231654 + 0.972798i \(0.425586\pi\)
\(920\) 0 0
\(921\) −4.63342e7 −1.79992
\(922\) 0 0
\(923\) −5.15028e6 −0.198988
\(924\) 0 0
\(925\) −4.67988e7 −1.79837
\(926\) 0 0
\(927\) 626215. 0.0239345
\(928\) 0 0
\(929\) −1.79278e7 −0.681535 −0.340767 0.940148i \(-0.610687\pi\)
−0.340767 + 0.940148i \(0.610687\pi\)
\(930\) 0 0
\(931\) −1.75275e7 −0.662743
\(932\) 0 0
\(933\) −8.26559e7 −3.10863
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 2.50430e7 0.931833 0.465916 0.884829i \(-0.345725\pi\)
0.465916 + 0.884829i \(0.345725\pi\)
\(938\) 0 0
\(939\) 1.46630e6 0.0542699
\(940\) 0 0
\(941\) 4.11569e7 1.51520 0.757598 0.652722i \(-0.226373\pi\)
0.757598 + 0.652722i \(0.226373\pi\)
\(942\) 0 0
\(943\) 1.27502e6 0.0466916
\(944\) 0 0
\(945\) 1.67060e7 0.608544
\(946\) 0 0
\(947\) −2.36116e7 −0.855559 −0.427780 0.903883i \(-0.640704\pi\)
−0.427780 + 0.903883i \(0.640704\pi\)
\(948\) 0 0
\(949\) −1.06914e6 −0.0385361
\(950\) 0 0
\(951\) 5.82477e7 2.08847
\(952\) 0 0
\(953\) −3.62112e7 −1.29155 −0.645775 0.763528i \(-0.723465\pi\)
−0.645775 + 0.763528i \(0.723465\pi\)
\(954\) 0 0
\(955\) −430493. −0.0152742
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −4.62257e7 −1.62307
\(960\) 0 0
\(961\) −6.91268e6 −0.241456
\(962\) 0 0
\(963\) 5.88342e7 2.04439
\(964\) 0 0
\(965\) −2.61421e6 −0.0903697
\(966\) 0 0
\(967\) 3.93226e7 1.35231 0.676154 0.736760i \(-0.263645\pi\)
0.676154 + 0.736760i \(0.263645\pi\)
\(968\) 0 0
\(969\) 1.07443e7 0.367594
\(970\) 0 0
\(971\) −1.24936e7 −0.425244 −0.212622 0.977135i \(-0.568200\pi\)
−0.212622 + 0.977135i \(0.568200\pi\)
\(972\) 0 0
\(973\) 3.02742e7 1.02516
\(974\) 0 0
\(975\) −9.08382e6 −0.306025
\(976\) 0 0
\(977\) 1.71837e6 0.0575943 0.0287971 0.999585i \(-0.490832\pi\)
0.0287971 + 0.999585i \(0.490832\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −9.47871e7 −3.14468
\(982\) 0 0
\(983\) −3.45031e7 −1.13887 −0.569435 0.822036i \(-0.692838\pi\)
−0.569435 + 0.822036i \(0.692838\pi\)
\(984\) 0 0
\(985\) 3.50330e6 0.115050
\(986\) 0 0
\(987\) −7.36937e7 −2.40789
\(988\) 0 0
\(989\) −3.41581e6 −0.111046
\(990\) 0 0
\(991\) −5.18091e7 −1.67580 −0.837899 0.545825i \(-0.816216\pi\)
−0.837899 + 0.545825i \(0.816216\pi\)
\(992\) 0 0
\(993\) 8.79410e7 2.83021
\(994\) 0 0
\(995\) 1.94183e6 0.0621805
\(996\) 0 0
\(997\) 7.05101e6 0.224654 0.112327 0.993671i \(-0.464170\pi\)
0.112327 + 0.993671i \(0.464170\pi\)
\(998\) 0 0
\(999\) 1.44003e8 4.56518
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 968.6.a.p.1.16 16
11.7 odd 10 88.6.i.b.49.1 yes 32
11.8 odd 10 88.6.i.b.9.1 32
11.10 odd 2 968.6.a.q.1.16 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.6.i.b.9.1 32 11.8 odd 10
88.6.i.b.49.1 yes 32 11.7 odd 10
968.6.a.p.1.16 16 1.1 even 1 trivial
968.6.a.q.1.16 16 11.10 odd 2